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Abstract: 
Unsupervised Domain Adaptation (UDA) is the utilization of a model that is trained on 

data from a source domain, on a target domain via adaptation without using labelled data in the 

target domain. The knowledge learned from a source with labelled data is transferred to a target 

domain where there is no labelled data available.The processof UDA involves model training on source 

domaindata enabling the learning of underlyingpatterns and relationships in the train data set. The trained 

model is then adopted the targetdomain by minimizing the discrepancy between the source and target 

domain. The discrepancycan be measured by using Domain Adversarial Training or Domain Alignment 

methods. Thisresearch provides a review of a series of research works related to UDA and provides 

athorough understanding of Transferability Enhanced UDA Networks. The research drawsinsights from 

the reviewed existing literature and conducts experiments and analysis onMNIST and MINST-M dataset 

where the model is trained on MNIST dataset and adapted tounlabelled MNIST-M dataset. The research is 

primarily based on the work of Ganin et al., 2016,where a novel representation learning approach is 

presented for Domain Adaptation (DA), theexperiments are conducted and results are produced. The 

approach proposed has drawn insightsfrom the theory of DA which suggests that in order to achieve 

domain transfer effectively, thefeatures that are incapable of discriminating between source and target 

domains should be usedas the basis for predictions. This idea is implemented in the context of neural 

networks whichare trained on labelled source domain data and unlabelled target domain data. To enhance 

theaccuracy of the results and to ensure that the domain confusion and class loss in the labelpredictor are 

maximized and minimized respectively, −� factor is applied to the gradient duringthe backward pass. 

Wepropose a function to increase this � factor gradually from 0 to 1 to ensure that thedomain confusion is 

not backpropagated to the CNN layers in the beginning. The idea is toignore the domain loss in the 

beginning as it is going to be noisy because it is based on badconvolutional features. During the progress 

of training, the features that are discriminative forthe main learning task on the source domain emerge 

along with the features that areindiscriminative with regards to the domain shift. The experiments 

conducted has resulted inexcellent performance in adapting the model trained on MNIST dataset to predict 

on MNIST- 

M dataset. 
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I. INTRODUCTION 

Deep learning is incredibly versatile and has good 

performance in various computer vision tasks. As a 

result, deep learning has gained a lot of popularity 

in recent years. Deep networks, however, have a lot 

of different parameters. Massive networks pose 

computational difficulties and make it impossible 

for humans to understand the reasoning behind the 

networks' judgments. The model must be able to 

recognize and react appropriately to numerous 

environmental changes in order to allow networks 

to be deployed to delicate jobs like autonomous 

driving.Network performance may suffer when 

making inferences about a target domain because 

they are trained using data from the source domain 

(deployment). In order to ensure stable behaviour, 

domain adaptation (DA) involves adjusting 

networks to novel settings. DA focuses on agile 

methodologies that use data from a source domain 

to produce models with excellent performance on a 

target domain rather than creating universal models 

that should function in any situation. By not 

requiring annotations from the target domain, 

unsupervised domain adaptation (UDA) goes 

beyond conventional adaptation. Alternatively, by 

using unlabelled data from the target domain, the 

adaptation is made possible.The target 

(environment) where the approach is to be applied 

in real-world applications differs from the source 

(annotated data) utilized for training. Moreover, 

labelled data from the deployable distribution is 

typically unavailable. DA techniques have gained 

favour in applications where labelling is expensive, 

and sample quality significantly relies on the 

hardware configuration such as camera setup and 

viewing angle. Due to the laborious nature of the 

annotation process and the task's steadfast reliance 

on the hardware and positioning of the camera, 

UDA has given semantic segmentation a great deal 

of attention. For instance, labelling the pixels of a 

single Cityscapes image takes on average ninety 

minutes, at which rate it would take three person 

years to annotate the whole dataset [1]. 

Over the years, UDA has grown significantly, 

although it is still only used in a few specific 

situations. Real-world data are so varied that even 

humans and machine learning models struggle to 

adapt to well-known tasks when faced with novel 

situations. Performance improvement in a defined 

and static target domain is the fundamental 

objective of current UDA approaches. But in the 

actual world, tasks frequently experience several 

domain transitions. To create an accurate model, a 

conventional supervised machine learner would 

need a lot of labelled data. Large volumes of 

training data must be manually annotated, which 

takes a lot of effort and is impractical. Furthermore, 

there is no assurance that the annotated data is 

impartially representing all of the data[2], [3]. For 

instance, due to the disparities in cost of living, 

statistics gathered from a local market in Colombo 

may be biased when compared to marketplaces 

around the world.The data from the Sri Lankan 

market might be used to assist a model generalize to 

the Indian market instead of having to generalize to 

the entire global market. When using supervised 

learning, the available data is often divided into two 

sets: a training set for building a model and a test 

set for assessing how well the model works. The 

model makes an effort to reduce the training error 

during training.The generalization error on the test 

set, the target set that was not observed during 

training, is what we are genuinely concerned with 

minimizing. Usually, it is assumed that the 

distributions of the training and test sets are 

independent and identical.A feature space and its 

probability distribution construct a domain. 

Different to that, a task is made up of a label space 

and a decision function to teach the test set the 

desired probability distribution[4]. The training set 

is used in conventional supervised learning 

techniques to develop an independent model, which 

is then tested against data from each target domain 

for each target task.  

For instance, if there is a domain X and we want 

to train a model MX for a task T0 in the said domain 

X, we must provide labelled data for the task T and 

domain X. If the given data is from a different task 

T1 or comes from a different domain Y, we want to 

train a model MY to have very good performance on 

domain Y. When there is no sufficient labelled data 

for the target task or domain, in this case, if 

sufficient labelled data for target domain Y does not 
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exist, the supervised models will be unsuccessful at 

learning a model that is accurate on the target 

domain. 

When it comes to Transfer Learning, there are 

notable differences when compared to Traditional 

Supervised Learning paradigms. In transfer learning, 

knowledge is transferred from a task or a domain 

that is related to the target task or domain to obtain 

a trained model that works accurately on the target 

task or the domain[5]. While the source and target 

domains in transfer learning can differ, they should 

have some things in common. The process can be 

carried out in different stages, such as feature 

extraction, fine-tuning, or complete 

retraining.Transfer learning and supervised DA 

differ primarily in that transfer learning can be 

carried out even in the absence of labelled data in 

the target domain, whereas supervised DA 

necessitates labelled data in the target domain. The 

pre-trained model serves as a feature extractor in 

transfer learning, whereas in supervised DA, the 

model is adjusted on the target domain to fit its 

properties. There are two subfields in transfer 

learning; Multi Task Learning (MTL), DA. 

In MTL, the transfer happens across the tasks 

where as in DA, the transfer happens across the 

domains. The goal of MTL is to train a model for a 

task by simultaneously learning several related 

tasks[6]. Learning tasks simultaneously has proven 

to improve the performance significantly more than 

when each and every task is trained independently 

in cases where the availability of data per each task 

is limited. Through MTL, the available data could 

be utilized across multiple tasks that are related to 

each other [6]. MTL is also called as learning with 

auxiliary tasks as defined in [7]. DA deals with the 

problem of adapting models trained on a source 

domain to perform well on a target domain that is 

related but has different characteristics to that of the 

source domain. Through DA, the amount of 

labelled data needed to train a model to either 

perform well on a new domain, or to improve its 

performance on a new domain, is expected to be 

reduced. In DA, both the source and target domains 

have the same task. In order to bring the two 

domains closer together and make it simpler to 

transition from the source domain to the target 

domain, DA aims to identify a common space 

representation for the two domains. 

