
International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3, May-June 2023

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 47

Enhancing Query Recommendations using Collaborative

Filtering and Locality Sensitive Hashing: A Novel

Approach

Dr. J. Sharel
sharelsky@gmail.com

AssistantProfessor

Christopher Arts andScienceCollege(women), Tamil Nadu, India

Abstract

Since the inception of computing, there has been an ongoing discussion regarding the use of information

systems for suggesting products to customers based on their interests. The concept of recommendation

systems gained popularity after the practical application of Grundy [12], a computer-based library that

suggested novels to users based on their interests. With the widespread use of the internet,

recommendation systems have become an integral part of the user experience in web services and social

networks. In many cases, the presence of recommendation systems is a crucial factor in choosing one

service over another.

The objective of this study is to explore a novel approach to improve query recommendations. The

proposed method incorporates collaborative filtering and Locality Sensitive Hashing (LSH) to enhance

the system's time performance while improving the accuracy of the recommendations through a

combination of collaborative filtering and content-based techniques. The results of the study indicate

that the proposed approach has the potential to generate useful query recommendations, which could be

implemented in real-world scenarios without compromising performance.

Keywords:LSH, DBMS, Data Mining

I. Introduction

Data has become increasingly ubiquitous over the past decade, necessitating the efficient storage of

large amounts of information. Databases have emerged as the preferred method for organizing and

storing information in an organized and efficient manner, with most database management systems

being designed around the relational model since the 1970s. Relations, also known as tables, are the

most fundamental elements that characterize the relational model, consisting of a collection of tuples, or

table rows, each of which shares a set of characteristics, or table columns. Typically, data is retrieved

from a DBMS by sending a query, or a structured request for a set of data.

Suppose we have access to a large number of queries that users submit to a DBMS, each of which is

associated with a rating that indicates how satisfied the user is with the query's outcome. Let's assume

that our DBMS is made up of a single relation that allows users to submit multiple queries to retrieve

data. The question that remains is whether we can use all of this data to suggest queries to users based

on previous interests.

Recommendation systems are critical in many fields, such as e-commerce websites, where these systems

attempt to suggest the best products that match the user's interest to improve sales. This methodology is

also used in libraries and streaming services. These systems are usually based on a Utility Matrix, which

captures a user's preference for a particular item offered by the service. However, the matrix has some

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3, May-June 2023

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 48

blank spaces because users usually do not have recorded data about each item of the system. The goal of

recommendation systems is to provide meaningful values for the blank spaces in the matrix.

There are various ways to create a recommendation system, including content-based and collaborative

filtering approaches. Clustering is another option that can be considered to find groups of commonalities

that can suggest one thing to another member of the same group. Each of these approaches must deal

with the challenge of dealing with vast amounts of data and finding the best recommendation in the

shortest amount of time, taking no more than a few seconds in most cases.

As recommendation systems rely mainly on existing data, a database is necessary for the algorithm's

workflow. Relational databases are typically used and organized in tables consisting of rows and

columns for easy architecture and more understandable data. This paper first demonstrates how locality-

sensitive hashing can be used to improve the search for similar items to provide user recommendations,

then shows how the incorporation of a content-based approach to build a hybrid recommendation system

can benefit recommendation accuracy.

II. Related Study

The work that has been conducted so far in the field of recommendation systems has been focused on

finding ways to exploit similarities in existing data to make recommendations. This prior knowledge can

take on a variety of shapes; one well-known form is provided in terms of a utility matrix. It can also be

obtained from other sources of information that draw on patterns that exploits similarities, such as user

behaviours [5].

Depending on the kind of prior knowledge the system has regarding the problem that is being attempted

to solve, there are primarily two categories in which recommendation systems can be categorized; these

methods are content-based filteringand collaborative-filtering. In addition to these two methods in the

last few years

This similarity measure can be adapted to work also for binary vectors, in fact a binary vector is a

common and convenient way to represent a set. Given a universe set containing all the possible elements

= { 1, 2, ..., }, any subset ⊆ can be represented

emerged the necessity to combine the benefits of the two aforementioned methods into hybrid

recommendation systems.

Content-based methods use a combination of the features associated with each product and the ratings

given by each user to provide suggestions. This method requires the construction of user profiles that

outline each user’s preferences as well as item profiles that highlight an item’s key features.

The collaborative-filtering method pushes the system to only consider the relationships between users

and items, ignoring either the features of users or the characteristics of items: with this approach, the

utility matrix’s relationships are the sole thing being considered. It is possible to create collaborative-

filtering recommendation systems by either locating similar items that may be of interest based on the

user’s past interests, this is called item-item collaborative filtering, or by utilizing user similarities to

recommend products that another user has rated highly, this is user-user collaborative filtering; in both

cases the similarity of items and users is determined by the similarity of the ratings given by one users to

an item.

Collaborative filtering and content-based approach can be combined together to produce a hybrid

recommendation system, which aim to combine the advantages of both the approaches to provide

recommendations that are even more accurate. Depending on the type of problem being considered,

different combining strategies may be used [5].

As was already anticipated, the fundamental component of a recommendation system is the kind of prior

knowledge provided for a particular problem that enables the algorithm to make reasoning about the

International Journal of Scientific Research and

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved

given information. In the case of recommendation systems,

in a so called utility matrix. Given a set of users and a set of

represented by a utility function that associates

set of valid ratings, i.e.�:�×�→�.

2.1 Similarity measures

The notion of similarity holds immense significance for the recommendation

chosen technique for generating recommendations. In the recent years, data mining studies have

emphasized the importance of selecting suitable methods for similarity measurement as a critical and

efficient factor for achieving quality outcomes. The literature [6] suggests that the choice of similarity

measures is contingent upon the nature of the problem, implying that a measure that produces

satisfactory results for one data structure may not perform as well for another.

2.1.1 Jaccard similarity:
The Jaccard similarity, often referred toas the Jaccard index, is a well

thesimilarity between sets. The similarity of two given sets

of the sets divided by the unionof the sets

as a n-dimensional vector�® where each component of the vector is 1if the ith element from the

universal set is present in �, 0 otherwise.

More formally,

From thisdefinition it’s possible to derive that the Jaccard similarity for

times in which both vectors have 1in the same component, divided by the total amount of timesat least

one vector has 1 in the i
th

 component. It’s clear that theJaccard similarity for vectors makes sense only in

the case of vectorsmade only of 0s and 1s

2.1.2 Cosine similarity:

The cosine similarity is a similarity mea

�	the i
th

 component of the vector �. The Cosine similarity of

the two vectors

This similarity measure is defined for vectors of any form, unlikethe Jaccard similarity, which is defined

on sets and consequentlyon binary vectors

2.2 Fast similarities search
The problem of identifying similarities between objects is crucial in various fields. These similarities are

useful in clustering, detecting plagiarism [14], identifying almost identical web pages [8], and

developing recommendation systems that suggest ite

of data, such as in data mining, current research in this field relies on approximate algorithms. This

study first proposes an approach that enhances similarity search for recommendation systems by using

locality-sensitive hashing (LSH) technique along with two locality

for Jaccard similarity and Cosine similarity

the paper explores how to develop a hybrid reco

collaborative filtering methodologies.

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3

 Available at

©IJSRED: All Rights are Reserved

given information. In the case of recommendation systems, the prior knowledge is commonly embedded

in a so called utility matrix. Given a set of users and a set of items, the utility matrix can be

utility function that associates user’su ∈U and items i∈ I to a rating

The notion of similarity holds immense significance for the recommendation system, irrespective of the

chosen technique for generating recommendations. In the recent years, data mining studies have

emphasized the importance of selecting suitable methods for similarity measurement as a critical and

uality outcomes. The literature [6] suggests that the choice of similarity

measures is contingent upon the nature of the problem, implying that a measure that produces

satisfactory results for one data structure may not perform as well for another.

The Jaccard similarity, often referred toas the Jaccard index, is a well-established method to measure

thesimilarity between sets. The similarity of two given sets
 and �,can be measured as the intersection

e unionof the sets

® where each component of the vector is 1if the ith element from the

, 0 otherwise.

