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Abstract: 
Accurate and timely detection of malaria is crucial for effective disease management. Researchers have 

been implementing computational models to help doctors in diagnosing malaria. There are two important 

challenges: 1) collecting labeled data is expensive, and 2) many models remain as black boxes and are not 

inherently transparent or interpretable to humans. Using the Malaria Cell Images Dataset from Kaggle, we 

first explore the use of semi-supervised learning to obtain high accuracy with limited labeled data and 

examine different methods to efficiently select candidates for labeling. Second, we employ Explainable AI 

tools to improve the transparency of these models. We use Explainable AI on a fully supervised model. 

For semi-supervised learning, we adapted the state-of-the-art FixMatch model for our data and achieved 

96% accuracy with 4000 (25%) labeled data, which is comparable to the best result on the same dataset. 

For Explainable AI, we apply Grad-Cam and SHAP to give detailed insights into our model. Removing 

the transparency in our model will allow for its improvement and further understanding for classifying 

malaria for researchers and patients.  
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I. INTRODUCTION 

Malaria is adisease spread through the 

Anopheles mosquito, who transmits the malaria 

parasites in the blood cells from an infected person 

to a new host [1], and itaffects nearly four billion 

people worldwide [10]. In the absence of automated 

medical diagnosis, malaria cases were often tested 

using thin blood smears under a microscope, while 

visually searching for infected cells. A clinician 

then manually counts the number of infected blood 

cells. The problem with this method is that 

manually counting often has high error rates and is 

a slow and tedious process [11]. In addition, the 

knowledge of malaria is limited to the common 

people, and many do not have access to deeper 

knowledge on malaria, receiving information only 

through their doctors. Therefore, we ask the 

question: How can we classify malaria more 

efficiently and how can we improve interpretability? 

We look at Convolution Neural Networks to solve 

this problem. 

The advent of convolutional neural networks 

(CNNs) has greatly improved the process of malaria 

RESEARCH ARTICLE         OPEN ACCESS 



International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 4, July- Aug 2023 

Available at www.ijsred.com 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1168 

diagnosis [2, 3, 4]. Jane Hung et al. used a 16-layer 

CNN model for malaria detection, achieving 97% 

accuracy in 2016. Zhaohui Liang et al. extended 

malaria diagnosis to use a fast region-based CNN, 

allowing detection for pictures containing hundreds 

of cells. In 2020, Gautham Shekar et al. compared 

the performance of a basic CNN (VGG-19) and a 

Fine Tuned VGG-19 for malaria detection and 

obtained accuracy rates ranging from 92% to 96%. 

It is important to note that all of these models are 

supervised models, where every image was 

manually labeled.  

However, a challenge of using these models and 

supervised models in general is efficiently 

collecting labeled datasets. Labeled data often 

requires a large amount of human labor, and this 

can become costly when such labeling is done by 

experts in the specific field of study. One potential 

solution is to use semi-supervised learning, which 

exploits the abundance of unlabeled data for 

training [5]. State-of-the-art semi-supervised 

learning methods such as MixMatch [6] and 

FixMatch [7] employ pseudo-label generation for 

unlabeled data, followed by training using strong 

augmentation. MixMatch achieved 89% accuracy 

on CIFAR-10 by using mixing as augmentation. 

FixMatch further improves accuracy to 94.9% by 

using strong augmentation. We adopt FixMatch for 

our task of malaria cell classification and obtain a 

97% accuracy with fully supervised learning.  