This paper aims to evaluate a set of previous 

work with regards to different types of UDA 

solutions and present a review of those work and 

conducting experimentation based on the previous 

work. Accordingly, an UDA Task of adapting a 

model trained on MNIST labelled source dataset to 

MNIST-M target unlabeled dataset is performed 

based on the work of[8]and the results are provided. 

The paper introduces a gradual lambda reversing 

functionality to the gradient reversal layer of the 

model proposed in [8]. 

The Gradient Reversal Layer of model proposed 

in [8] is utilized to achieve the maximization of loss 

in the domain classifier and minimization of loss in 

the label predictor. When the domain label is 

computed and it then starts to propagate backwards, 

the gradient reversal layer flips the sign of the 

gradient. As the model is trained with MNIST data 

with labels, the input MNIST data goes all the way 

through the label predictor and obtain a class loss. It 

will also go through the domain classifier and 

obtain a domain loss. Then it will backpropagate 

from both. When a data from MNIST-M is input 

where no labels exist, it would only go through the 

domain classifier where the convolutional part of 

the model is confused such that it cannot create 

features that would allow the domain classifier to 

work while it still can create features that would 

allow the label predictor to work. If the model is 

confused about what domain the data comes from 

but still able to classify the digits correctly, then we 

can assume that it does not use any domain related 

information of any sort. In the gradient reversal 

layer, the reversal is done by changing a parameter 

value which is changed from 0 to 1. But doing this 

directly could cause issues in the accuracy. In the 

beginning, convolutional features are not extracting 

anything as they do not have sufficient knowledge 

to know what to extract. Such convolution features, 

which can be called “bad convolutional features”, 

should not be used as the basis for predictions. 

Therefore, we have to get to a point where our 

convolutional features are good enough before we 

start to confuse them. The idea is therefore to ignore 

the domain loss in the beginning as it is going to be 
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noisy and we do not want to backpropagate domain 

confusion into the CNN layers in the beginning. To 

achieve this, we propose a function to gradually 

increase the Lambda parameter value from 0 to 1 

during the course of training.Good performance 

results are obtained through the conducted 

experiments and the results are visualized. 

II. LITERATURE REVIEW 

This section analyses a series of related concepts 

and prior work related to the research. 

A. Transfer Learning 

Deep architectures use a series of layers to 

convert inputs into the necessary outputs. While the 

last layers carry out the task-specific inference, the 

initial layers improve the raw data's feature 

representations[9]. Throughout their progress of 

development,with increasing availability of a 

wealth of data, deep learning models have become 

more complicated and as a result, transfer 

learning[5], which examines "knowledge transfer" 

across machine learning models, has become 

increasingly popular in recent years.Deep models 

may be trained on big data to create robust feature 

representations, which can then be adjusted for the 

task at hand. With the use of transfer learning, big 

parameter models can be trained on enormous, 

generic datasets and subsequently fine-tuned for a 

particular purpose. Strong feature representations 

and a noticeably quicker convergence time are 

made possible via transfer learning. Based on the 

real world experiments[10], the estimated training 

time for the GPT-3 with 175 billion parameters 

utilizing 1024 A100 GPUs is just over a month. 

However, fine-tuning these models could be done 

with limited resource and within hours. Therefore, 

it is important to highlight the scales and 

proportions of time and resource that could be 

saved by utilizing existing already trained models to 

new tasks via Transfer Learning. Transfer Learning 

is not just utilized for transferring of tasks. 

Techniques for transfer learning can be used to 

transfer knowledge from one domain to another. 

Customizing a segmentation model for a new 

location or environment can be stated as an 

example. Even when the purpose is the same, the 

data or domain may be different. As models usually 

struggle to generalize to new domains, it is 

beneficial to transfer current information and 

employ adaptation procedures. 

B. Semantic Segmentation 

Semantic segmentation is a computer vision task 

that involves assigning a semantic label to every 

pixel in an image, thereby dividing the image into 

meaningful regions. This method is frequently 

employed in numerous fields, including 

autonomous vehicle technology, image analysis in 

medicine, and video monitoring. The objective of 

semantic segmentation is to categorize every pixel 

in an image into one of many pre-defined classes 

which can be done using Convolutional neural 

networks (CNNs), a type of deep learning technique 

that has been proven to be very successful for 

image processing tasks. The basic process of 

semantic segmentation is as follows: 

• Input Image: The input image is fed into the 

deep learning model, which processes it 

through a series of convolutional layers to 

extract meaningful features. 

• Encoding: The extracted features are then 

encoded into a compact representation using 

techniques such as pooling or down-sampling. 

• Decoding: The encoded features are then 

decoded using techniques such as up-sampling 

or transposed convolution to reconstruct the 

original image. 

• Classification: Finally, each pixel in the 

reconstructed image is classified into one of 

several pre-defined classes based on the 

features extracted in the earlier stages. 

Applications of Semantic Segmentation includes 

Autonomous Driving, Medical Image Analysis, 

Video Surveillance, Object Detection and Tracking, 

Robotics, Augmented Reality and Environment 

Monitoring. In Autonomous driving, Semantic 

Segmentation can be used to identify and classify 

objects such as vehicles, people, roadway blocks, 

traffic signs, barriers etc. to enable safe driving of 

the vehicle for passengers as well as pedestrians 

[11]. Semantic Segmentation is used in medical 

image analysis to separately identify different 

tissues and organs in medical images for diagnosing 
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various diseases [12]. In Video Surveillance, 

Semantic Segmentation is used for real-time object 

detection and tracking which is crucial for security 

and monitoring applications [13]. In Augmented 

Reality, Semantic Segmentation is used to detect 

and track objects in real-time video streams 

accurately. Augmented Reality applications overlay 

virtual objects in to the real world on a live video 

stream [14]. Using Semantic Segmentation, the 

real-world scene is segmented into meaningful 

regions and the objects of interest are identified. 

This segmentation information is then used to track 

and overlay virtual objects on top of real-world 

objects in the video stream in an accurate as well as 

realistic manner [15]. One of the key challenges in 

Augmented Reality is occlusion, where virtual 

objects are partially or completely blocked by real-

world objects. Using semantic segmentation, the 

occluding objects can be identified. Then the 

background can be modified as necessary for a 

realistic experience by hiding or modifying the 

occluding objects. Additionally, semantic 

segmentation is further employed to enhance user 

experience in Augmented Reality by enabling more 

interactive and realistic virtual objects[16]. Multiple 

functions and equations are utilized to achieve 

semantic segmentation. 

1)  Cross-entropy Loss Function:Cross-entropy loss function 

is commonly used in semantic segmentation to measure the 

difference between the predicted class probabilities and the 

ground truth class labels for each pixel in the image.In this 

equation, L is the cross-entropy loss, ���  is the ground-truth 

label for pixel(i,j) and ��� is the predicted probability of the 

pixel that belongs to the same class as ���[17].. 