From thisdefinition it’s possible to derive that the Jaccard similarity for abinary vector is the number of

times in which both vectors have 1in the same component, divided by the total amount of timesat least

component. It’s clear that theJaccard similarity for vectors makes sense only in

ectorsmade only of 0s and 1s.

similarity is a similarity measure between two n-dimensional vectors �

. The Cosine similarity of � and �corresponds to the

This similarity measure is defined for vectors of any form, unlikethe Jaccard similarity, which is defined

on sets and consequentlyon binary vectors

The problem of identifying similarities between objects is crucial in various fields. These similarities are

useful in clustering, detecting plagiarism [14], identifying almost identical web pages [8], and

developing recommendation systems that suggest items based on past interests. To handle large amounts

of data, such as in data mining, current research in this field relies on approximate algorithms. This

study first proposes an approach that enhances similarity search for recommendation systems by using

sensitive hashing (LSH) technique along with two locality-sensitive functions that are suitable

for Jaccard similarity and Cosine similarity - minHash [2] and simHash [10], respectively. Furthermore,

the paper explores how to develop a hybrid recommendation system by integrating content

collaborative filtering methodologies.

Volume 6 Issue 3, May-June 2023

Available at www.ijsred.com

 Page 49

the prior knowledge is commonly embedded

the utility matrix can be formally

to a rating r ∈R, where is a

system, irrespective of the

chosen technique for generating recommendations. In the recent years, data mining studies have

emphasized the importance of selecting suitable methods for similarity measurement as a critical and

uality outcomes. The literature [6] suggests that the choice of similarity

measures is contingent upon the nature of the problem, implying that a measure that produces

established method to measure

,can be measured as the intersection

® where each component of the vector is 1if the ith element from the

abinary vector is the number of

times in which both vectors have 1in the same component, divided by the total amount of timesat least

component. It’s clear that theJaccard similarity for vectors makes sense only in

�and �. Let’s denote

corresponds to the angle between

This similarity measure is defined for vectors of any form, unlikethe Jaccard similarity, which is defined

The problem of identifying similarities between objects is crucial in various fields. These similarities are

useful in clustering, detecting plagiarism [14], identifying almost identical web pages [8], and

ms based on past interests. To handle large amounts

of data, such as in data mining, current research in this field relies on approximate algorithms. This

study first proposes an approach that enhances similarity search for recommendation systems by using

sensitive functions that are suitable

minHash [2] and simHash [10], respectively. Furthermore,

mmendation system by integrating content-based and

International Journal of Scientific Research and

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved

III. Problem Statement
In this section, the problem is formally defined after a few funda

3.1 Definition: (Relational table). Given a set of

1, �:
2, ...) is defined onthese � domains as a subset of the Cartesian product of

∈� is the set of possible values that a data element may

The notion � (
:
1, �:
2) denotes a relational table made oftwo attributes

respectively from domain
1and
2, i.e.

3.2 Definition (Query).

To retrieve data from a relational table, a user can submit a query consisting of conditions on the

attributes. A query, denoted as �, can be described as a function that takes a set of conditions

two attributes of a relational table �

conditions in �. Typically, queries are formulated as a set of conjunctions.

Throughout the entire paper, the set of all the queries will bereferred to as

3.3 Definition (Rating function).Prior to defining the problem, it is crucial to establish the meaning of a

rating function. The rating function, denoted by

discussed in the related work section. It links users from a set of users,

queries, �, to ratings between 1 and 100. Ratings serve as a representation of a user's viewpoint on the

outcome of a query. Specifically, a rating of 1 indicates an unsatisfactory result, while a rating of 100

indicates that the user is content with the result.

A utility matrix � can be defined with the help of a rating function, where

Each cell of this matrix, denoted by �

∈� to query �∈�. In case a user has not rated a particular query, the corresponding cell

empty.

The primary objective is to develop a highly advanced query recommendation

seamlessly incorporated into a DBMS. This system is intended to leverage the resemblances in user

ratings to provide query recommendations to other users based on the given inputs. To illustrate the

process, Figure 1 clearly outlines the workflow of the recommendation system. The process involves a

user submitting a query to a database through the DBMS, which then retrieves the relevant data. After

the user receives the query results, they are given the option to rate it. Based on the ra

recommendation system generates appropriate recommendations for the user.

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3

 Available at

©IJSRED: All Rights are Reserved

mally defined after a few fundamental concepts are formally defined.

Given a set of � domains � ={�1, �2, ..., ��}, a relational table

domains as a subset of the Cartesian product of �

is the set of possible values that a data element maycontain [4].

) denotes a relational table made oftwo attributes
 and

2, i.e.
∈
1 and �∈
2.

To retrieve data from a relational table, a user can submit a query consisting of conditions on the

, can be described as a function that takes a set of conditions

� as input and produces a subset of tuples from

. Typically, queries are formulated as a set of conjunctions.

Throughout the entire paper, the set of all the queries will bereferred to as �.

Prior to defining the problem, it is crucial to establish the meaning of a

rating function. The rating function, denoted by �, is a specialized version of the utility function

discussed in the related work section. It links users from a set of users, �, and queries from a set of

, to ratings between 1 and 100. Ratings serve as a representation of a user's viewpoint on the

outcome of a query. Specifically, a rating of 1 indicates an unsatisfactory result, while a rating of 100

user is content with the result.

can be defined with the help of a rating function, where � is a matrix of size |

�	�, corresponds to a rating ranging from 1 to 100 assigned by user

a user has not rated a particular query, the corresponding cell

The primary objective is to develop a highly advanced query recommendation system that can be

seamlessly incorporated into a DBMS. This system is intended to leverage the resemblances in user

ratings to provide query recommendations to other users based on the given inputs. To illustrate the

e workflow of the recommendation system. The process involves a

user submitting a query to a database through the DBMS, which then retrieves the relevant data. After

the user receives the query results, they are given the option to rate it. Based on the ra

recommendation system generates appropriate recommendations for the user.

Volume 6 Issue 3, May-June 2023

Available at www.ijsred.com

 Page 50

mental concepts are formally defined.

}, a relational table � (
:

�, where adomain
	

and � taking values

To retrieve data from a relational table, a user can submit a query consisting of conditions on the

, can be described as a function that takes a set of conditions � on the

and produces a subset of tuples from � that satisfy the

Prior to defining the problem, it is crucial to establish the meaning of a

, is a specialized version of the utility function

and queries from a set of

, to ratings between 1 and 100. Ratings serve as a representation of a user's viewpoint on the

outcome of a query. Specifically, a rating of 1 indicates an unsatisfactory result, while a rating of 100

is a matrix of size |� | × |�|.

, corresponds to a rating ranging from 1 to 100 assigned by user 	

a user has not rated a particular query, the corresponding cell �	� remains

system that can be

seamlessly incorporated into a DBMS. This system is intended to leverage the resemblances in user

ratings to provide query recommendations to other users based on the given inputs. To illustrate the

e workflow of the recommendation system. The process involves a

user submitting a query to a database through the DBMS, which then retrieves the relevant data. After

the user receives the query results, they are given the option to rate it. Based on the ratings, the

International Journal of Scientific Research and

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved

IV. SOLUTIONS
This section presents several approaches to the problem, beginning with a basic naive strategy that is

subsequently refined to produce a final solution. The ap

method for handling recommendation systems and gradually enhancing it by incorporating numerous

data mining techniques designed to manage large quantities of data.

4.1 Naive solution

To address the aforementioned problem, the most straightforward approach is to build a

recommendation system using traditional methodologies. The two primary approaches for such tasks are

content-based and collaborative filtering, as discussed in the relat

problem is a utility matrix with partially filled ratings, the initial choice was to use collaborative filtering

instead of content-based methods to avoid defining item and user profiles. Collaborative filtering allows

for the creation of either an Item-Item or a User

(i.e., blank cells �	� in the utility matrix) are filled using one of the following techniques:

(1) Item-Item collaborative filtering: This method loo

similar to query � in the utility matrix. The average of the Top

used to fill the value for �	�.
(2) User-User collaborative filtering: This method is similar to the previous one

differs slightly in that it looks for the Top

items that are similar to item

similar users to user � that have rated

Both these strategies require defining a similarity measure to locate a neighbourhood of K similar items

or users. After considering several factors, including explain ability of the model and ease of finding

items of the same type, the Item-Item

was based on the following reasons:

• The Item-Item approach is less likely to experience significant changes in the item’s

neighbourhood compared to the User

more effective in making recommendations to users with unique tastes.