In addition to the implementation of a semi-

supervised model, former models fail to implement 

interpretability for patients and do not explain 

exactly how their models work. This is why we 

implement explainable AI. Explainable Artificial 

Intelligence (XAI) has recently emerged as a 

popular field, due to its potential to finally dispute 

the “black box” problem, which refers to not being 

able to understand how an AI algorithm arrives at a 

particular conclusion [13]. Especially in the medical 

domain, transparency of AI models are held to an 

even higher standard when it comes to healthcare 

and making critical medical decisions that may 

impact patients [14]. In the context of medical 

imaging, a common approach to analyzing these 

images is through Convolutional Neural Networks 

(CNN), due to its ability to employ multiple layers 

of convolution and pooling operations that can 

extract meaningful features at different levels of 

abstraction [15]. However, neural networks often 

get opaque with a multitude of dense layers that 

attempt to model the neural architecture of the 

human brain; thus, as the models get more complex, 

the accuracy of the model tends to increase, while 

the interpretability or explainability of the model 

tends to decrease, also known as the well-known 

accuracy-interpretability-trade off [16]. Current 

popular approaches in XAI of medical imaging 

involve visualization techniques such as the use of 

Grad-CAM, a visual explanation algorithm that 

generates a heatmap overlay on the input image, 

highlighting the regions of the image that 

contributed the most significantly to the output; 

Grad-CAM is used primarily for visual 

explanations in CNN networks [17]. In addition to 

Grad-CAM, perturbation-based explanations, which 

involve altering input features on the output of the 

model, are popular as seen in SHapley Additive 

exPlanations (SHAP) and Local Interpretable 

Model-agnostic Explanations (LIME) [18]. Since 

black box models must be explained globally 

(explaining the whole model) or be explained 

locally (explaining a single instance), LIME is more 

suitable for local explanations while SHAP 

provides both global and local explanations [18]. 

All the methods mentioned above are model-

agnostic, meaning that these methods are not a 

model itself, but rather a method that is applied on 

top of an already trained model, such as a CNN in 

our research. In our research, we apply both Grad-

CAM, a more visual based explanation, and SHAP, 

a framework that is not limited to visual data or 

CNNs, to create a comparative analysis between 

two popular XAI frameworks and compare their 

explainability on two differently trained models. By 

doing so, we can get a greater insight into 

supervised versus a semi-supervised CNN model 

and compare the XAI explanations of these models 

to relevant biological data on malaria. 
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Fig. 1  Overall Architecture of our project. Both the supervised and semi

supervised are run through the FixMatch model, then SHAP and Grad

are used. 

 

So overall, our contributions to improving 

efficiency and interpretability of models for 

identifying malaria are: 

• Implementing a semi-supervised model 

using the FixMatch model in order to reduce 

manual labor. 

• Creating a fully supervised model that 

achieves similar accuracy to the state

art. 

• Using XAI methods Grad-CAM and SHAP 

to view the models and gain a deeper 

understanding between how the models 

work, where the general outline can be seen 

in Fig. 1. 

II.     METHODS 

An easy way to comply with the conference 

paper formatting requirements is to use th

document as a template and simply type your text 

into it. 

A. Supervised and Semi-Supervised Methods 

FixMatch is a state-of-the-art model for semi

supervised learning, which we also adapted for 

supervised learning. It is a simplified model that 

uses two main components: consistency 

regularization and pseudo-labeling. Consistency 

regularization uses unlabeled data to ensure that the 

model recognizes images that are modified to have 

the same labels, while pseudo-labeling uses the 

model itself to obtain artificial labels for the 

augmented images. Using these two approaches, the 

model first selects unlabeled images that it is 
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art model for semi-

supervised learning, which we also adapted for 

supervised learning. It is a simplified model that 

uses two main components: consistency 

labeling. Consistency 

led data to ensure that the 

model recognizes images that are modified to have 

labeling uses the 

model itself to obtain artificial labels for the 

augmented images. Using these two approaches, the 

mages that it is 

confident with the guessed label, and then strongly 

augments these images and assigns it the same 

guessed label. The artificial label is only kept if the 

model assigns a high probability to either class. 

This approach is applied to CIFAR

a 94.93% accuracy with 250 labels and 88.61% 

with 40 labels.  

 

Fig. 2. FixMatch model outline. It takes both the labeled data for the 

supervised learning and unlabeled data for semi-

 

We use the WideResNet model used by FixMatch 

and adapt it for the use of malaria cell classification. 

We then train the model for 40 epochs for several 

different times: once fully supervised with 16,500 

labeled data, and once for 4000, 1000, 200 and 100 

labeled data each.  

We then train using labeled data for 100 samples 

that is manually selected in four different ways: 

• Selecting the largest 100 samples. 

• Selecting 100 samples that are most similar 

to each other.  