� = −		���
�

log ���
�

 

( 1 ) 

 

2)  Intersection over Union (IoU):IoU is commonly used 

metric to evaluate the performance of a semantic 

segmentation model.In this equation, TP is the number of true 

positive pixels, FP is the number of false positive pixels and 

FN is the number of false negative pixels [18]. 

��	 = 	��	/	(��	 + 	��	 + 	��) 
( 2 ) 

3)  Dice Coefficient: Dice Coefficient is a similarity metric. It 

measures the agreement between the predicted segmentation 

and the ground truth.In this equation, TP is the number of true 

positive pixels, FP is the number of false positive pixels and 

FN is the number of false negative pixels [19]. 

�	 = 2	 ∗ 	�� (2	 ∗ 	��	 + 	��	 + 	��)⁄  

( 3 ) 

C. Unsupervised Domain Adaptation 

Unsupervised Domain Adaptation (UDA) aims 

to improve the performance of a model on a target 

domain by leveraging knowledge from a related but 

different source domain, without the need for 

labelled data in the target domain. UDA is 

particularly useful in scenarios where labeled data 

in the target domain is scarce or expensive to 

obtain[20]. UDA in general approaches DA by 

learning a domain-invariant feature representation 

that can capture the shared information between the 

source and target domains, while minimizing the 

differences between the two domains. This is 

achieved by using an UDA loss, such as the 

Maximum Mean Discrepancy (MMD)  or the 

Domain Adversarial Neural Network (DANN) 

loss[8], which encourages the feature distributions 

of the source and target domains to be similar. Then, 

the learned domain-invariant features are utilized to 

train a classifier on the labeled source domain, 

which can be applied to the target domain with 

improved performance.  

For UDA, a number of techniques have been 

developed, including MMD-based techniques, 

adversarial-based techniques, and reconstruction-

based techniques. Deep Adaptation Networks 

(DAN)[21]. and Joint Adaptation Networks (JAN), 

two MMD-based techniques, employ MMD to 

reduce the domain disparity between the source and 

destination domains. With adversarial-based 

approaches like DANN and Adversarial 

Discriminative Domain Adaptation (ADDA), the 

feature extractor seeks to reduce the domain 

classification loss while the domain classifier 

attempts to discriminate between the source and 

target domains. Reconstruction-based techniques 

can produce realistic samples in the target domain 

by learning a mapping between the source and 

target domains.Examples of these techniques 
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include Pixel-Level Adaptation Networks (PLAN) 

and Image-to-Image Translation with Conditional 

Adversarial Networks (CycleGAN)[22]–[24]. 

Following are some of the commonly used 

functions in UDA techniques. 

1)  Maximum Mean Discrepancy (MMD):MMD is a distance 

metric that measures the difference between the distributions 

of the source and target domain data in the feature space. The 

aim here is to minimize the distance between the two domains. 

Here,�� and��  are the source and target domain distributions, 

��� and ��� are samples from the source and target domains.   

is a feature mapping function, and !�and !�respectively are 

the number of samples in the source and target domains. 

�""#(�� , ��) = || 1!�	 (���) 	
'(

�)*

−	 1!�	 (���)
'+

�)*
||, 

( 4 ) 

2)  Domain Adversarial Neural Networks (DANN): MMD is 

DANNinvolves adding a domain classifier to a neural network 

model and training it to simultaneously minimize the task loss 

and maximize the domain confusion. The domain confusion 

can be measured using the adversarial lossformula (5). In 

formula (5), � and -respectively are the feature extractor and 

task predictor and �� and ��respectively are the source and 

target domain samples.Domain classifier is denoted as �. The 

aim here is to minimize the task loss and maximize the domain 

confusion simultaneously, which is formulated as in formula 

(6). 

�.#/ = −0�1(�(-(�(��)))) − 0�1(1
− �(-(�(��)))) 

( 5 ) 

�232.4 = �2.56 + �	 ∗ 	�.#/ 

( 6 ) 

3)  Conditional Domain Adversarial Neural Networks 
(CDAN): CDAN is based on DANNbut takes into account the 

conditional information in the target domain data. It involves 

adding a conditional domain classifier to the model and 

training it to minimize the task loss and maximize the 

conditional domain confusion, which can be measured using 

the adversarial loss formula (7) [25]. Here, ��� and ��� are the 

class labels of the source and target domain samples. The rest 

of the variables are the same as in the DANN equation. The 

aim here is to minimize the task loss and maximize the 

conditional domain confusion simultaneously, which can be 

formulated as in formula (8). Here, � is a hyperparameter that 

controls the trade-off between the task loss and the 

conditional domain confusion. 

 

�.#/ = −	log(�(-(�(���), ���)))
�

−	log(1 − �(-(�(���), ���)))
�

 

( 7 ) 

�232.4 = �2.56 + �	 ∗ 	�.#/ 

( 8 ) 

D. Task Specific Boundaries 

A key aspect of DA is identifying and defining 

the boundaries between source and target domains. 

These boundaries are called Task-specific 

boundaries. The specific aspects of the problem or 

task at hand that separate the source domain from 

the target domain are considered Task-specific 

boundaries. To guarantee that the model is properly 

adapted to the target domain, the adaptation process 

is guided by task-specific boundaries. Task-specific 

limits might be specified in terms of the input space, 

the output space, or both[26]. 

Task-specific boundaries in the input space 

describe characteristics or input variables that are 

pertinent to the task in the target domain but not in 

the source domain. For instance, if the source 

domain is pictures of cats and dogs and the target 

domain is pictures of wild animals, task-specific 

boundaries in the input space can include 

characteristics relating to the presence of trees, 

rocks, or other natural aspects in the image. Task-

specific boundaries in the output space describe the 

labels or outputs that are relevant to the task in the 

target domain but not in the source domain. For 

instance, if the source domain is a dataset 

containing English texts and the target domain is a 

dataset containing Spanish texts, task-specific 

boundaries in the output space can include 

differences in grammar or syntax that have an effect 

on the labelling parts of speech or named 

entities.Task-specific boundaries can further be 

defined in terms of the loss function used to train 

the model. As Different tasks may require different 

loss functions, and adapting a model from one 
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domain to another may require modifying the loss 

function to account for differences in the target 

domain[27]. 

E. Feature Based Unsupervised Domain Adaptation 

There are many different approaches for feature-

based UDA methods. Projection based methods is 

one of them where an embedded space is learned. 

In this embedded space, the difference between 

feature distributions of source and target domains is 

minimized. This results in the learning of a 

common feature space [28], [29]. In the process of 

learning this common feature space, pivot selection 

plays a vital role. Furthermore, it should be noted 

that various forms of feature augmentations have 

been utilized in DA [30], [31]. Feature sparseness is 

a problem that exists in text classification. Feature 

expansion is a solution that is proposed to 

overcome this problem [32]. This solution predicts 

the mission features and expands the instances. The 

problem of feature sparseness is encountered in 

UDA when there is a small intersection of feature 

spaces in the source and target domain data 

distributions. Utilization of Diagnosing Encoders is 

another approach. These encoders do not rely on 

manual pivot selection [29], [33]. 