• The Item-Item approach is more explainable. It is easier to explain why an item has been

recommended to a user based on previously rated goods than to describe

similar preferences to another.

• Finding items of the same type is easier than finding users who only like items of a particular

type, making item-item similarity more reliable.

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3

 Available at

©IJSRED: All Rights are Reserved

This section presents several approaches to the problem, beginning with a basic naive strategy that is

subsequently refined to produce a final solution. The approach involves starting with a conventional

method for handling recommendation systems and gradually enhancing it by incorporating numerous

data mining techniques designed to manage large quantities of data.

To address the aforementioned problem, the most straightforward approach is to build a

recommendation system using traditional methodologies. The two primary approaches for such tasks are

based and collaborative filtering, as discussed in the related work section. As the input of the

problem is a utility matrix with partially filled ratings, the initial choice was to use collaborative filtering

based methods to avoid defining item and user profiles. Collaborative filtering allows

Item or a User-User recommendation system, where the missing values

in the utility matrix) are filled using one of the following techniques:

Item collaborative filtering: This method looks for the top � queries that are most

in the utility matrix. The average of the Top-K items rated by user

User collaborative filtering: This method is similar to the previous one

differs slightly in that it looks for the Top-K users that are similar to user 	 instead of the Top

items that are similar to item �. The value �	� is then filled with the average of the K most

that have rated item �.

Both these strategies require defining a similarity measure to locate a neighbourhood of K similar items

or users. After considering several factors, including explain ability of the model and ease of finding

Item approach was chosen over the User-User approach. This decision

Item approach is less likely to experience significant changes in the item’s

neighbourhood compared to the User-User approach. This is because the User

more effective in making recommendations to users with unique tastes.

Item approach is more explainable. It is easier to explain why an item has been

recommended to a user based on previously rated goods than to describe

similar preferences to another.

• Finding items of the same type is easier than finding users who only like items of a particular

item similarity more reliable.

Volume 6 Issue 3, May-June 2023

Available at www.ijsred.com

 Page 51

This section presents several approaches to the problem, beginning with a basic naive strategy that is

proach involves starting with a conventional

method for handling recommendation systems and gradually enhancing it by incorporating numerous

To address the aforementioned problem, the most straightforward approach is to build a

recommendation system using traditional methodologies. The two primary approaches for such tasks are

ed work section. As the input of the

problem is a utility matrix with partially filled ratings, the initial choice was to use collaborative filtering

based methods to avoid defining item and user profiles. Collaborative filtering allows

User recommendation system, where the missing values

in the utility matrix) are filled using one of the following techniques:

queries that are most

K items rated by user 	 is then

User collaborative filtering: This method is similar to the previous one in concept but

instead of the Top-K

is then filled with the average of the K most

Both these strategies require defining a similarity measure to locate a neighbourhood of K similar items

or users. After considering several factors, including explain ability of the model and ease of finding

User approach. This decision

Item approach is less likely to experience significant changes in the item’s

e User-User approach is

Item approach is more explainable. It is easier to explain why an item has been

recommended to a user based on previously rated goods than to describe why a person has

• Finding items of the same type is easier than finding users who only like items of a particular

International Journal of Scientific Research and

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved

• The systems considered in the problem definition typicall

User-User approach becomes more expensive as the number of users increases.

4.1.1 Choosing a similarity measure.

the optimal similarity measure for making a sound neighbourhood choice. Section 2.1 introduced two

similarity measures, namely the Jaccard similarity and the Cosine similarity, for sets

vectors) and vectors in Euclidean space, respectively. The Cosine similarity is deemed the most

appropriate similarity measure for this problem, as it is based on item ratings that correspond to a

column of the utility matrix, i.e., a ve

vectors, a slightly modified version of this similarity measure is presented in the next section to address

vectors of user ratings.

4.1.2 Pseudocode.The concept of Item

utility matrix. When a cell �	� does not contain a value, its rating is estimated by averaging the ratings

provided by user 	 for the � most similar queries to query

measured using the cos_sim method, which requires two vectors for comparison. The vector

representing the ratings provided by all users for a particular query

pseudocode assumes a neighbourhood size of

using the rating provided by user 	 for the query that is most similar to query

To determine query similarities, this approach involves calculating the cosine similarity between

possible query pairs. The expense of computing the cosine similarity is equivalent to that of computing

the dot product of two queries. Each query corresponds to a column vector with |

cost is �(|�|). The overall cost to forecast a single missing value in the utility matrix is

evident that forecasting all of the missing utility matrix values is expensive, particularly when dealing

with a large number of users and queries.

4.2 MinHash for LSH

The algorithm's time complexity is the main challenge with the previous solution. Specifically, the

computation of the similarity between all possible query combinations in the utility matrix drives the

cost of identifying the top � querie

section presents a more efficient technique that utilizes minHash [2] and LSH to enhance the speed of

the similarity search while sacrificing some accuracy. LSH aims to eliminate the need fo

items that are undoubtedly dissimilar and instead focuses only on pairs of items that are likely to be

similar, which are called candidate pairs. However, finding these candidate pairs in the original utility

matrix is costly. Therefore, the proposed approach applies LSH to a signature matrix rather than the

original utility matrix to reduce computation expenses.

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3

 Available at

©IJSRED: All Rights are Reserved

• The systems considered in the problem definition typically have more users than items, and the

User approach becomes more expensive as the number of users increases.

4.1.1 Choosing a similarity measure.It is important to carefully consider several factors before selecting

the optimal similarity measure for making a sound neighbourhood choice. Section 2.1 introduced two

similarity measures, namely the Jaccard similarity and the Cosine similarity, for sets

vectors) and vectors in Euclidean space, respectively. The Cosine similarity is deemed the most

appropriate similarity measure for this problem, as it is based on item ratings that correspond to a

column of the utility matrix, i.e., a vector. Although the Jaccard similarity is not ideal for handling

vectors, a slightly modified version of this similarity measure is presented in the next section to address

The concept of Item-Item collaborative filtering involves examining all the cells in the

does not contain a value, its rating is estimated by averaging the ratings

most similar queries to query �. The similarity between two querie

measured using the cos_sim method, which requires two vectors for comparison. The vector

representing the ratings provided by all users for a particular query � is identified as

pseudocode assumes a neighbourhood size of � equal to 1, meaning that the rating for

for the query that is most similar to query �.

To determine query similarities, this approach involves calculating the cosine similarity between

expense of computing the cosine similarity is equivalent to that of computing

the dot product of two queries. Each query corresponds to a column vector with |�| components, and its

|). The overall cost to forecast a single missing value in the utility matrix is

evident that forecasting all of the missing utility matrix values is expensive, particularly when dealing

with a large number of users and queries.

The algorithm's time complexity is the main challenge with the previous solution. Specifically, the

computation of the similarity between all possible query combinations in the utility matrix drives the

queries that are similar to a given query. To overcome this issue, this

section presents a more efficient technique that utilizes minHash [2] and LSH to enhance the speed of

the similarity search while sacrificing some accuracy. LSH aims to eliminate the need fo

items that are undoubtedly dissimilar and instead focuses only on pairs of items that are likely to be

similar, which are called candidate pairs. However, finding these candidate pairs in the original utility

oposed approach applies LSH to a signature matrix rather than the

original utility matrix to reduce computation expenses.

Volume 6 Issue 3, May-June 2023

Available at www.ijsred.com

 Page 52

y have more users than items, and the

User approach becomes more expensive as the number of users increases.

