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Abstract: 
In this paper, the definitions and examples of topological spaces are expressed. Some topological spaces; 

namely, T1-spaces, Hausdorff spaces, regular spaces and normal spaces are discussed with some examples. 

The theorems which exhibit alternate of defining a topology on a set, using as primitives the neighborhood 

of a point and closure of a set are stated. Very simple characterizations of topological spaces are studied. 
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I. INTRODUCTION 

General topology, also called point set topology, 

has recently become an essential part of the 

mathematical background of both graduate and 

under graduate students. Each article begins with 

clear statements of pertinent definition, principles 

and theorem together with illustrative and other 

descriptive material. This is followed by graded sets 

of solved and problems[2]. 

 

II.     DEFINITIONSAND   EXAMPLES        O F 

TOPOLOGICAL  SPACES 

Basic definitions and examples are given[1]. 
A. Definition 

Let X be a non-empty set. A class τof  subsets of 

X is a topologyon X iffτ satisfies the following 

axioms.   

[O1] X and ∅ belong to τ. 

[O2] The union of any number of sets in τ 

belongs to τ.  

[O3] The intersection of any two sets in τ belongs 

to τ. 

 The members of τ are then called τ-open 

sets, or simplyopen sets, and X together with τ, that 

is, the pair (X, τ) is called a topological space. 

 
B. Example 

Let u denote the class of all open sets of real 

numbers. Then u is a usual topology on Ρ. Similarly, 

the class u of all open sets in the plane Ρ
2
 is a usual 

topology on Ρ
2
. 

 
C .Example 

Consider the following classes of subsets of X = {a, 

b, c, d, e}. 

τ1 = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}}, 

τ2 = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d}}, 

τ3 = {X, ∅, {a}, {c, d}, {a, c, d}, {a, b, d, e}}. 

Observe that τ1 is a topology on X since it 

satisfies the three axioms [O1], [O2] and [O3]. 

 But τ2 is not a topology on X since the union  

  {a, c, d} ∪ {b, c, d} =  {a, b, c, d} 

of two members of  τ2 does not belong to τ2, that 

is, τ2 does not satisfy the axiom [O2]. 

 Also, τ3 is not a topology on X since the 

intersection  
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  {a, c, d} ∩ {a, b, d, e} =  {a, d} 

of two sets in τ3 does not belong to τ3, that is, τ3 

does not satisfy the axiom [O3]. 

 
D. Definitions 

 Let ∆ denote the class of all subsets of X. 

Then ∆ satisfies the axioms for a topology on X. 

This topology is called the discrete topology; and X 

together with its discrete topology, that is, the pair 

(X, ∆), is called a discrete topological spaceor 

simply adiscrete space. 

 
E. Definitions 

 The class g = {X, ∅}, consisting of X and 

∅ alone, is itself a topology on X. It is called the 

indiscrete topology and X together with its 

indiscrete topology, that is, (X, g) is called an 

indiscrete topological space or simply an indiscrete 

space. 

 
E. Definition 

 Let τ denote the class of all subsets of X 

whose complements are finite together with the 

empty set ∅. This class τ is also a topology on X. It 

is called the cofinite topology or the T1-topology on 

X. 

 
F. Example 

 Each of the classes 

  τ1 = {X, ∅, {a}} and τ2 = {X, ∅, {b}}  

is a topology on X = {a, b, c}. But the union 

  τ1 ∪τ2 = {X, ∅, {a}, {b}}  

is not a topology on X since it violates [O2]. 

That is, {a} ∈τ1 ∪τ2, {b} ∈τ1 ∪τ2 but {a} ∪ {b} = 

{a, b} does not belong toτ1 ∪τ2. 
 

 

                                                                                                   

G. Definitions 

Let X be topological space. A point p X∈ is an 

accumulation point or limit point of a subset A of X 

iff every open set G containing p, contains a point 

of A different from p, that is,  

 G open, p G∈ implies (G \{p}) A .∩ ≠ ∅ The 

set of accumulation point of A, denoted by A ,′ is 

called the derived setof A. 

