

 Page 1

K.Aravindh*,R.P.Santharuban**,S.Sanjay***

*(Computer Science and Engineering, Kamaraj College of Engineering and Technology

Email: aravindh.vel1999@gmail.com)

*(Computer Science and Engineering, Kamaraj College of Engineering and Technology

Email: sanjaymanian@gmail.com)

*(Computer Science and Engineering, Kamaraj College of Engineering and Technology

Email: santharuban97@gmail.com)

--************************---

Abstract:

 Parallelization is the process used for reducing the time that provides an efficient result for the

real time applications. Multi-core architecture is a general purpose processor that consists of multiple

cores on the same die and can execute programs simultaneously and parallelization can be applied

effectively. Though the multiple cores are available in multi-core architecture, only single core is utilized

unless the programmer intervenes. It is very crucial to use the multi-cores effectively. There are many

applications such as communication network addressing, X-Ray Crystallography, Radar Communication,

Astronomy and Circuit design which use graceful graph labelling problem for finding solutions. In real

time, solving graceful graph labelling problem is time consuming process when numbers of nodes are

processed sequentially. In this work, parallelization is applied to the Graceful Graph labelling problem in

multi-core using OpenMP. It is found that speedup and execution time are reduced. After parallelization,

the speed up is constantly improved as the size of the graph becomes large.

Keywords — Multi-core, OpenMP, Graceful, Graph Labelling, Speedup, Execution Time .

---************************--

 1. INTRODUCTION

The program which uses a large number of data

as an input takes more time for the execution.

This issue in the execution is because of the

serial execution of the program. To avoid this

issue the proposed system uses the OpenMP to

execute the program in a parallel way.

Parallelization is the act of designing a

computer program or system to process data

in parallel. Normally, computer programs

compute data serially. They solve one problem,

and then the next, then the next. If a computer

program or system is parallelized, it breaks a

problem down into smaller pieces that can each

independently be solved at the same time by

discrete computing resources. When optimized

for this type of computation, parallelized

programs can arrive at a solution much faster

than programs executing processes in serial.

Parallel processing is the method of evenly

distributing computer processes between two or

more computer processors. This requires a

computer with multiple CPUs, or a CPU

(or GPU) equipped with multiple cores. It also

requires an operating system capable of

supporting parallel processing,

or software written specifically to process tasks

in parallel. Parallel processing is the method of

evenly distributing computer processes between

two or more computer processors. Each new

generation of processors approaches the

physical limitations of microelectronics, which

is a major engineering concern in CPU design.

Parallelization of graceful labeling using OpenMP

mailto:aravindh.vel1999@gmail.com
https://www.computerhope.com/jargon/p/program.htm
https://www.computerhope.com/jargon/s/system.htm
https://www.computerhope.com/jargon/p/parallel.htm
https://www.computerhope.com/jargon/s/serial.htm
https://www.computerhope.com/jargon/p/processi.htm
https://www.computerhope.com/jargon/c/cpu.htm
https://www.computerhope.com/jargon/g/gpu.htm
https://www.computerhope.com/jargon/c/core.htm
https://www.computerhope.com/os.htm
https://www.computerhope.com/jargon/s/software.htm
https://www.computerhope.com/jargon/p/parallel.htm
https://www.computerhope.com/jargon/p/processi.htm
https://www.computerhope.com/jargon/c/cpu.htm

 Page 2

Because individual chips are approaching their

fastest possible speeds, parallel processing

becomes an important area in which to improve

computing performance. The majority of

modern desktop computers and laptops have

multiple cores on their CPU that help parallel

processing in the operating system.

.

1.2 Multi-core Architecture

Multi-core refers to an architecture in which a

single physical processor incorporates the core

logic of more than one processor. Multi-core

architecture places multiple cores and bundles

them as a single physical processor. The

objective is to create a system that can complete

more tasks at the same time, thereby gaining

better overall system architecture

A single integrated circuit is used to package or

hold these processors. These single integrated

circuits are known as a die. Multi-core

architecture consists of multiple cores on the

same die and can execute programs

simultaneously, thereby gaining better overall

system performance. The processing tasks are

divided into sub tasks and assigned to different

cores. At the time of task completion, the

processed data from each core is collected and

combined. This technique significantly

enhances performance compared to a single-

core processor of similar speed.

 1.3 OpenMP

Open MP stands for open multi-processing.

OpenMP uses a portable, scalable model that

gives programmers a simple and flexible

interface for developing parallel applications for

platforms ranging from the standard desktop

computer to the supercomputer. Open MP is an

application programming interface (API) that

supports multi-platform shared memory multi-

processing programming in C, C++, and Fortran,

on many platforms, instruction set architectures

and operating systems, including Solaris, ,

Linux, macOS, and Windows. OpenMP consists

of a set of compiler directives, library routines,

and environment variables.

OpenMP is an implementation of

multithreading, forks a specified number of

slave threads and the system divides a task

among them. The threads then run concurrently,

with the runtime environment allocating threads

to different processors.

3. System Design

Fig 1:System Design

This system is designed in such a way that to

parallelize the graph labelling for different inputs.

Normally, a graph consists of number of vertices

and edges. The system accepts the edges and

vertices as an input. The labelling can be calculated

by finding the difference between the adjacent

vertices. The checking of alpha labelling is

performed. These processes are parallelized.

Speedup is calculated based on the time taken for

the execution of both serial and parallel program.