Pivot Selection has different strategies such as 

frequency of a pivot in a domain, Mutual 

Information (MI) or Pointwise Mutual Information 

(PMI) between a pivot and a domain label. Pivots 

can be defined as features with similar behaviour 

for discriminative learning in source and target 

domains [28]. In the work of [28], features that 

frequently appear in both domains (source and 

target) are selected as pivots. This pivot selection 

strategy does not require labelled data and has good 

performance for sequence labelling tasks. The work 

[28] has further shown that for discriminative 

classification tasks such as sentiment classification, 

MI is better than utilizing frequency. In the MI 

strategy, it is expected that the features 

discriminating the sentiment in the source domain 

will also discriminate the sentiment in the target 

domain. To that end, reviews with positive and 

negative sentiment labels are generated using MI 

between a feature and source domain. Pivotal 

features are those that have a high MI with either 

positively or negatively labelled reviews. This 

approach however required labelled data in the 

source domain for selecting pivots. A different 

strategy proposes an alternative definition for pivots 

where the features that are common to both source 

and target domain are considered as domain-

independent features [34]. Other features are 

considered as domain-specific features. Domain-

independent features are selected as pivots. In the 

proposed solution, MI between a feature and 

unlabelled training instances in each domain is used 

as a pivot selection strategy. It is assumed that 

features with low MI between source and target 

domain are likely domain-independent features. In 

UDA settings, the amount of unlabelled data in the 

source domains are usually significantly larger than 

that of labelled data. Therefore, it is possible to 

make better estimations of MI using unlabelled data. 

But it is not possible to solely utilize unlabelled 

data to select pivots that discriminate the classes 

related to the target prediction task. Another 

literature [35] proposes PMI [36] as a pivot 

selection strategy. It is a well-established measure 

for accurate work association. It has been utilized in 

multiple NLP tasks such as collocation detection 

[37], word similarity measurement [38] and 

relational similarity measurement [39]. A variant of 

PMI called Positive Pointwise Mutual Information 

(PPMI)[40]replaces all negative PMI values with 

zero and is proposed as another pivot selection 

strategy for UDA [41]. 

When adapting from one domain to another, the 

two domains are represented in domain-specific 

feature spaces, which is a fundamental challenge 

[3]. For learning transferable features between 

domains, learning a projection from the two 

domains to a domain-invariant space is the best 

option. During DA, it is important to reduce the 

mismatch of features between the source domain 

and the target domain. To achieve that, a technique 

called structural correspondence learning (SCL) is 

used to automatically determine the correspondence 

between a source domain and a target domain [28]. 

This approach was first presented for POS tagging 

and then expanded to include sentiment analysis 

[29]. To obtain the outcome, SCL first chooses k 

features using a particular selection technique. The 
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association between pivot features and non-pivot 

features is then modelled using k binary predictors 

that have been trained. The weight matrix is next 

subjected to Singular Value Decomposition (SVD) 

in order to learn a lower-dimensional projection for 

the pivot predictors. Finally, the labelled data 

represented as the concatenation of the original 

features and the predicted pivot features. This 

labelled data is used to train a logistic regression 

classifier. 

An approach called Spectral Feature Alignment 

(SFA) has been developed for the classification of 

sentiment across domains[34]. In this approach, 

firstly, all features are separated into the domain-

specific and domain-independent groups. These two 

groups are mutually exclusive. To obtain a bipartite 

graph between domain-specific and domain-

independent features, SFA first counts how many 

times each feature occurs in both domains in the 

same document. When projecting domain-specific 

features, SFA modifies spectral clustering to 

produce a lower dimensional representation using 

top eigenvectors. Using labelled data from the 

source domain by the original features and the 

projected domain-specific features, a logistic 

regression model is learned in the last stage, which 

is similar to SCL. 

A multi-source method for cross-domain 

sentiment classification is Sentiment Domain 

Adaptation Method from Multiple Sources 

(SDAMS) [42]. It is consisted of two components 

called a sentiment graph and a domain similarity 

metric. The sentiment polarity relationships 

between word pairs are used to extract the 

sentiment graph from unlabeled data. The word-

pairs of domains in the sentiment graph serve as the 

foundation for the domain similarity metric. The 

sentiment graph of each domain is then used to 

learn the projection. 

When it comes to feature expansion methods, a 

variety of solutions are available. Frequent Term 

Sets (FTS) [32]approaches feature extraction by 

computing the feature co-occurrence followed by 

selecting the expansion candidates under a pre-

defined frequency threshold. The frequently co-

occurring features are then used to expand the 

features in the original feature vectors. An 

improvement to this method is proposed with the 

introduction of support and confidence to the co-

occurrence relationship [43] where the support and 

confidence are introduced at the phase when the 

frequent term sets are created for expansion. 

Sentiment Classification Thesaurus (SST) 

automatically creates a thesaurus to group various 

features that express the same sentiments to achieve 

cross-domain sentimentclassification [35].In the 

beginning, a set of features that co-occur with each 

feature and a set of sentiment features by the source 

labelled instances where the feature appears 

combine to form a feature vector for each feature. 

In order to generate a thesaurus, SST then ranks the 

traits according to how closely they are connected 

to one another. The tagged data in the source 

instances where the feature occurs is also to 

construct sentiment features for the thesaurus. The 

top k related features from the thesaurus generated 

in the preceding phase are then introduced, 

expanding the instance vector of the document. 

Finally, extended document vectors are used to 

learn a classifier. 

There are various approaches utilizing DL for 

feature-based UDA. Stacked Denoising 

Autoencoders (SDA) could be considered as one of 

the earliest methods [29]. Autoencoder based 

methods are trained to minimize the loss between 

the original inputs and their reconstructions. In 

order to identify an invariant feature space on the 

source and target domain data, SDA first employs 

stacked denoising autoencoders. The in-variant 

characteristics that the encoder extracted and the 

original features from the source domain are then 

used to train a Support Vector Machine (SVM) 

classifier.SDA with Domain Supervision (SDA-DS) 

and SDA with Sentiment Supervision (SDA-SS) are 

two SDA variants suggested by latter research 

works [44]. SDA-DS adds a layer to SDA to its the 

input reconstruction process to predict the 

distribution of the domain whereas SDA-SS adds a 

layer to incorporate sentiment labels. Another 

extension to SDA is Marginalized Denoising 

Autoencoders (mSDA) [45]. This approach allows 

to compute the reconstruction mapping in close-

form without corrupting a single instance [46]. The 

training is conducted layer by layer across the entire 
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dataset. During this training, each layer attempts to 

reconstruct the output of the previous layer. The 

inputs and hidden layers are then concatenated and 

used to train a SVM classifier. mSDA reduces the 

computational cost relatively to SDA while 

addressing its lack of scalability in the high-

dimensional features. This is achieved by only 

constructing the features that are domain-

independent [47]. Another neural approach is 

World Distribution Prediction (WDP) which is 

aimed at predicting the domain-to-domain 

distribution of word changes [41]. To achieve this, 

WDP begins by selecting pivots and using SVD to 

create two latent feature spaces. These feature 

spaces are created separately for the source domain 

and the target domain. Then it utilizes Partial Least 

Square Regression (PLSR) [48] to learn a mapping 

from source latent feature space to target latent 

feature space. Another approach that work similar 

to PLSR is Feature Embeddings for Domain 

Adaptation (FEMA) [49]. Unlike PLSR where 

pivots are used, FEMA obtains low-dimensional 

embeddings by utilizing a natural language model. 