It is important to carefully consider several factors before selecting

the optimal similarity measure for making a sound neighbourhood choice. Section 2.1 introduced two

similarity measures, namely the Jaccard similarity and the Cosine similarity, for sets (including binary

vectors) and vectors in Euclidean space, respectively. The Cosine similarity is deemed the most

appropriate similarity measure for this problem, as it is based on item ratings that correspond to a

ctor. Although the Jaccard similarity is not ideal for handling

vectors, a slightly modified version of this similarity measure is presented in the next section to address

ltering involves examining all the cells in the

does not contain a value, its rating is estimated by averaging the ratings

. The similarity between two queries is

measured using the cos_sim method, which requires two vectors for comparison. The vector

is identified as �∗�. The

ning that the rating for �	� is predicted

To determine query similarities, this approach involves calculating the cosine similarity between

expense of computing the cosine similarity is equivalent to that of computing

| components, and its

|). The overall cost to forecast a single missing value in the utility matrix is �(|�|· |�|
2
). It is

evident that forecasting all of the missing utility matrix values is expensive, particularly when dealing

The algorithm's time complexity is the main challenge with the previous solution. Specifically, the

computation of the similarity between all possible query combinations in the utility matrix drives the

s that are similar to a given query. To overcome this issue, this

section presents a more efficient technique that utilizes minHash [2] and LSH to enhance the speed of

the similarity search while sacrificing some accuracy. LSH aims to eliminate the need for comparing

items that are undoubtedly dissimilar and instead focuses only on pairs of items that are likely to be

similar, which are called candidate pairs. However, finding these candidate pairs in the original utility

oposed approach applies LSH to a signature matrix rather than the

International Journal of Scientific Research and

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved

4.2.1 MinHash.Locality Sensitive Hashing (LSH) typically operates on compact signatures that are

derived from a characteristic matrix, which is a common representation of data used to describe the

characteristics of items. In the case of documents, the characteristic ma

where each row represents a potential word from a given vocabulary, and each column represents a

document. If the element �	� is nonzero, it means that the word

of the characteristic matrix is related to the utility matrix of recommendation systems, where each row

corresponds to a user and each column corresponds to an item (a query). If the element

means that user 	 has rated item �. Therefore, the MinHa

representation of the utility matrix by exploiting the correlation between the two matrices.

Working with the utility matrix directly can be impractical due to its massive size. Therefore, the

characteristics matrix is replaced with a compressed version called a signature matrix. The goal is to

ensure that the similarity of items in the signature matrix is as close as possible to the similarity of items

in the original characteristics matrix. Although some in

lost during the compression process, the MinHash technique can estimate the Jaccard similarity between

two items accurately by adding more signatures to the signature matrix.

The MinHash technique generates a signature matrix

rows of the utility matrix �. For each item, it finds the first row in the permutation

value of one. This process is repeated for a number of permutations

should be noted that the MinHash technique was originally designed for the Jaccard similarity, which is

a measure of the similarity between two sets.

Example. Given a utility matrix � of three items and a set of two permutations

is produced as follows.

4.2.2 Permutations generation.It may not be practical to generate permutations and store them in

memory when dealing with utility matrices that have a large

potential solution is to mimic the impact of random perturbations. This can be done by selecting

functions, with each function associated with a permutation, and returning the index of a specific row in

that permutation.

where �, � and � are random value less than the number or users

i.e�, �, �≤ |� |.

4.2.3 Adapted MinHash for ratings.Section 2.1.1 explains that the Jaccard

and binary vectors. However, there is an issue with the MinHash formulation presented above because it

assumes that the characteristics matrix consists only of binary values of 0s and 1s. This assumption

creates a problem when dealing with the utility matrix U, as described in Section 3, which contains

ratings in the range of [1, 100]. To address this issue, one solution is to transform the utility matrix U

into a binary matrix Ub, where a value of 1 in Ub indicates that the

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3

 Available at

©IJSRED: All Rights are Reserved

Locality Sensitive Hashing (LSH) typically operates on compact signatures that are

derived from a characteristic matrix, which is a common representation of data used to describe the

characteristics of items. In the case of documents, the characteristic matrix can be viewed as a matrix

where each row represents a potential word from a given vocabulary, and each column represents a

is nonzero, it means that the word 	 is present in document

ristic matrix is related to the utility matrix of recommendation systems, where each row

corresponds to a user and each column corresponds to an item (a query). If the element

. Therefore, the MinHash technique can be used to obtain a compressed

representation of the utility matrix by exploiting the correlation between the two matrices.

Working with the utility matrix directly can be impractical due to its massive size. Therefore, the

s matrix is replaced with a compressed version called a signature matrix. The goal is to

ensure that the similarity of items in the signature matrix is as close as possible to the similarity of items

in the original characteristics matrix. Although some information from the characteristics matrix may be

lost during the compression process, the MinHash technique can estimate the Jaccard similarity between

two items accurately by adding more signatures to the signature matrix.

a signature matrix � by taking a number of permutations

. For each item, it finds the first row in the permutation �

value of one. This process is repeated for a number of permutations � to create the signature matrix. It

should be noted that the MinHash technique was originally designed for the Jaccard similarity, which is

a measure of the similarity between two sets.

of three items and a set of two permutations �, the signature matrix

It may not be practical to generate permutations and store them in

memory when dealing with utility matrices that have a large number of users. To address this issue, a

potential solution is to mimic the impact of random perturbations. This can be done by selecting

functions, with each function associated with a permutation, and returning the index of a specific row in

are random value less than the number or usersin the utility matrix,

Section 2.1.1 explains that the Jaccard similarity is defined for sets

and binary vectors. However, there is an issue with the MinHash formulation presented above because it

assumes that the characteristics matrix consists only of binary values of 0s and 1s. This assumption

en dealing with the utility matrix U, as described in Section 3, which contains

ratings in the range of [1, 100]. To address this issue, one solution is to transform the utility matrix U

into a binary matrix Ub, where a value of 1 in Ub indicates that the user i has liked query j. The

Volume 6 Issue 3, May-June 2023

Available at www.ijsred.com

 Page 53

Locality Sensitive Hashing (LSH) typically operates on compact signatures that are

derived from a characteristic matrix, which is a common representation of data used to describe the

trix can be viewed as a matrix �,

where each row represents a potential word from a given vocabulary, and each column represents a

is present in document �. The concept

ristic matrix is related to the utility matrix of recommendation systems, where each row

corresponds to a user and each column corresponds to an item (a query). If the element �	� is nonzero, it

sh technique can be used to obtain a compressed

representation of the utility matrix by exploiting the correlation between the two matrices.

Working with the utility matrix directly can be impractical due to its massive size. Therefore, the

s matrix is replaced with a compressed version called a signature matrix. The goal is to

ensure that the similarity of items in the signature matrix is as close as possible to the similarity of items

formation from the characteristics matrix may be

lost during the compression process, the MinHash technique can estimate the Jaccard similarity between

by taking a number of permutations � of the

�� of �∗� that has a

reate the signature matrix. It

should be noted that the MinHash technique was originally designed for the Jaccard similarity, which is

, the signature matrix �

It may not be practical to generate permutations and store them in

number of users. To address this issue, a

potential solution is to mimic the impact of random perturbations. This can be done by selecting � hash

functions, with each function associated with a permutation, and returning the index of a specific row in

in the utility matrix,

similarity is defined for sets

and binary vectors. However, there is an issue with the MinHash formulation presented above because it

assumes that the characteristics matrix consists only of binary values of 0s and 1s. This assumption

en dealing with the utility matrix U, as described in Section 3, which contains

ratings in the range of [1, 100]. To address this issue, one solution is to transform the utility matrix U

user i has liked query j. The

International Journal of Scientific Research and

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved

threshold parameter T is also introduced, which determines whether a query is liked or not based on its

rating value. Since the threshold value can vary, it is important to set a value for T to determine whether

a query is considered liked, where a rating greater than T indicates a liked query.

Example.By considering a utility matrix

rating values is indicated by 0, and a positivity threshold of

derived for the ratings that are greater than or equal to

8, as presented below.

The practical computation of the modified utility matrix is expensive,

which represent the number of users and queries in the utility matrix. The cost of converting the matrix

is (|� | · |�|), which is a quadratic cost proportional to the input size. One potential solution to this issue

is to employ a slightly modified version of MinHash called MinHash with threshold. This approach

assigns the index of the first row in the permutation with a rating above a threshold level

signature matrix entry ���.

The signature matrix that is produced provides a useful estimation for a modified version of the Jaccard

similarity measure. This version considers positive ratings as 1 if they exceed the threshold value

while elements smaller than � are considered 0.

Algorithm 2 presents a pseudocode implementation of this approach. The method involves iterating over

all queries and � permutations of the rows in the utility matrix to identify the first row in the permuted

order of the matrix that has a rating greater than the threshold

fewer iterations than the total number of users |

to generate the permuted index �, which

maximum value of |�|.