 
H. Definition 

 Let X be a topological space. A subset A of 

X is a closed set iff its complement 
cA is an open 

set. 

 
I. Example 

 The class τ= {X, ∅,{a},{c, d},{a, c, d},{b, c, 

d, e}}defines a topology on                           X = {a, 

b, c, d, e}.The closed subsets of X are ∅, X, {b, c, d, 

e}, {a, b, e}, {b, e}, {a}, that is, the complements of 

the open subsets of X. Note that there are subsets of 

X, such as {b, c, d, e} which are both open and 

closed and there are subsets of X, such as {a, b} 

which are neither open nor closed. 

 
J. Theorem 

 A subset A of a topological space X is 

closed if and only if A contains each of its 

accumulation points. 

In other words, a set A is closed if and only if the 

derived set A′ of  A is a subset of A, that is, A A.⊂′  

Proof: 

 Suppose A is closed and let p A,∉  that is 

cp A .∈ But c
A , the complement of a closed set, is 

open; hence p A∉ ′  for 
cA is an open set such that  

  c cp A and A A .∈ ∩ = ∅  

Thus A A⊂′  if A is closed. 

 Now assume A A;⊂′ we show that 
cA  is 

open. 

 Let cp A ; then p A ,∈ ∉ ′  

so there exists an open set G such that 

  p G and (G \{p}) A .∈ ∩ = ∅  

But p A; hence G A (G \{p}) A .∉ ∩ = ∩ = ∅  

So c
G A .⊂ Thus p is an interior point of cA and 

so cA is open. 

 
K. Definition 
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 Let A be a subset of a topological space X. 

The closureof A, denoted by A is the intersection of 

all closed supersets of A.  

In other words, if i{F : i I}∈ is the class of all 

closed subsets of X containing A, then  

  i iA F .= ∩  

 Observe that A  is a closed set since it is the 

intersection of closed sets[4]. Furthermore, A  is the 

smallest closed superset of A, that is, if F is a closed 

set containing A, then 

  A A F.⊂ ⊂  

Accordingly, a set A is closed if and only if 

A A.=  
 

L. Example 

 Consider the topology τ on X = {a, b, c, d, e} 

is {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}}.The 

closed subsets of X are ∅, X, {b, c, d, e}, {a, b, e}, 

{b, e}, {a}. 

 Accordingly, 

{b} {b,e}, {a,c} X, {b,d} {b,c,d,e}.= = =  
 

M. Definition 

 Let τ1 and τ2 be topologies on a non-empty 

set X. Suppose that each τ1-open subset of X is also 

a τ2-open subset of X. That is, suppose that τ1 is a 

subclass of τ2.Then we say that τ1 is coarseror 

smaller than τ2 or that τ2 is fineror larger than τ1. 

 
N.Definitions 

 Let A be a non-empty subset of a 

topological space (X, τ). The class τA of all 

intersections of A with τ-open subsets of X is a 

topology on A; it is called the relative topology on 

A or the relativizationof τto A, and the topological 

space     (A, τA) is called a subspaceof (X, τ).In 

other words, a subset H of A is a τA-open  set, that 

is, open relative to A, if and only if there exists a τ-

open subset G of X such that 

  H G A.= ∩  
 

O. Example 

 Consider the topology 

 τ= {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}} 

on X = {a, b, c, d, e}, and the subset A = {a, d, e} 

of X. 

Observe that  

X A A, {a} A {a}, {a,c,d} A {a,d},∩ = ∩ = ∩ =  

A , {c,d} A {d}, {b,c,d,e} A {d,e}.∅ ∩ = ∅ ∩ = ∩ =  

Hence the relative topology on A is  

  τA = {A, ∅, {a}, {d}, {a, d}, {d, e}}. 

 

II. T1-SPACES 

 
A. Definition 

A topological space X is a T1-spaceiff it satisfies 

the following axiom[2]: 

 

[T1] Given any pair of distinct points a,b X,∈  

each belongs to an open set which does not contain 

the other. 