An approach that combines multiple autoencoder 

based approaches [29], [45], [50]with SCL is 

Natural Structural Correspondence Learning (AE-

SCL)[51]. This method maintains a structure that is 

similar to an autoencoder. However, it does not 

reconstruct all the input like many other 

autoencoder based methods. A prediction function 

from the non-pivot features to the pivot features is 

learned. The pivot features can then be rebuilt using 

the learned representation.Another neural approach 

is Adversarial Memory Network (AMN) [52]. This 

method has drawn inspiration from DANN [8]. 

Similar to DANN, it has two classifiers, each for 

predicting labels and domains. It is further 

consisted of two memory networks with shared 

parameters [53]. The two memory networks are 

utilized to extract pivots with two attributes. In this 

approach, pivots are captured automatically using 

attention and does not employ manual pivot 

selection like other methods. It further provides a 

direct visualization of the selected pivots. 

F. Instance Based Unsupervised Domain Adaptation 

Instance based UDA solutions are popular in 

computer vision and pattern recognition fields. 

Instance based methods aim at selecting the most 

suitable training instances in order to reduce the 

differences between the source domain and the 

target domain [54]. This is different from 

projection-based methods where the source domain 

and target domains are transferred to a shared 

subspace. Instance reweighing methods does not 

drop other training instances. Rather, they assign a 

new weight to each training instance. This is done 

to approximate the distribution of the target domain 

[55], [56]. There are other types of instance-based 

UDA solutions that are based on self-labelling. 

Labelled training data are hard to retrieve in 

classification tasks. When it comes to UDA, the 

availability of labelled source data is severely 

limited while a large amount of unlabelled data 

exists in both source and target domains. Self-

labelling addresses this problem by utilizing the 

unlabelled data available [57]. 

When it comes to selecting and reweighing 

instances in instance-based UDA, an approach that 

is used to solve the problem of covariate shift is 

weighting or selecting instances based on their 

importance to the target domain[2]. These methods 

use the training instances of the source domain to 

learn a model on the target domain. A weight 

estimation technique called Maximum Mean 

Discrepancy (MMD)uses the difference between 

the means of mapped representations of data 

distributions in a reproducing kernel Hilbert space 

(RKHS)[58]. This is done to assess whether the 

distributions are from the same or separate domains. 

However, MMD does not generate the samples.It 

solves an expensive semi-definite program(SDP) to 

learn a latent space. A different approach that does 

not use parameters is Kernel Mean Matching 

(KMM) [56]. It aims to close up the means of 

training and test features in RKHS by reweighting 

the training instances. This instance weighting 

method tries to solve DA by weighting the loss of 

the source instances. Transfer Component Analysis 

(TCA) is another method that uses MMD to 

minimize dissimilarities across source and target 

domains in order to introduce a shared latent 

subspace [59]. The subspace preserves the 
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properties of the original data. TCA has further 

been applied to multi-source DA [60]. It should 

however be noted that in TCA, all the source 

domains are equally weighted in the joint 

matrix.For the purpose of identifying training 

instances that are the most useful for DA in the 

context of cross-domain sentiment classification, 

Positive and Unlabelled Learning (PU Learning) 

method is proposed [54].In this approach, a binary 

in-target-domain selector is constructed and in-

target-domain probabilities are added to source 

instances. Two models are proposed in this 

approach. One model selects the instances with 

higher in-target-domain probabilities and the other 

model reweights the instances with in-target-

domain probabilities. The two models train a 

Bayesian classifier weighted with instances. When 

selecting data, many instance selection methods 

have utilized similarity measures [61], [62]. 

Bayesian optimization is employed to weight 

training instances from several source domains 

using a set of similarity and diversity indicators 

where existing similarity and diversity measures are 

used to define a data selection model [63]. Using a 

small collection of validation data, Bayesian 

optimization is used to learn the weights in order to 

optimize the objective function for the specific task. 

The work of this research shows that diversity 

measures are of significant importance in DA even 

though it does not outperform state-of-the-art 

methods. It further provides cross-model, cross-

domain, and cross-task outcomes for the learned 

measures.Another approach presents an instance 

selection method aimed at machine translation [64]. 

This method utilizes the sum of cross-entropy 

differences over sentences of the corpus in order to 

rank source-domain instances with respect to target-

domain instances. 

In self-labelling, a model is trained on the 

labelled instances. The trained model is then 

utilized to assign pseudo labels to unlabelled 

instances [65]. In UDA, a large amount of 

unlabeled data is available. By utilizing self 

labelling methods, these unlabeled data can be 

given pseudo labels. Then the data with pseudo 

labels can be used to create the feature space of 

training data. When deploying a deep learning 

model that has been trained in a source domain to 

unlabelled target domains, self-training-based UDA 

has demonstrated tremendous promise for 

addressing the issue of domain shift. Self-training  

has been adopted to many different cross-domain 

tasks from NLP to image classification [66]–[68]. 

Another approach is Co-training [69] where the 

problem of using a large unlabelled sample to boost 

the performance of an algorithm with finite amount 

of labelled data is addressed. This method assumes 

the existence of multiple views of the feature space. 

Accordingly, in the most basic scenario, two views 

can be available for the feature space. Here, the 

labelled instances of the source domain are 

leveraged to learn a separate classifier. During this 

process, features from only a particular view are 

involved per classifier. In the most basic scenario 

with two views, there would be two classifiers. 

Then, pseudo labels of the unlabelled instances of 

the target domain are predicted using the learned 

dual classifiers. A label is assigned to an unlabelled 

instance of the target domain when both classifiers 

agree on that label. Co-training approach has been 

applied in UDA in scenarios where the source and 

target domain feature spaces has multiple views 

[70]. The complementarity of the data gathered by 

the various feature spaces will determine the 

effectiveness of co-training. To that end, the 

importance of constructing feature spaces carefully 

and properly should be highlighted. Another self-

labelling approach that utilizes three classifiers is 

Tri-Training [71]. The three classifiers are trained 

with subsets of instances. These instances are 

sampled from the available labelled instances. Co-

training has the requirement for the construction of 

sufficient features spaces and availability of 

redundant views [70]. This requirement is relaxed 

in Tri-training [71]. In the Tri-training approach, 

only two classifiers out of the three have to agree 

upon a label for it to be assigned to a particular 

unlabelled instance. Based on Tri-training, an 

improved version of the method has been proposed 

where in order to assign a label to an unlabelled 

instance, not only two classifiers have to agree on 

the particular label, but the third classifier has to 

disagree [72]. This has led to the reduction of the 

number of additional instances and the 
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diversification of the sample process. Tri

further improved by adding three neural networks 

[73]. Two of the three neural networks are used to 

give pseudo labels for the unlabelled data in the 

target domain. The third neural network uses those 

pseudo labels to learn a discriminator. Multi

Tri-training (MT-Tri) [74]is an advanced improved 

approach based on Tri-training and Bi

methods. This method reduces the time an

complexity compared to the traditional approaches. 

When it comes to neural approaches of instance

based UDA, Deep Domain Confusion Network 

(DDCN) is a DA method that utilizes CNN and is 

based on discrepancy [75]. In order to minimize 

distribution distance (computed using MMD) 

between the source domain and the target domain 

this method attempts to learn a representation. The 

loss function of the method utilizes the learnt 

representation for classification tasks. The method 

further focuses on adjusting the confusion between 

the source domain and the target domain by 

introducing a hyperparameter for regularization. 