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3

 Available at

©IJSRED: All Rights are Reserved

threshold parameter T is also introduced, which determines whether a query is liked or not based on its

rating value. Since the threshold value can vary, it is important to set a value for T to determine whether

sidered liked, where a rating greater than T indicates a liked query.

By considering a utility matrix � with ratings ranging between 1 to 100, where the absence of

rating values is indicated by 0, and a positivity threshold of � = 50, a new utility matrix,

derived for the ratings that are greater than or equal to �. This transformation can be achieved using Eq.

The practical computation of the modified utility matrix is expensive, particularly given |

which represent the number of users and queries in the utility matrix. The cost of converting the matrix

|), which is a quadratic cost proportional to the input size. One potential solution to this issue

to employ a slightly modified version of MinHash called MinHash with threshold. This approach

assigns the index of the first row in the permutation with a rating above a threshold level

is produced provides a useful estimation for a modified version of the Jaccard

similarity measure. This version considers positive ratings as 1 if they exceed the threshold value

are considered 0.

pseudocode implementation of this approach. The method involves iterating over

permutations of the rows in the utility matrix to identify the first row in the permuted

order of the matrix that has a rating greater than the threshold �. The loop on line 4 typically requires

fewer iterations than the total number of users |�| in the utility matrix. The index 	 is utilized as an input

, which increments by one with each iteration until it reaches the

Volume 6 Issue 3, May-June 2023

Available at www.ijsred.com

 Page 54

threshold parameter T is also introduced, which determines whether a query is liked or not based on its

rating value. Since the threshold value can vary, it is important to set a value for T to determine whether

with ratings ranging between 1 to 100, where the absence of

= 50, a new utility matrix, �b, can be

. This transformation can be achieved using Eq.

particularly given |� | and |�|,

which represent the number of users and queries in the utility matrix. The cost of converting the matrix

|), which is a quadratic cost proportional to the input size. One potential solution to this issue

to employ a slightly modified version of MinHash called MinHash with threshold. This approach

assigns the index of the first row in the permutation with a rating above a threshold level � to the

is produced provides a useful estimation for a modified version of the Jaccard

similarity measure. This version considers positive ratings as 1 if they exceed the threshold value �,

pseudocode implementation of this approach. The method involves iterating over

permutations of the rows in the utility matrix to identify the first row in the permuted

The loop on line 4 typically requires

is utilized as an input

ncrements by one with each iteration until it reaches the

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3, May-June 2023

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 55

4.2.4 Locality Sensitive Hashing.

After generating the signature matrix using the modified version of MinHash with a threshold of �, the

next step is to utilize Locality Sensitive Hashing (LSH) to hash queries in the signature matrix multiple

times. This ensures that queries with similar ratings are more likely to be hashed to the same bucket

compared to dissimilar queries. The signature matrix is divided into � bands, with each band consisting

of � rows. Each band is then hashed column-wise into a set of buckets specific to that band, and queries

that are hashed to the same bucket are considered candidate pairs. These candidate pairs provide

information that can reduce the time needed to detect similar queries. Therefore, each query 	 is tested

for similarity with every query � that lies in the same bucket as query 	 for at least one band, i.e.

candidate pairs.

The number of bands � and the number of rows for each band � are critical in determining the number of

candidate pairs for each query. These two parameters are related, as � ·� = �, where � is the number of

permutations, or the number of rows in the signature matrix �. A larger number of bands and fewer rows

per band will increase the number of candidate pairs detected by LSH. Conversely, fewer bands and a

higher number of rows per band will reduce the number of detected candidate pairs. Therefore, it is

essential to choose a suitable trade-off for the � parameter or equivalently the � parameter. Factors such

as the size of the signature matrix and the distribution of data in the original utility matrix must be

considered while selecting these parameters. If all queries are very dissimilar, even a small value of �
will capture a considerable number of candidate pairs. On the other hand, if every query is very similar,

a low value of � is insufficient, and the number of rows per band should be increased to prevent an

excessive number of similar items from hindering the goal of finding a good compromise on the number

of similar items.

4.2.5 Making recommendations.The final step involves providing recommendations through the item-

item collaborative filtering technique, similar to the one used in the Naive approach, except that the

iterative process for identifying the queries with the highest degree of similarity only focuses on the

candidate pairs of a specific query, rather than all possible queries. In terms of time complexity, if the

worst-case scenario occurs, the number of candidate pairs identified for each query may be equivalent to

the set of all queries, which could cause the algorithm to revert to the Naive approach. However, this is

just a limiting case, as the number of candidate pairs can be reduced by adjusting the number of bands �

and the number of permutations � appropriately.

4.3 SimHash for LSH
The utilization of Jaccard similarity in conjunction with MinHash is deemed unsuitable for the specific

problem being analyzed. As expounded in section 4.1.1, Jaccard similarity is not the optimal measure

for vector similarity. The revised version of Jaccard similarity that considers the threshold parameter �,

fails to gauge the similarity between two queries in certain instances. This issue arises when two queries

share an almost identical rating, such as 49 and 51, but the threshold parameter �=50 differentiates them.

The root cause of this problem is the transformation of the utility matrix into a matrix of binary values

that indicate user preference. The Cosine similarity is a more appropriate similarity measure for the

problem at hand, as it can be calculated on vectors of any type.

The structure of this algorithm is quite similar to the one proposed for the solution using MinHash for

LSH. The algorithm aims to create a signature matrix � that mirrors the original utility matrix.

Consequently, when two queries are compared, their similarity is conserved as much as possible in the

signature matrix. The computation of the signature matrix must be quick and cost-effective to ensure

that the algorithm can benefit from using the signature matrix instead of the original utility matrix. Once

International Journal of Scientific Research and

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved

the signature matrix is computed, the next step is to subject it to LSH to identify local similarities that

will generate a set of candidate similar queries.

4.3.1 SimHash intuition.The SimHash algorithm is based on the concept of generating a signature

matrix with � rows, where the aim is to partition the vector space for queries into

pass through the origin. This results in each query being assigned a region either above or below the

hyperplane. The signature matrix is then populated with each qu

corresponding hyperplane, denoted by the

queries are similar, it is more likely that they will be in the same region of a random hyperplane. Thus,

on most randomly generated planes, two queries that are close to each other will belong to the same

region. An illustration in Figure 2 shows that for any arbitrary number of hyperplanes and two similar

queries �1 and �2, the probability of the queries falling o

low compared to the total number of hyperplanes. Only the red plane in this specific example separates

the two queries into two different sides. SimHash has been shown to be a locality

function that provides an approximate measure of cosine similarity [13] [7].

4.3.2 Signature matrix computation.

the following intuition: create � random hyperplanes and populate the ith

with the query's position relative to the hyperplane. From a formal perspective, a hyperplane is

represented by an n-dimensional vector that is orthogonal to the hyperplane in an n

The position of a query vector �� in relation to a general hyperplane

vector ��, is determined by the sign of the projection of vector

to calculate the projection of a vector on another one, the signat

hyperplane represented by its orthogonal vector

following manner.

The sign function produces a result of 1 when its input argument is positive, while it retur

input is negative. These values signify that the query vector is situated on the positive or negative side of

the hyperplane, correspondingly.

Example.In Figure 3, there is a representation of a generic hyperplane

which is characterized by its orthogonal vector

are rated by two different users. The queries' position with respect to the hyperplane is determined by

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3

 Available at

©IJSRED: All Rights are Reserved

ed, the next step is to subject it to LSH to identify local similarities that

will generate a set of candidate similar queries.

The SimHash algorithm is based on the concept of generating a signature

rows, where the aim is to partition the vector space for queries into

pass through the origin. This results in each query being assigned a region either above or below the

hyperplane. The signature matrix is then populated with each query's position in relation to the

corresponding hyperplane, denoted by the 	-th row in the signature matrix �. The main idea is that if two

queries are similar, it is more likely that they will be in the same region of a random hyperplane. Thus,

randomly generated planes, two queries that are close to each other will belong to the same

region. An illustration in Figure 2 shows that for any arbitrary number of hyperplanes and two similar

2, the probability of the queries falling on different sides of the hyperplanes is relatively

low compared to the total number of hyperplanes. Only the red plane in this specific example separates

the two queries into two different sides. SimHash has been shown to be a locality

ion that provides an approximate measure of cosine similarity [13] [7].