 In other words, there exists open sets G and 

H such that 

  a G, b G and b H, a H.∈ ∉ ∈ ∉  

The open sets G and H are not necessarily 

disjoint. 

 

 

 

 

 

 
Fig.1 T1 –Spaces 

 
B. Theorem 

 A topological space X is a T1-space if and 

only if every singleton subset {p} of X is close. 

Proof: 

 Suppose X is a T1-space and p X.∈ We have 

to show that c{p} is open. 

Let 
c

x {p} .∈  

Then x p,≠ and so by [T1], there exists an open 

set Gx such that x xx G but p G .∈ ∉  

Hence c
xx G {p} ,∈ ⊂ and  hence 

c c
x{p} {G : x {p} }.= ∪ ∈  

  

 
a b 

  

 
a b 

G H
X 

G H
X
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Accordingly c{p} , a union of open sets, is open 

and {p} is closed.Conversely, suppose {p} is closed 

for every p X.∈  

Let a,b X with a b.∈ ≠ Now, ca b b {a} ;≠ ⇒ ∈  

Hence c{a} is an open set containing b but not 

containing a.  

Similarly c{b} is an open set containing a but not 

containing b. Accordingly, X is a T1-space. 

 
C. Example 

 Every metric space X is a T1-space since we 

proved that finite subsets of X are closed. 

 
D. Example 

 Consider the topology τ= {X, ∅, {a}}on the 

set X = {a, b}. Observe that X is the only open set 

containing b, but it also contains a. Hence (X, τ) 

does not satisfy [T1], that is , (X, τ) is not a T1-

space. Note that the singleton set {a} is not closed 

since its complement c{a} {b}= is not open. 

 
E. Example 

 Let X be a T1-space. Then the following are 

equivalent; 

(i) p X∈ is an accumulation point of A. 

(ii) Every open set containing p contains an 

infinite number of points of A. 

  For, if by the definition of an accumulation 

point of a set, (ii) ⇒ (i). 

  Let p X∈ is an accumulation point of A. 

 Suppose G is an open set containing p and 

only containing a finite number of point of A 

different from p; 

say 1 2 nB (G \{p}) A {a ,a ,...,a }.= ∩ =  

Now B, a finite subset of a T1-space, is closed 

and so cB  is open. Set c
H G B .= ∩ Then H is open, 

p H∈ and H contains no points of A different from p. 

 Hence p is not an accumulation point of A 

and so this contradicts the fact that p is an 

accumulation point of A. 

 Thus every open set containing p contains 

an infinite number of points of A. 

 

III.HAUSDORFF SPACES 

 

A. Definition 

A topological space X is a Hausdorffspace or T2-

spaceiff it satisfies the following axiom[2]: 

[T2] Each pair of distinct points a,b X∈ belong 

respectively to disjoint open sets. 

  In other words, there exist open sets G and 

H such that  

   a G,b H and G H .∈ ∈ ∩ = ∅  
 

 

 

 

 

 

 

 

 
Fig.2 T2 –Spaces ( Hausdorff Space) 

 
B. Theorem 

 Every metric space is a Hausdorff space. 

Proof: 

 Let X be a metric space and a,b X∈ be distinct 

points; hence by the definition of metric [M4], d(a, 

b) =  ε> 0. 

Consider the open spheres 

1 1
G S(a, ) and H S(b, ),

3 3
= ε = ε centered at a and b 

respectively. We claim that G and H are disjoint. 

For if p G H∈ ∩ ,then 
1

d(a, p)
3

< ε  and 
1

d(p, b) ;
3

< ε  

hence by the Triangle Inequality, 

  
1 1 2

d(a, p) d(a,p) d(p,b) .
3 3 3

≤ + < ε + ε = ε  

 But this contradicts the fact that d(a, b) = ε. 

Hence G and H are disjoint, that is, a and b 

belong respectively to the disjoint open spheres G 

and H.  