Then, it adds the MMD loss on top of the layer to 

standard AlexNet architecture [76]

AlexNet architecture has 8 layers and is used in 

other methods such as Deep Adaptation Network 

(DAN) [21]. In DAN, out of the 8 layers in its 

modified AlexNet architecture, the first 3 layers are

utilized for learning general transferable features 

from the source domain. The middle 2 layers are 

utilized for learning features that are specific to the 

domains. The last 3 layers are utilized for learning 

features that are invariant to the domains. In

layer, the discrepancy loss takes place. 

distance between the mean embeddings of two 

distributions is calculated using a multiple kernel 

variation of MMD (MK-MMD)[21]. 

perform feature learning, DA, and c

learning concurrently in the model architecture 

utilizing backpropagation for UDA, a method called 

Domain Adversarial Neural Networks (DANN)

been proposed with the aim of learning features that 

are both discriminative as well as domain

[8]. DANN method is consisted of three separate 

parameters. The method seeks to maximize the loss 

in the label-predictor and to minimize the loss in the 

domain classifier. The label predictor essentially 
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When it comes to neural approaches of instance-
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introducing a hyperparameter for regularization. 

Then, it adds the MMD loss on top of the layer to 

[76]. Modified 

AlexNet architecture has 8 layers and is used in 

other methods such as Deep Adaptation Network 

. In DAN, out of the 8 layers in its 

modified AlexNet architecture, the first 3 layers are 

utilized for learning general transferable features 

from the source domain. The middle 2 layers are 

utilized for learning features that are specific to the 

domains. The last 3 layers are utilized for learning 

features that are invariant to the domains. In the last 

layer, the discrepancy loss takes place. The RKHS 

distance between the mean embeddings of two 

multiple kernel 

. In order to 

, and classifier 

learning concurrently in the model architecture by 

a method called 

Domain Adversarial Neural Networks (DANN) has 

with the aim of learning features that 

are both discriminative as well as domain-invariant 

. DANN method is consisted of three separate 

parameters. The method seeks to maximize the loss 

predictor and to minimize the loss in the 

domain classifier. The label predictor essentially 

tries to predict the class labels while the domain 

classifier tries to identify the domain from which 

the data is coming from. By generalizing DANN, 

Multiple Source DA with Adversarial Learning 

(MDAN) has been proposed [77]

features that are independent of the domain but still 

relevant to the target task. MDAN is consisted of 

two versions called hard and smooth. In the hard 

version, gradient reversal backpropagates the 

source domain that achieves the minimum 

classification error. In the smooth version, all 

classification errors are adaptively combined and 

backpropagated. Adversarial Discriminative DA 

(ADDA) [24]is another method that is based on 

GAN [78]. In ADDA, labels of the data in the 

source domain are utilized to learn a discriminator. 

Then, domain adversarial loss is utilized by an 

encoder to map the target data to the same space. 

The ultimate goal here is to be able to utilize the 

source domain model on the target domain directly. 

To that end, the method attempts to minimize the 

distance of mapping distributions between the two 

domains. Another multiple-source DA method is 

Mixture of Experts (MoE)[79]

point-to-set metric to model the relations in the 

domains. The relations are modeled to an encoded 

training matrix for source domains. This is followed 

by the application of meta-training to update the 

model parameters by conducting a joint training 

over all the available domain-pairs 

III. METHOD 

A. Problem 

The problem is related to different domains but 

identical tasks. In this particular case, it is the 

identification of digits from non

images in the MNIST-M dataset using a model 

trained on labelled MNIST dataset.

 

Fig. 1 MNIST and MNIST-M Datasets
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In the UDA setting, we assume that there are no 

labelled data available for the target domain. The 

intuition is that we need a way to force our 

Convolutional Neural Network to learn features of 

the digit-outline-shapes only, ignoring the color 

distributions. The approach is based on the model 

proposed by [8] which utilizes the concept of 

Domain Confusion Loss. 

 

Fig. 2 DANN 

The model is consisted of a deep feature 

extractor highlighted in the figure in g

and a deep label predictor highlighted in blue color. 

These two form a feed-forward architecture. A 

domain classifier as highlighted in red color is 

added to achieve UDA. A Gradient Reversal Layer 

(GRL) exists between the feature extractor and t

domain classifier. During the backpropagation, the 

GRL multiplies the gradient by a negative constant.

The idea here is to use two different 

classification heads that are placed above the 

convolutional feature extractor. When a data X is 

input, which, in our case, an image of a digit from 

MNIST or MNIST-M datasets, it forward passes 

through the feature extractor where its 

convolutional features are extracted. These 

extracted features are composed in to a vector 

which goes through the subsequent fully connected 

layers. The domain classifier, which is the second 

classification head that has been added to the m

takes in the exact same features extracted by the 

feature extractor and passes them through a 

different set of fully connected layers attempting to 

predict the domain from the features. If we assume 

that MNIST as Domain 0 and MNIST

Domain 1, the domain classifier would try to 

predict if a given set of convolutional features 

belongs to either Domain 0 or Domain 1. There are 
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The model is consisted of a deep feature 

extractor highlighted in the figure in green color 

and a deep label predictor highlighted in blue color. 

forward architecture. A 

domain classifier as highlighted in red color is 

added to achieve UDA. A Gradient Reversal Layer 

(GRL) exists between the feature extractor and the 

domain classifier. During the backpropagation, the 

GRL multiplies the gradient by a negative constant. 

The idea here is to use two different 

classification heads that are placed above the 

convolutional feature extractor. When a data X is 

input, which, in our case, an image of a digit from 

M datasets, it forward passes 

actor where its 

convolutional features are extracted. These 

extracted features are composed in to a vector 

which goes through the subsequent fully connected 

layers. The domain classifier, which is the second 

classification head that has been added to the model, 

takes in the exact same features extracted by the 

feature extractor and passes them through a 

different set of fully connected layers attempting to 

predict the domain from the features. If we assume 

that MNIST as Domain 0 and MNIST-M as 

domain classifier would try to 

predict if a given set of convolutional features 

belongs to either Domain 0 or Domain 1. There are 

losses associated with both the label predictor and 

domain classifier. In the case of the domain 

classifier, its loss is treated as confusion loss. The 

reasoning behind is that we want the domain 

classifier to be confused about domain of which the 

features are passing through the layers of the 

domain classifier. In order to achieve this, the loss 

in the domain classifier is maxi

time, in order to improve the accuracy of prediction, 

the loss of the label predictor is minimized. This 

essentially leads to a point where the model is 

capable of correctly identifying the digit of a given 

input digit image without having an idea of which 

domain it comes from, meaning that the model is 

trained with a certain level of accuracy to identify 

data on the target domain. 

B. Gradient Reversal Layer 

A Gradient Reversal Layer (GRL) is utilized to 

achieve the maximization of loss in t

classifier and minimization of loss in the label 

predictor. When the domain label is computed and 

it then starts to propagate backwards, the gradient 

reversal layer flips the sign of the gradient. As the 

model is trained with MNIST data with labe

input MNIST data goes all the way through the 

label predictor and obtain a class loss. It will also 

go through the domain classifier and obtain a 

domain loss. Then it will backpropagate from both. 