• Selecting 100 samples that are most 

dissimilar to each other. 

• Randomly selecting 80 samples and 

selecting 20 samples that are both dissimilar 

and hard to classify. 

B. XAI Methods 

We utilized Grad-CAM, a class activation 

visualization XAI technique that visualizes where 

the CNN model is looking. Afte

supervised CNN model and saving it to a HDF5 file 

(TensorFlow file), it takes the last convolutional 

Volume 6 Issue 4, July- Aug 2023 

www.ijsred.com 

Page 1169 

confident with the guessed label, and then strongly 

augments these images and assigns it the same 

guessed label. The artificial label is only kept if the 

model assigns a high probability to either class. 

This approach is applied to CIFAR-10 and achieves 

a 94.93% accuracy with 250 labels and 88.61% 

Fig. 2. FixMatch model outline. It takes both the labeled data for the 

-supervised. 

We use the WideResNet model used by FixMatch 

and adapt it for the use of malaria cell classification. 

We then train the model for 40 epochs for several 

different times: once fully supervised with 16,500 

labeled data, and once for 4000, 1000, 200 and 100 

We then train using labeled data for 100 samples 

that is manually selected in four different ways:  

Selecting the largest 100 samples.  

Selecting 100 samples that are most similar 

Selecting 100 samples that are most 

ilar to each other.  

Randomly selecting 80 samples and 

selecting 20 samples that are both dissimilar 

CAM, a class activation 

visualization XAI technique that visualizes where 

the CNN model is looking. After training the 

supervised CNN model and saving it to a HDF5 file 

(TensorFlow file), it takes the last convolutional 



International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 4, July- Aug 2023 

Available at www.ijsred.com 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1170 

layer in the pretrained model, which for our 

supervised model, was a convolutional layer with 

147,584 parameters. We inputted the file path for 

the malaria image we wanted to look at, and the 

Grad-CAM model shares the same input as the 

original pre-trained model but has two distinct 

outputs. The first output represents the activations 

of the last convolutional layer in the original model, 

capturing the essential features extracted from the 

input image. The second output provides us with 

the model's final prediction, indicating the 

probabilities of the image belonging to different 

classes. Next, gradients are computed from the 

predicted class score of the output of the last 

convolutional layer through the feature maps 

produced by the last layer of our CNN. 

 

��� 	= 	 �� ∑ 	 ∑ 
 ��
�����

                            (1)         

									���������� 	= 	����	(∑�	�����)      (2) 

 

Equation 1 calculates the importance weight kc by 

averaging the partial derivatives over all spatial 

locations in the feature maps for the specific 

channel k. It indicates how sensitive the predicted 

class score !�is to changes in the activations �"#�  of 

the k-th channel. Equation 2 represents the class-

discriminative localization map for class c, and the 

equation takes the weighted combination of feature 

maps ��  based on the importance weights ��� . 

∑�	�����)then performs the weighted sum on the 

feature maps, and the ReLU is applied to the 

weighted sum, highlighting the regions in feature 

maps with a positive influence on predicting class 

while suppressing the negative contributions. 

Finally, the heatmap is normalized from 0 to 1, with 

varying colors indicating the intensity of the 

regions. Finally, we superimposed the heatmap onto 

the original image using the superimposed function 

built into Grad-CAM.  

 

To utilize SHAP, we used our pre-trained 

supervised model and a custom image for 

interpretation is again prepared for input into the 

model. After resizing the image to the required 

dimensions and converting it into a numpy array, 

we imported the SHAP library. A binary masker 

was created using a function built into SHAP, 

which hides parts of the input image during the 

SHAP value computation. SHAP values are 

calculated by calculating the average marginal 

contributions of each feature to all possible 

coalitions in a game. Below is the how SHAP 

values are calculated: 

  

$"(%, ') 	= 	 ( |*′|! (- − |*/| 	− 	1)!
-! [%2(*′) 	−	%2(*′\		)]								(3)

6/⊆	2/
 

 

Equation 3 at a high level, calculates the prediction 

of the model without feature iand also the 

prediction of the model with feature i, then 

calculates the difference. The difference is known 

as the marginal value. This process is repeated for 

each permutation of subsets and each of those is 

additionally weighted depending on the number of 

features M out of the total number of features 

present in that particular subset. In the context of 

our CNN model, for each feature in input image x, 

a perturbed image x’ is created. The difference in 

the model’s prediction for x’ and x are calculated, 

and the SHAP values quantify the impact of each 

pixel on the model’s prediction, considering all 

possible combinations of pixel values in the image. 