Accordingly, X is Hausdorff. 

 
C. Example 

X
G H 

 
a b 
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 Let τ be the cofinite topology on the real line 

Ρ. We can show that (Ρ, τ) is   not Hausdorff. Let G 

and H be any non-empty τ-open sets[3]. 

 Now G and H are infinite since they are 

complements of finite sets. If G H ,∩ = ∅ then G, an 

infinite set, would be contained in the finite 

complement of H; hence G and H are not disjoint. 

Accordingly, no pair of distinct points in ¡  

belongs, respectively, to disjoint τ-open sets. Thus, 

T1-spaces need not be Hausdorff. 

 
D. Theorem 

 If X is a Hausdorff space, then every 

convergent sequence in X has a unique limit. 

Proof: 

Suppose 1 2(a ,a ,...)  converges to a and b and 

suppose a b.≠  

Since X is a Hausdorff, there exist open sets G 

and H such that a G, b H and G H .∈ ∈ ∩ = ∅  

 By hypothesis, (an) converges to a;  

Hence 0n N∃ ∈ such that 0n n> implies na G,∈  

that is, G contains all except a finite number of 

the terms of the sequence. But G and H are disjoint; 

hence H can only contain those terms of the 

sequence which do not belong to G and there are 

only a finite number of these. 

 Accordingly, (an) cannot converge to b.  

But this violates the hypothesis;    hence a = b. 
E. Definition 

A topological space X is called a first countable 

space if it satisfies the following axiom, called the 

first axiom of countability. 

[C1]  For each point p X∈ there exists a 

countable class Βp of open sets containing p such 

that every open set G containing p also contains a 

member of Βp. 
F. Theorem 

 Let X be first countable. Then X is 

Hausdorff if and only if every convergent sequence 

has a unique limit. 

Proof: 

 By the above theorem, if X is Hausdorff, 

then every convergent sequence has a unique limit. 

 Conversely suppose that every convergent 

sequence has a unique limit. Assume that X is not 

Hausdorff. Then a,b X, a b,∃ ∈ ≠  with the property 

that every open set containing a has a non-empty 

intersection with every open set containing b. 

 Now let {Gn} and {Hn} be nested local 

bases at a and b respectively.  

Then n nG H∩ ≠ ∅ for every n N,∈ and so there 

exists (a1,a2,...) such that

1 1 1 2 2 2a G H , a G H , .∈ ∩ ∈ ∩ L  

Accordingly, (an) converges to both a and b. 

This contradicts the fact that every convergent 

sequence has a unique limit. 

 Hence X is a Hausdorff space. 

IV. REGULAR  SRPACES 

 
A. Definition 

A topological space X is regulariff it satisfies the 

following axiom[2]: 

[R]  If F is a closed subset of X and p X∈ does 

not belong to F, then there exists disjoint open sets 

G and H such that F G and p H.⊂ ∈  
 

 

 

 

 

 

 

 
Fig.3  Regular Spaces 

B. Example 

 Consider the topology τ= {X, ∅, {a}, {b, c}} 

on the set X = {a, b, c}. Observe that the closed 

subsets of X are also X, ∅,  {a} and {b, c} and that 

(X, τ) does satisfy [R]. 

 On the other hand, (X, τ) is not a T1-space 

since there are finite sets, for example {b}, which 

are not closed. 

 
C. Definition 

 A regular space X which also satisfies the 

separation axiom [T1], that is, a regular T1-space is 

called a T3-space. 

X G H 

 
p F 
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X

 
D. Example 

 Let X be a T3-space. Then we can show that 

X is also a Hausdorff space, that is, a T2-space.  

 Let a,b X∈  be distinct points. Since X is a 

T1-space, {a} is a closed set; and since a and b are 

distinct, b {a}.∉  

 Accordingly, by [R], there exist disjoint 

open sets G and H such that {a} G and b H.⊂ ∈  

 Hence a and b belong respectively to 

disjoint open sets G and H. 