4.3.2 Signature matrix computation.The generation of the signature matrix is a simple process based on

random hyperplanes and populate the ith row of the signature matrix

with the query's position relative to the hyperplane. From a formal perspective, a hyperplane is

dimensional vector that is orthogonal to the hyperplane in an n

in relation to a general hyperplane ��, represented by its orthogonal

, is determined by the sign of the projection of vector �� on ��. Since the dot product is used

to calculate the projection of a vector on another one, the signature matrix cell corresponding to the ith

hyperplane represented by its orthogonal vector �� and the jth query vector ��

The sign function produces a result of 1 when its input argument is positive, while it retur

input is negative. These values signify that the query vector is situated on the positive or negative side of

In Figure 3, there is a representation of a generic hyperplane �1 in two-

which is characterized by its orthogonal vector �1 ∈ R2, and there are two queries �

are rated by two different users. The queries' position with respect to the hyperplane is determined by

Volume 6 Issue 3, May-June 2023

Available at www.ijsred.com

 Page 56

ed, the next step is to subject it to LSH to identify local similarities that

The SimHash algorithm is based on the concept of generating a signature

rows, where the aim is to partition the vector space for queries into � hyperplanes that

pass through the origin. This results in each query being assigned a region either above or below the

ery's position in relation to the

. The main idea is that if two

queries are similar, it is more likely that they will be in the same region of a random hyperplane. Thus,

randomly generated planes, two queries that are close to each other will belong to the same

region. An illustration in Figure 2 shows that for any arbitrary number of hyperplanes and two similar

n different sides of the hyperplanes is relatively

low compared to the total number of hyperplanes. Only the red plane in this specific example separates

the two queries into two different sides. SimHash has been shown to be a locality-sensitive hash

The generation of the signature matrix is a simple process based on

row of the signature matrix

with the query's position relative to the hyperplane. From a formal perspective, a hyperplane is

dimensional vector that is orthogonal to the hyperplane in an n-dimensional space.

, represented by its orthogonal

. Since the dot product is used

ure matrix cell corresponding to the ith

 is calculated in the

The sign function produces a result of 1 when its input argument is positive, while it returns -1 when the

input is negative. These values signify that the query vector is situated on the positive or negative side of

-dimensional space,

�1, �2 ∈ R2, which

are rated by two different users. The queries' position with respect to the hyperplane is determined by

International Journal of Scientific Research and

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved

projecting �1 and �2 onto �1, and the sign is evaluated by computing the dot product between the two

vectors. In this case, both queries are found to be on the positive side of the hyperplane

the corresponding cell in the signature matrix is assigned a value o

matrix cell �	�, where the 	�� row corresponds to the

to the ��� query, the signature for the f

�12 ← 1.

Pre-processing.To avoid the issue of all query vectors being located in the positive quadrant of the

space, it is necessary to normalize the ratings of the utility matrix. Currently, a query in the utility matrix

is represented by a vector of positive ratings between 1 and 100, resulting in all queries being located in

the upper rightmost quadrant in the 2

problem as the projection on any hyperplane defined by an orthogonal vector f

will always have a positive sign, regardless of the query. To address this issue, the ratings of the utility

matrix must be normalized into the range of [

value of 50 from all the ratings in the utility matrix that are not 0 (missing rating). As a result, a new

utility matrix �b can be computed using this normalization technique.

In Figure 4's example, the left side displays the initial utility matrix

new utility matrix �b that has been centered at 0.

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3

 Available at

©IJSRED: All Rights are Reserved

�1, and the sign is evaluated by computing the dot product between the two

vectors. In this case, both queries are found to be on the positive side of the hyperplane

the corresponding cell in the signature matrix is assigned a value of 1. Using the notation of signature

row corresponds to the 	�� hyperplane, and the ��� column corresponds

query, the signature for the first plane �1, and the aforementioned queries are

To avoid the issue of all query vectors being located in the positive quadrant of the

space, it is necessary to normalize the ratings of the utility matrix. Currently, a query in the utility matrix

itive ratings between 1 and 100, resulting in all queries being located in

-dimensional example depicted in Figure 3. However, this creates a

problem as the projection on any hyperplane defined by an orthogonal vector falling within the quadrant

will always have a positive sign, regardless of the query. To address this issue, the ratings of the utility

matrix must be normalized into the range of [−50, 50]. This can be done by subtracting the average

the ratings in the utility matrix that are not 0 (missing rating). As a result, a new

b can be computed using this normalization technique.

In Figure 4's example, the left side displays the initial utility matrix �, while the right side shows the

b that has been centered at 0.

Volume 6 Issue 3, May-June 2023

Available at www.ijsred.com

 Page 57

1, and the sign is evaluated by computing the dot product between the two

vectors. In this case, both queries are found to be on the positive side of the hyperplane �1, and hence

f 1. Using the notation of signature

column corresponds

1, and the aforementioned queries are �11 ← 1 and

To avoid the issue of all query vectors being located in the positive quadrant of the

space, it is necessary to normalize the ratings of the utility matrix. Currently, a query in the utility matrix

itive ratings between 1 and 100, resulting in all queries being located in

dimensional example depicted in Figure 3. However, this creates a

alling within the quadrant

will always have a positive sign, regardless of the query. To address this issue, the ratings of the utility

−50, 50]. This can be done by subtracting the average

the ratings in the utility matrix that are not 0 (missing rating). As a result, a new

, while the right side shows the

International Journal of Scientific Research and

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved

Pseudocode.The SimHash algorithm is notably simpler than the MinHash

generate the signature matrix. To compute the signature matrix, we assume tha

randomly generated hyperplanes, �b is the pre

defined by Equation 11.

V. Experimental Evaluation
In this section, we evaluate the proposed solutions presented in the previous s

effectiveness in a simulated real-world scenario using realistic data. The algorithms investigated in this

study were tested on a computer system that features an Intel Core i7

GB of RAM, and their performance was assessed accordingly.

5.1 Datasets
To evaluate the proposed solutions, the algorithms were tested on several datasets that were artificially

constructed to closely resemble a real

utilizing the Scikit-Learn library's make bl

data. This approach was chosen as it reflects the observation that in a real

tables representing people often contain groups of individuals who share similar characte

eye color, height, and more.

To ensure the query set was realistic, the conditions for each query were constructed by randomly

selecting a number of features (including none), assigning each one a value with a 99% probability, and

using the remaining probability to provide a random value (even if not an admitted value for the feature).

This approach results in queries that may return a small number of rows, all rows, or none at all. It is

important to note that when a query has no conditio

The utility matrix forms the core of the dataset, and it is generated by creating categories of users who

tend to share similar tastes. Furthermore, users often act following patterns, which is why the

split users into three categories. Firstly, 60% of user’s rate queries that return similar rows in the same

way. If two queries, q1 and q2, return the majority of the rows in common, the user who rates query q1

with rating r will rate query q2 with a rating that differs from r by a small factor

Secondly, 30% of users grade queries proportionately with the number of rows returned. Lastly, the

remaining 10% of users assign random ratings to queries.

5.1.1 Synthetic dataset characteristics.

mentioned earlier, where a relational table with 100 attributes was created with 10000 rows, and integer

values were used to populate the table. This was a logical choice since relati

values from a specific domain, and representing cities using names or integer values is equivalent. The

dataset was designed to simulate a system with 500 users who generated 2000 queries for the DBMS. As

a result, the utility matrix consisted of 500 rows and 2000 columns representing the queries.

Additionally, a script was developed to extract important information from the relational database and

queries. The results showed that out of the 2000 queries, 721 produced at least

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3

 Available at

©IJSRED: All Rights are Reserved

The SimHash algorithm is notably simpler than the MinHash-based approach used to

generate the signature matrix. To compute the signature matrix, we assume that � is a set of |

b is the pre-processed utility matrix, and we use the function sign

In this section, we evaluate the proposed solutions presented in the previous sections and showcase their

world scenario using realistic data. The algorithms investigated in this

study were tested on a computer system that features an Intel Core i7-6700HQ CPU @ 3.5GHz with 16

formance was assessed accordingly.