The results are compared and analysed.

2. Execution Time

 In this module, the execution time to find

out the weight for the graph is calculated by using

equation.

()()

secondper Clocks

beginendfloat
timeExecution

−
=

Where,

 Begin-time at which program execution

starts

 End-time at which program execution ends

https://www.computerhope.com/jargon/d/desktopc.htm
https://www.computerhope.com/jargon/l/laptop.htm
https://www.computerhope.com/jargon/c/core.htm
https://www.computerhope.com/os.htm
https://en.wikipedia.org/wiki/Software_portability
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Desktop_computer
https://en.wikipedia.org/wiki/Desktop_computer
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Shared_memory_architecture
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Compiler_directive
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Fork_(system_call)
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Runtime_environment

 Page 3

 Execution time – Time taken to execute the

program

 The factor by which multi-core shows

improvement in finding solution is called speed up

the overall speedup S is given by the below

equation .

 Speedup, S =
Tparallel

Tseries

Where,

Tserial – serial program execution time

Tparallel – parallel program execution time

No of

Vertices

Serial

Execution

Time(Micro

sec)

Parallel

Execution

Time(Micro

sec)

10*10

 0412 0371

50*50

 2313 2062

100*100

 72501 65210

150*150

 18751 16782

200*200

 27983 26123

250*250

 42516 41710

300*300

 66543 61287

350*350

 78142 60286

400*400

 90421 84371

450*450

 111242 107342

Table 1:Execution Time

Table 1 shows that for 10*10, there is no much

difference in execution time between serial and

parallel execution times. However, for 450*450,

there is a considerable amount of difference

between serial execution time and parallel

execution time. When the number of vertices

increases, the corresponding difference between

serial and parallel execution time also increases.

3. Speedup

The speedup is calculated by using the fraction of

code parallelized with speed obtained from serial

and parallel execution time which is shown in Table

2.

Table 2 Speedup

4. CONCLUSIONS

 In this work, we learned how OpenMp

programming techniques are beneficial to multicore

systems. We also found out the execution time of

both serial and parallel programs. From the vertices

10 to 450, it shows consistent improvement. It is

concluded that by parallelization the speedup, and

execution time are improved.

.

5. REFERENCES

[1] Brankovic,&Wanless (2011). Graceful

Labelling: State of the Art, Applications and

Future Directions. Mathematics in

Computer Science, 5(1), 11–

20. doi:10.1007/s11786-011-0073-6

[2] Yamazaki ,Kurzak , Wu , Zounon ,

&Dongarra (2018). Symmetric Indefinite

Linear Solver Using OpenMP Task on

Multicore Architectures. IEEE Transactions

on Parallel and Distributed Systems, 29(8),

No of Vertices Speedup

 10*10 1.112

 50*50 1.121

 100*100 1.123

 150*150 1.125

 200*200 1.125

 250*250 1.123

 300*300 1.127

 350*350 1.130

 400*400 1.134

 450*450 1.148

 Page 4

1879–

1892. doi:10.1109/tpds.2018.2808964

[3] Peipei , Tai , &Yuanyuan(2014). The

Generation of k-Graceful Figure and

Graceful Label.2014 Fourth International

Conference on Instrumentation and

Measurement, Computer, Communication

and Control. doi:10.1109/imccc.2014.94

[4] Zeng K, Tang Y, & Liu F

(2011). Parallization of Adaboost Algorithm

through Hybrid MPI/OpenMP and

Transactional Memory.2011 19th

International Euromicro Conference on

Parallel, Distributed and Network-Based

Processing. doi:10.1109/pdp.2011.97

[5] SheelaKathavate and N.K. Srinath,

Efficiency of Parallel Algorithms on

Multi Core Systems Using OpenMP,

International Journal of Advanced

Research in Computer and Communication

Engineering Vol. 3, Issue 10, October

2014.

[6] ChetanArora, Subhashis Banerjee,

PremKalra, and S.N. Maheshwari, An

Efficient GraphCut Algorithm for

Computer Vision Problems,

Department of Computer Science

and Engineering, Indian Institute of

Technology, New Delhi, India@Springer-

Verlag Berlin Heidelberg 2010.

[7] P.K.D Sridevi,A.Sindhuja,R.Muthuselvi

“Parallelization of maze generation and

solving in multicore Using

OpenMP” International Conference on

Innovations in Engineering and Technology,

ICIET 16, 6th and 7th April 2016 conducted

by KLN College of Engineering,Madurai.

[8] R.Muthuselvi, M.Muneeswari, K.Sudha,

V.Vasantha “Parallelization of Graph

Labelling Problem in Multicore using

OpenMP” International Conference on

Trends in Electronics and Informatics ICEI

2017 May 11th and 12th 2017 conducted by

SCAD Engineering College, Thirunelveli

[9] Rohit Chandra, Leonardo Dagum, Dave

Kohr, DrorMaydan, Jeff McDonald,

Ramesh Menon ' Parallel Programming in

OpenMP' ch.1-6, pp.1-249.

[10] J.A. Mac Dougall, M. Miller, Slamin and

W. D. Wallis,Vertexmagic total labelling og

graphs,Util,Math.,61(2002)3-4.

[11] K.A. Hawick, A. Leist and D.P. Playne,

Parallel Graph Component Labelling with GPUs

and CUDA,International Journal of Engineering

 and Technology Vol.3,2014.

.