When a data from MNIST-M is input where no 

labels exist, it would only go through the domain 

classifier where the convolutional part of the model 

is confused such that it cannot create features that 

would allow the domain classifier to work while it 

still can create features that would allow the label 

predictor to work. If the model is confused about 

what domain the data comes from but still able to 

classify the digits correctly, then we can assume 

that it does not use any domain related information 

of any sort. 

 

6 Issue 3, May-June 2023 

www.ijsred.com 

Page 476 

losses associated with both the label predictor and 

domain classifier. In the case of the domain 

ted as confusion loss. The 

reasoning behind is that we want the domain 

classifier to be confused about domain of which the 

features are passing through the layers of the 

domain classifier. In order to achieve this, the loss 

in the domain classifier is maximized. At the same 

time, in order to improve the accuracy of prediction, 

the loss of the label predictor is minimized. This 

essentially leads to a point where the model is 

capable of correctly identifying the digit of a given 

ng an idea of which 

domain it comes from, meaning that the model is 

trained with a certain level of accuracy to identify 

A Gradient Reversal Layer (GRL) is utilized to 

achieve the maximization of loss in the domain 

classifier and minimization of loss in the label 

predictor. When the domain label is computed and 

it then starts to propagate backwards, the gradient 

reversal layer flips the sign of the gradient. As the 

model is trained with MNIST data with labels, the 

input MNIST data goes all the way through the 

label predictor and obtain a class loss. It will also 

go through the domain classifier and obtain a 

domain loss. Then it will backpropagate from both. 

M is input where no 

xist, it would only go through the domain 

classifier where the convolutional part of the model 

is confused such that it cannot create features that 

would allow the domain classifier to work while it 

still can create features that would allow the label 

If the model is confused about 

what domain the data comes from but still able to 

classify the digits correctly, then we can assume 

that it does not use any domain related information 



International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are 

Fig. 3 Architecture 

The model is consisted of three parts, as in 

• A "deep" CNN for image feature extraction 

(2x Conv, ReLU, MaxPool) (not-

this case) 

• A digit-classification head (3x FC, ReLU)

• A domain classification head (2x FC, ReLU), 

with GRL 

GRL is no-operation in forward pass, but applies 

a −λ factor to gradient in the backward pass to flip 

the sign of the gradient. 

This MNIST architecture is inspired by the 

classical LeNet-5[81]. If we do something in the 

forward pass, such as, multiply it by a certain factor, 

it would also affect the backward pass. We need 

something that has no effect in the forward pass but 

has an effect in the backward pass. To achieve this, 

a function is created using PytorchAutograd 

functions. It is a way to define the operation and 

explicitly say that this operation works on tensors 

as well as what it needs to do in the forward and 

backward passes. The implemented function 

reverses the gradient in the backward pass whereas 

it does nothing in the forward pass but stores a 

parameter which is utilized to multiply the gradient. 

On the backwards pass, the function loads the 

previously stored data, takes the gradient of the 

output of the function and computes the gradient of 

the input. The constant is then applied for that and 

returned.  
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Fig. 4 Computational Graph Generated by TorchViz

C. Lambda Change 

λ8 =  
2

1 + exp(−10

Here,p∈ [0,1] is the training process

parameter is changed in the forward function during 

training, where, it is increased overtime. The 

reasoning behind this is that in the beginning, the 

convolutional features are not extracting anything 

as they do not have sufficient knowledge to kno

what to extract. Such convolution features, which 

can be called “bad convolutional features”, cannot 

be used as the basis for predictions. Therefore, we 
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parameter is changed in the forward function during 

training, where, it is increased overtime. The 

reasoning behind this is that in the beginning, the 

convolutional features are not extracting anything 

as they do not have sufficient knowledge to know 

what to extract. Such convolution features, which 

can be called “bad convolutional features”, cannot 

be used as the basis for predictions. Therefore, we 
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have to get to a point where our convolutional 

features are good enough before we start to confuse 

them. The idea is therefore to ignore the domain 

loss in the beginning as it is going to be noisy and 

we do not want to backpropagate domain confusion 

into the CNN layers in the beginning. Therefore, 

the lambda is gradually changed from 0 to 1 in the 

course of the training. 

IV. EXPERIMENTS AND RESULTS

The experiments were conducted using Pytorch 

and Jupyter Notebook as the primary environment. 

Google Colab platform was utilized for computing 

power with Nvidia GPUs. 

Initial Training was conducted for 30 epochs. 

Pytorch Ignite Wrapper was utilized for feature 

visualizations. Fig. 5 shows the initial feature 

visualization between the source (MNIST) and 

target (MNIST-M) domains before training.

 

 

Fig. 5 Initial Feature Visualization 

After training for 30 epochs, the feature 

visualization in fig. 6 was received. 
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have to get to a point where our convolutional 

features are good enough before we start to confuse 
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the lambda is gradually changed from 0 to 1 in the 

RESULTS 

The experiments were conducted using Pytorch 

and Jupyter Notebook as the primary environment. 

Google Colab platform was utilized for computing 

Initial Training was conducted for 30 epochs. 

Pytorch Ignite Wrapper was utilized for feature 

Fig. 5 shows the initial feature 

visualization between the source (MNIST) and 

M) domains before training. 

 

training for 30 epochs, the feature 

Fig. 6 Feature Visualization after 30 epochs

The best epoch was epoch 28 as depicted in fig. 

7. 

Fig. 7 Epoch 28 Feature Visualization

The accuracy of the trained model on the target 

domain recached 77% during the experimentation 

upon testing it on the target domain MNIST

Further training was conducted up to 50 epochs 

and the feature visualization in fig

The accuracy on the target data reached 80.9%. The 

results of the experiment are compared with other 

methods in Table 1. 
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The best epoch was epoch 28 as depicted in fig. 

 

Epoch 28 Feature Visualization 

The accuracy of the trained model on the target 

% during the experimentation 

upon testing it on the target domain MNIST-M. 

Further training was conducted up to 50 epochs 

and the feature visualization in fig. 8 was received. 

The accuracy on the target data reached 80.9%. The 

results of the experiment are compared with other 



International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are 

Fig. 8: Final Feature Visualization 

 
TABLE 1 

 RESULT COMPARISON 

 Method Source 

Target

MNIST 

MNIST

1 Source only 55.2

2 DANN [8] 76.7

3 DSN[82] 83.2

4 DeepJDOT[83] 92.4

5 DRANet[84] 98.7

6 Our Experimentation Results 80.9

 

V. DISCUSSION 

The use of task-specific boundaries can have 

several advantages with regards to enhancing the 

transferability of neural models. 