To evaluate the proposed solutions, the algorithms were tested on several datasets that were artificially

constructed to closely resemble a real-world scenario. Specifically, a synthetic dataset was generated by

Learn library's make blobs function [11], which allows for the creation of correlated

data. This approach was chosen as it reflects the observation that in a real-world scenario, relational

tables representing people often contain groups of individuals who share similar characte

To ensure the query set was realistic, the conditions for each query were constructed by randomly

selecting a number of features (including none), assigning each one a value with a 99% probability, and

he remaining probability to provide a random value (even if not an admitted value for the feature).

This approach results in queries that may return a small number of rows, all rows, or none at all. It is

important to note that when a query has no conditions, all rows in the relational database are returned.

The utility matrix forms the core of the dataset, and it is generated by creating categories of users who

tend to share similar tastes. Furthermore, users often act following patterns, which is why the

split users into three categories. Firstly, 60% of user’s rate queries that return similar rows in the same

way. If two queries, q1 and q2, return the majority of the rows in common, the user who rates query q1

with a rating that differs from r by a small factor γ

Secondly, 30% of users grade queries proportionately with the number of rows returned. Lastly, the

remaining 10% of users assign random ratings to queries.

cteristics.To generate a synthetic dataset, we followed the same process

mentioned earlier, where a relational table with 100 attributes was created with 10000 rows, and integer

values were used to populate the table. This was a logical choice since relational tables typically contain

values from a specific domain, and representing cities using names or integer values is equivalent. The

dataset was designed to simulate a system with 500 users who generated 2000 queries for the DBMS. As

matrix consisted of 500 rows and 2000 columns representing the queries.

Additionally, a script was developed to extract important information from the relational database and

queries. The results showed that out of the 2000 queries, 721 produced at least one row, with an average

Volume 6 Issue 3, May-June 2023

Available at www.ijsred.com

 Page 58

based approach used to

is a set of |�|

processed utility matrix, and we use the function sign

ections and showcase their

world scenario using realistic data. The algorithms investigated in this

6700HQ CPU @ 3.5GHz with 16

To evaluate the proposed solutions, the algorithms were tested on several datasets that were artificially

world scenario. Specifically, a synthetic dataset was generated by

obs function [11], which allows for the creation of correlated

world scenario, relational

tables representing people often contain groups of individuals who share similar characteristics, such as

To ensure the query set was realistic, the conditions for each query were constructed by randomly

selecting a number of features (including none), assigning each one a value with a 99% probability, and

he remaining probability to provide a random value (even if not an admitted value for the feature).

This approach results in queries that may return a small number of rows, all rows, or none at all. It is

ns, all rows in the relational database are returned.

The utility matrix forms the core of the dataset, and it is generated by creating categories of users who

tend to share similar tastes. Furthermore, users often act following patterns, which is why the idea is to

split users into three categories. Firstly, 60% of user’s rate queries that return similar rows in the same

way. If two queries, q1 and q2, return the majority of the rows in common, the user who rates query q1

with a rating that differs from r by a small factor γ, such as γ = 5.

Secondly, 30% of users grade queries proportionately with the number of rows returned. Lastly, the

To generate a synthetic dataset, we followed the same process

mentioned earlier, where a relational table with 100 attributes was created with 10000 rows, and integer

onal tables typically contain

values from a specific domain, and representing cities using names or integer values is equivalent. The

dataset was designed to simulate a system with 500 users who generated 2000 queries for the DBMS. As

matrix consisted of 500 rows and 2000 columns representing the queries.

Additionally, a script was developed to extract important information from the relational database and

one row, with an average

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3, May-June 2023

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 59

of 3311 rows returned per query. Although these figures may seem small, they are adequate to assess the

effectiveness of the proposed algorithms and demonstrate their performance in various scenarios. The

dataset can be divided into smaller subsets for more specific experiments.

5.1.2 Real dataset.Experimental observations of real data are typically stored in relational tables.

Therefore, this work evaluates proposed solutions on a dataset that replaces the synthetic table with a

real one. Specifically, the relational table used in this study is taken from the 1994 Census Bureau's

relational database [1], which contains 14 columns representing individual attributes such as age, sex,

marital status, and income. While the original dataset had over 50,000 individuals, the study was

conducted on a scaled-down version of 10,000 individuals to measure performance. The remaining

components of the dataset were generated using the same methodology as the synthetic table, resulting

in a total of 2,000 queries and 500 users. The dataset revealed that out of 2,000 search queries, 908

produced at least one row, and the average number of rows returned by these queries was 3,649.

5.2 Fast query similarity search with LSH

In this section, we analyze the algorithm's initial building block and compare it to the baseline method

used for determining query similarity in collaborative filtering. The primary objective is to demonstrate

the effectiveness of the LSH approach, which is explained in sections 4.2 and 4.3, in significantly

improving the naïve solution without LSH described in section 4.1. Firstly, we show that utilizing LSH

with MinHash reduces the time required to find similar queries for collaborative filtering using the

Jaccard similarity as a similarity measure for the queries. Secondly, we demonstrate that SimHash with

LSH outperforms its corresponding baseline solution, which involves trying all possible query

combinations to identify similar ones. The focus of this section is to identify the most related queries for

each query based on the utility matrix ratings given by the users. To simplify the objective, we slightly

modify the goal to locate the most similar query instead of the � most similar ones, while still

considering the original solutions.

5.2.1 LSH with MinHash.In this section, we conduct a comparison between the LSH MinHash

algorithm and its naïve counterpart, which computes Jaccard similarity to identify the most similar query.

We evaluate the time efficiency of these two algorithms in two different scenarios: one involves a

varying number of queries with a constant number of users, while the other involves a varying number

of users with a constant number of queries. To simulate smaller datasets, we divide the input dataset into

smaller fractions and test the algorithms on those fractions. In the case of MinHash and Jaccard

similarity, a dataset of up to 1000 queries and 500 users is sufficient to observe time complexity growth.

We plot the execution time of both methods in Figure 5 for a scenario with a constant number of 500

users and a variable number of queries. For the other scenario, we keep the number of queries constant

at 1000, and vary the number of users, as shown in Figure 8. In both scenarios, MinHash generates a

signature matrix with 200 rows, corresponding to a total of 200 random perturbations. Furthermore, we

configure the LSH bands to have six rows per band, which divides the signature matrix into 33 bands.

As illustrated in Figures 5 and 6, the plots clearly demonstrate the time efficiency improvements brought

about by the use of LSH over computing similarity between every pair of queries. Interestingly, both

approaches perform similarly in the early stages with smaller datasets, but one algorithm outperforms

the other in scenarios with larger datasets.

International Journal of Scientific Research and

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved

Figure 5: Time performance of the Naive algorithm compared with LSH using MinHash

Figure 6: Time performance of the Naive algorithm compared withLSH using MinHash

5.2.2 LSH with SimHash.
In this section, we compare the SimHash

cosine similarity between all queries in the utility matrix. The results demonstrate that utilizing LSH to

identify similar queries improves the time performance of the algorithms significantly. To

evaluate the algorithm's efficiency, we conducted experiments on a dataset of 2000 queries instead of

1000, using 200 hyperplanes created randomly for SimHash, which corresponds to 200 rows of the

signature matrix. LSH divides the matrix into 13 ba

increase the number of rows per band is due to SimHash's signature matrix of zeros and ones, which

increases the probability of two queries in the same band hashing to the same bucket. In contrast,

MinHash's signature matrix comprises integers between 1 and the total number of users in the system,

making it less likely that two columns in the same band would hash to the same bucket. Similar to the

previous instance, the LSH-based approach outperforms the naïv

between all possible query combinations. The time performance of the two algorithms as the number of

queries and users increases is compared in Figures 7 and 8.