 

V.NORMAL SPACES 

 

A. Definition  

A topological space X is normaliff X satisfies 

the following axiom: 

[N] If F1 and F2 are disjoint closed subsets of X, 

then there exist disjoint open sets G and H such that 

1F G⊂ and 2F H.⊂
 

 

 

 

 

  

    

       

      
Fig.4Normal Spaces 

 
 

B. Theorem 

 A topological space X is normal if and only if 

for every closed set F and open set H containing F 

there exists an open set G such that 

  F G G H.⊂ ⊂ ⊂  

Proof: 

 Suppose X is normal. Let F H,⊂ with F 

closed and H open. Then H
c
 is closed and 

cF H .∩ = ∅  But X is normal; hence there exists 

open sets G, G
*
 such that c *

F G, H G⊂ ⊂ and

*G G .∩ = ∅  

But  
c

* *G G G G∩ = ∅⇒ ⊂ and
c

c * *H G G H.⊂ ⇒ ⊂  

Furthermore, 
c*G  is closed; hence

c*F G G G H.⊂ ⊂ ⊂ ⊂  

 Conversely suppose that for every closed set 

F and open set H containing F there exists an open 

set G such that F G G H.⊂ ⊂ ⊂  

 Let F1 and F2 be disjoint closed sets. 

Then c c
1 2 2

F F and F⊂  is open. 

By hypothesis, there exists an open set G such 

that c
1 2

F G G F .⊂ ⊂ ⊂  

But  
c

c
22G F F G⊂ ⇒ ⊂   and 

c

G G G G .⊂ ⇒ ∩ = ∅  

Furthermore, 
c

G is open.  

Thus 
c

1 2F G and F G⊂ ⊂ with G, 
c

G  disjoint 

open sets; hence X is normal. 

 
C. Example 

 Consider the topology τ= {X, ∅, {a}, {b}, 

{a, b}} on the set X = {a, b, c}. Observe that the 

closed sets are  X, ∅,  {b, c}, {a, c} and {c}. 

 If F1 and F2 are disjoint closed subsets of (X, 

τ), then one of them, say    must be the empty set ∅. 

 Hence ∅ and X are disjoint open sets and 

1 2F and F X.⊂ ∅ ⊂  In other words, (X, τ) is a 

normal space. 

 On the other hand, (X, τ) is not a T1-space 

since the singleton set {a} is not closed. 

Furthermore, (X, τ) is not a regular space since 

a {c}∉  and the only open superset of the closed set 

{c} is X which also contains a. 

 
D. Definition 

 A normal space X which also satisfies the 

separation axiom [T1], that is, a normal T1-space, is 

called a T4-space. 

 
E. Example   

 Let X be a T4-space. Then X is also a 

regular T1-space, that is, T3-space. 

 For suppose F is a closed subset of X and 

p X∈ does not belong to F. By [T1], {p} is closed; 

and since F and {p} are disjoint, by [N], there exist 

G H 

 

F1 F2 
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disjoint open sets G and H such that 
F G and p {p} H.⊂ ∈ ⊂  
 

 The following diagram illustrates the 

relationship between the spaces discussed in this 

paper. 

 

 

 

 
 

 

 
 
 
 
 
 
 

 

 

 

 
Fig.5The Relationship between the  Topological Spaces 

 

VI. CONCLUSIONS 

 

In the discussion of properties of topology 

spaces, some topological spaces with illustrated 

examples are described. Many properties of a 

topological space X depend upon the distribution of 

the open sets in the space. A space is more likely to 

be separable or first or second countable, if there 

are few open sets, on the other hand, an arbitrary 

function on X to some topological space is more 

likely to be continuous or a sequence to have a 

unique limit, if the space has many open sets. The 

solved problems serve to illustrate and amplify the 

theory, bring into sharp focus those fine points 

without which the student continually feels himself 

an unsafe ground and provide the repetition of basic 

principles so vital to effective learning. The 

relationship between the topological spaces is 

illustrated. 
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