• Improved Generalization 

• Better Feature Representation 

• Better Model Architecture 

• Improved Model Performance 

By setting task-specific boundaries, the model 

can be better focused on the task at hand and the 

issue of overfitting to the training data can be 

avoided. This can result in improved generalization 

to unseen data, particularly when the target domain 

is different from the source domain. Task

boundaries can positively influence the architecture 

of the model. For instance, the number of classes or 

categories in a classification task can determine 

number of output neurons and the length of the 

input sequence in a natural language processing 

task can determine the size of the recurrent neural 
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Source ���� 

Target 

MNIST ���� 

MNIST-M 

55.2 

76.7 

83.2 

92.4 

98.7 

80.9 

specific boundaries can have 

several advantages with regards to enhancing the 

specific boundaries, the model 

can be better focused on the task at hand and the 

issue of overfitting to the training data can be 

avoided. This can result in improved generalization 

to unseen data, particularly when the target domain 

Task-specific 

boundaries can positively influence the architecture 

of the model. For instance, the number of classes or 

categories in a classification task can determine the 

of output neurons and the length of the 

t sequence in a natural language processing 

task can determine the size of the recurrent neural 

network.The model can be optimized for the 

specific requirements of the task by taking task

specific boundaries into consideration. This can 

contribute to performance improvements over a 

general-purpose model. 

With all these advantages, it is important to note 

the necessity to carefully balance the specificity of 

the task-specific boundaries with the need for the 

model to generalize to new data

that overly restrictive boundaries may limit the 

ability of the model to transfer to new tasks.

Another aspect to note is that the accuracy and 

transferability of neural models may be impacted by 

the disparity in complexity between the datasets 

from the source and destination domains. The 

varying degrees of complexity can be attributed to 

variations in the way features are distributed, the 

number of classes or categories present, the size of 

the dataset, and other aspects of the data itself. The 

model may struggle to adapt to the target domain 

and may not generalize well to the target data, for 

instance, if the source domain's feature distribution 

is simple and the target domain's feature 

distribution is more complex. Several measures, 

such as the KL divergence between the source and 

target domains, the Wasserstein distance, or other 

distance metrics, can be used to determine the 

complexity difference.The cost of accuracy that a 

neural model could suffer without having access to 

any unlabelled target domain data can be significant, 

especially if the source and target domains are 

significantly different. The domain shift refers to 

the difference between the distribution of features 

in the source domain and the target domain. This 

can result in poor performance on the target domain 

and a reduction in accuracy. 

labelled or unlabelled data in the target domain, 

UDA cannot be performed.In the absence of any 

unlabelled target domain data, the model would be 

limited to using only the information it h

from the source domain. This can make it difficult 

for the model to generalize to the target domain and 

may result in overfitting or underfitting.

accuracy of the model on the target domain can 

typically be significantly increased by having 

access to unlabelled target domain data. This is so 

that the model can better generalize to the target 
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The model can be optimized for the 

specific requirements of the task by taking task-

specific boundaries into consideration. This can 

rmance improvements over a 

With all these advantages, it is important to note 

balance the specificity of 

specific boundaries with the need for the 

model to generalize to new data. The reasoning is 

overly restrictive boundaries may limit the 

ability of the model to transfer to new tasks. 

Another aspect to note is that the accuracy and 

transferability of neural models may be impacted by 

the disparity in complexity between the datasets 

urce and destination domains. The 

varying degrees of complexity can be attributed to 

variations in the way features are distributed, the 

number of classes or categories present, the size of 

the dataset, and other aspects of the data itself. The 

truggle to adapt to the target domain 

and may not generalize well to the target data, for 

instance, if the source domain's feature distribution 

is simple and the target domain's feature 

distribution is more complex. Several measures, 

nce between the source and 

target domains, the Wasserstein distance, or other 

distance metrics, can be used to determine the 

The cost of accuracy that a 

neural model could suffer without having access to 

ata can be significant, 

especially if the source and target domains are 

significantly different. The domain shift refers to 

the difference between the distribution of features 

in the source domain and the target domain. This 

on the target domain 

 Without access to 

labelled or unlabelled data in the target domain, 

In the absence of any 

unlabelled target domain data, the model would be 

limited to using only the information it has learned 

from the source domain. This can make it difficult 

for the model to generalize to the target domain and 

may result in overfitting or underfitting. The 

accuracy of the model on the target domain can 

typically be significantly increased by having 

access to unlabelled target domain data. This is so 

that the model can better generalize to the target 
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data by learning the features of the target domain. 

The model can learn a more accurate representation 

of the target domain and enhance its performance 

on the target data by using unsupervised learning 

techniques like clustering or generative models. 

Many performance metrics, including accuracy, F1-

score, precision, recall, and others, can be used to 

compare the accuracy between having access to 

unlabelled target domain data and not having it. In 

cases where a limited amount of labelled data is 

available for the target domain where the rest of the 

available data are unlabelled, the accuracy of the 

model on the target domain can obtain significant 

improvements.  

In the experiments conducted based on the model 

proposed in [8] where domain confusion is utilized 

to effectively achieve DA by confusing the model 

of its knowledge of the domain and reducing the 

loss in its label classifier, we obtained an accuracy 

of around 80.9% upon training it on the source 

dataset (MNIST) and applying on the target dataset 

(MNIST-M), an accuracy that improved 

proportionate to the number of epochs the training 

was performed. The maximization of loss in the 

domain classifier and simultaneous minimization of 

loss in the label predictor is achieved by the 

Gradient Reversal Layer component of the model 

that applies a -λ factor in the backward passes. With 

the introduction of gradually increasing its value 

from 0-1 during the course of training rather than 

setting it to 1 from the very beginning has allowed 

the model to not utilize initial bad convolutional 

features to make predictions which is an 

improvement over the conventional approach. 

VI. CONCLUSION 

The development of transferable deep neural 

networks has been a key focus of research in recent 

years, due to their potential to improve model 

generalization and reduce the need for labelled data. 

UDA has emerged as a promising approach to 

enhance the transferability of deep neural networks, 

enabling the models to generalize to new domains 

without the need for labelled data in the target 

domain. This thesis has explored various techniques 

and methodologies for UDA, including domain 

adversarial training, discrepancy-based methods, 

and self-supervised learning, and has shown their 

effectiveness in improving model performance on 

transfer tasks. Experiments have been conducted 

based on model proposed in [8] while adopting a 

new strategy in its Gradient Reversal Layer to 

gradually increase the lambda value from 0 to 1 

throughout the course of training to ensure that the 

model maximizes the domain confusion loss and 

minimizes the class label loss without being 

affected by bad convolutional features. The testing 

conducted on the target dataset MNIST-M provided 

an accuracy of around 77% upon 30 epochs of 

training. It was subsequently improved to 80.9% 

with 50 epochs of training. It was observed that the 

accuracy is proportional to the number of training 

epochs. With higher number of training epochs, the 

model has the potential to reach a higher level of 

accuracy on the target data.  

According to the experimental findings, UDA 

can significantly increase the ability of deep neural 

networks to transfer across domains, tasks, and 

modalities. By utilizing different domain-specific 

knowledge or prior information, the transfer 

learning performance can be further improved. 

UDA still faces a number of obstacles and 

restrictions, including the domain shift assumption, 

the choice of suitable domain discrepancy measures, 

and the difficulty of adjusting to drastic domain 

shifts. Thus, additional research is required to create 

unsupervised domain adaption methods that are 

more reliable and efficient. 

Further improvements and future works include 

testing the model on different but related target 

datasets other than MNIST-M and comparing the 

accuracies with the other existing research works.  

Additionally, the state-of-the-art UDA methods 

for improving the transferability of deep neural 

networks are reviewed and analysed in-depth in this 

paper, which can be helpful for both academics and 

industry professionals working on transfer learning 

and DA issue 
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