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3

 Available at

©IJSRED: All Rights are Reserved

Time performance of the Naive algorithm compared with LSH using MinHash

number of queries

Time performance of the Naive algorithm compared withLSH using MinHash

number of users

In this section, we compare the SimHash technique with its naïve counterpart, which computes the

cosine similarity between all queries in the utility matrix. The results demonstrate that utilizing LSH to

identify similar queries improves the time performance of the algorithms significantly. To

evaluate the algorithm's efficiency, we conducted experiments on a dataset of 2000 queries instead of

1000, using 200 hyperplanes created randomly for SimHash, which corresponds to 200 rows of the

signature matrix. LSH divides the matrix into 13 bands, with 15 rows for each band. The decision to

increase the number of rows per band is due to SimHash's signature matrix of zeros and ones, which

increases the probability of two queries in the same band hashing to the same bucket. In contrast,

signature matrix comprises integers between 1 and the total number of users in the system,

making it less likely that two columns in the same band would hash to the same bucket. Similar to the

based approach outperforms the naïve technique that determines similarity

between all possible query combinations. The time performance of the two algorithms as the number of

queries and users increases is compared in Figures 7 and 8.

Volume 6 Issue 3, May-June 2023

Available at www.ijsred.com

 Page 60

Time performance of the Naive algorithm compared with LSH using MinHash – Variable

Time performance of the Naive algorithm compared withLSH using MinHash – Variable

technique with its naïve counterpart, which computes the

cosine similarity between all queries in the utility matrix. The results demonstrate that utilizing LSH to

identify similar queries improves the time performance of the algorithms significantly. To further

evaluate the algorithm's efficiency, we conducted experiments on a dataset of 2000 queries instead of

1000, using 200 hyperplanes created randomly for SimHash, which corresponds to 200 rows of the

nds, with 15 rows for each band. The decision to

increase the number of rows per band is due to SimHash's signature matrix of zeros and ones, which

increases the probability of two queries in the same band hashing to the same bucket. In contrast,

signature matrix comprises integers between 1 and the total number of users in the system,

making it less likely that two columns in the same band would hash to the same bucket. Similar to the

e technique that determines similarity

between all possible query combinations. The time performance of the two algorithms as the number of

International Journal of Scientific Research and

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved

Figure 7: Time performance of the Naive algorithm

Figure 8: Time performance of the Naive algorithm comparedwith LSH using SimHash

VI. Conclusion and Research Scope

The research conducted in this study explored the integ

develop an advanced recommendation system that generates useful recommendations. The results of the

study were satisfactory, with two distinct algorithms being produced in a block

first algorithm was based on collaborative filtering with LSH, which produced high accuracy and good

time performance. The second solution integrated content

create a hybrid recommendation system with even higher accurac

experiments conducted demonstrated that combining content

results in more accurate recommendations. The study also showed that standard methodologies, like the

naïve algorithm using only collaborative filtering, are inapplicable for large datasets, and combining

various strategies like LSH provides solutions that can handle massive datasets. Additionally, the study

proposed a solution for scoring the importance of a new query sent t

useful query recommendations for DBMS is a challenging task that depends on several factors. Further

work is required to implement and fine

implementing the solution using the map

large datasets. Additionally, the second part of the algorithm, regarding query importance, requires

proper evaluations, leaving scope for further research.

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3

 Available at

©IJSRED: All Rights are Reserved

Time performance of the Naive algorithm compared withLSH using SimHash

number of queries

Time performance of the Naive algorithm comparedwith LSH using SimHash

number of users

Conclusion and Research Scope

The research conducted in this study explored the integration of multiple data mining approaches to

develop an advanced recommendation system that generates useful recommendations. The results of the

study were satisfactory, with two distinct algorithms being produced in a block-by-

rithm was based on collaborative filtering with LSH, which produced high accuracy and good

time performance. The second solution integrated content-based approach with the previous algorithm to

create a hybrid recommendation system with even higher accuracy but lower time performance. The

experiments conducted demonstrated that combining content-based and collaborative filtering methods

results in more accurate recommendations. The study also showed that standard methodologies, like the

g only collaborative filtering, are inapplicable for large datasets, and combining

various strategies like LSH provides solutions that can handle massive datasets. Additionally, the study

proposed a solution for scoring the importance of a new query sent to the system. However, providing

useful query recommendations for DBMS is a challenging task that depends on several factors. Further

work is required to implement and fine-tune the proposed system fully. Future research can focus on

ion using the map-reduce framework for efficient and scalable processing of

large datasets. Additionally, the second part of the algorithm, regarding query importance, requires

proper evaluations, leaving scope for further research.

Volume 6 Issue 3, May-June 2023

Available at www.ijsred.com

 Page 61

compared withLSH using SimHash – Variable

Time performance of the Naive algorithm comparedwith LSH using SimHash – Variable

ration of multiple data mining approaches to

develop an advanced recommendation system that generates useful recommendations. The results of the

-block manner. The

rithm was based on collaborative filtering with LSH, which produced high accuracy and good

based approach with the previous algorithm to

y but lower time performance. The

based and collaborative filtering methods

results in more accurate recommendations. The study also showed that standard methodologies, like the

g only collaborative filtering, are inapplicable for large datasets, and combining

various strategies like LSH provides solutions that can handle massive datasets. Additionally, the study

o the system. However, providing

useful query recommendations for DBMS is a challenging task that depends on several factors. Further

tune the proposed system fully. Future research can focus on

reduce framework for efficient and scalable processing of

large datasets. Additionally, the second part of the algorithm, regarding query importance, requires

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3, May-June 2023

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 62

References
[1] Barry Becker. 1996. Census Income Data Set.

https://archive.ics.uci.edu/ml/datasets/Census%2BIncome.

[2] Andrei Broder. 1997. On the Resemblance and Containment of Documents.Proceedings of the

International Conference on Compression and Complexity ofSequences.

https://doi.org/10.1109/SEQUEN.1997.666900

[3] Edgar F. Codd. 1970. A relational model of data for large shared data banks.Communication of the

ACM 13, 6 (1970).

[4] E. F. Codd. 1979. Extending the Database Relational Model to Capture MoreMeaning. ACM Trans.

Database Syst. 4, 4 (dec 1979), 397–434. https://doi.org/10.1145/320107.320109

[5] Zhiyuan Fang, Lingqi Zhang, and Kun Chen. 2016. Hybrid Recommender SystemBased on Personal

Behavior Mining. https://doi.org/10.48550/ARXIV.1607.02754

[6] Wael H. Gomaa and Aly A. Fahmy. 2013. Article: A Survey of Text SimilarityApproaches.

International Journal of Computer Applications 68, 13 (April 2013),13–18. Full text available.

[7] Qixia Jiang and Maosong Sun. 2011. Semi-Supervised SimHash for EfficientDocument Similarity

Search., Vol. 1. 93–101.

[8] J. Prasanna Kumar and P. Govindarajulu. 2013. Near-Duplicate WebPage Detection: An Efficient

Approach Using Clustering, Sentence Featureand Fingerprinting. International Journal of Computational

IntelligenceSystems 6, 1 (2013), 1–13.

https://doi.org/10.1080/18756891.2013.752657arXiv:https://doi.org/10.1080/18756891.2013.752657

[9] Jimmie D. Lawson and Yongdo Lim. 2001. The Geometric Mean,Matrices, Metrics, and More. The

American Mathematical Monthly108, 9 (2001), 797–812.

https://doi.org/10.1080/00029890.2001.11919815arXiv:https://doi.org/10.1080/00029890.2001.1191981

5

[10] Gurmeet Singh Manku, Arvind Jain, and Anish DasSarma. 2007. DetectingNear-Duplicates for

Web Crawling. In Proceedings of the 16th International Conference on World Wide Web (Banff,

Alberta, Canada) (WWW ’07). Association forComputing Machinery, New York, NY, USA, 141–150.

https://doi.org/10.1145/1242572.1242592

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J.Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

and E. Duchesnay. 2011. Scikit-learn: MachineLearning in Python. Journal of Machine Learning

Research 12 (2011), 2825–2830.

[12] Elaine Rich. October 1979. User modeling via stereotypes. In Cognitive Science,Vol. 3. 329–354.

[13] SadhanSood and Dmitri Loguinov. 2011. Probabilistic Near-Duplicate Detection Using Simhash. In

Proceedings of the 20th ACM International Conferenceon Information and Knowledge Management

(Glasgow, Scotland, UK) (CIKM’11). Association for Computing Machinery, New York, NY, USA,

1117–1126.https://doi.org/10.1145/2063576.2063737

[14] Du Zou, Wei-jiang Long, and Zhang Ling. 2010. A cluster-based plagiarismdetection method - Lab

report for PAN at CLEF 2010, Vol. 1176