The final SHAP values are then computed by 

averaging the differences in model predictions. In 

our model, we had parameters max_eval which 

specifies the maximum number of samples used to 

approximate the SHAP values and batch_size, 

which controlled the size of the batches used during 

SHAP computation. We used a max_eval of 5,000 

and a batch_size of 5. Once the SHAP values are 

calculated, they are visualized by plotting it over 

the original image, highlighting the regions that 

pushed the model towards classifying the specific 

image for the particular class and the regions that 

contributed to not classifying that image for that 

particular class.  

III. RESULTS 

C. Supervised and Semi-Supervised Results 
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Unsurprisingly, we find that the model has higher 

accuracy when there is more labeled data. We can 

also see that with the supervised model that 

precision, ROC, Recall, and F1 score are all 

relatively high, seen in Table 1, suggesting that the 

supervised model performs better than the semi

supervised. 

 

 

 

 

 
 

Precision ROC 

AUC 

Recall

Supervised 0.938 0.986 0.971

Semi-

supervised 

(4000 labels) 

0.902 0.967 0.935

Table 1. Metrics used to measure supervised and semi

includes precision, ROC Area Under Curve(AUC), Recall, and F1 Score.

 

It turns out that semi-supervised learning is a good 

trade-off between accuracy and number of labeled 

samples. The fully supervised model (in  green) has 

a 97% accuracy, while the accuracy for the model 

trained on 6% labeled data (yellow curve) has 

approximately a 95% accuracy. When the model is 

trained on only 6% data, its accuracy only drops by 

2% despite losing 94% of its labeled data, as shown 

in Fig. 3. Therefore, semi-supervised learning is a 

promising approach in the context of malaria 

detection.  
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Fig. 3. Graph of accuracy as a function of number of epochs.  

 

Fig. 4. Graph of loss as a function of number of epochs. 

 

The result of training our fully supervised model on 

FixMatch is comparable to other state

research using the same Malaria Cell Images 

dataset from Kaggle. Previous research papers, such 

as Jane Hung et al. [2] and Gautham Shekar et al. [4] 

have applied CNN models on this dataset and have 

also obtained resulting accuracies of around 96

97%.  

However, we also uncover a relatively surprising 

finding: towards the end of training the 40 epochs, 

the accuracy for 100 labeled data is slightly higher 

than that of the 200 labeled data. One possible 

explanation for this inconsistency may be that 

sample selection for the 100 labeled data was 

“luckier” than usual. This prompts the question of 

whether or not sample selection for the 100 labels 

could be arranged in such a way that accuracy is 

optimized. After comparing the test results of 100 

labeled data selected using various criteria, we have 

three key observations. First, selecting 100 labeled 

samples that are similar to one another (green curve) 

performs much worse than randomly selecting the 

100 samples (e.g. Fig. 5), which shows that it is 

highly important to select samples in an informed 

way. Second, when selecting 100 labeled samples 

that are dissimilar to one another but not necessarily 

of low confidence (red curve), the model has an 

accuracy considerably better than the previous 

result, but still underperforms compared to random 

selection, as shown in Fig. 5. This result 

Volume 6 Issue 4, July- Aug 2023 

www.ijsred.com 

Page 1171 

Fig. 3. Graph of accuracy as a function of number of epochs.   

 
Fig. 4. Graph of loss as a function of number of epochs.  

The result of training our fully supervised model on 

FixMatch is comparable to other state-of-the-art 

research using the same Malaria Cell Images 

dataset from Kaggle. Previous research papers, such 

as Jane Hung et al. [2] and Gautham Shekar et al. [4] 
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“luckier” than usual. This prompts the question of 

whether or not sample selection for the 100 labels 

d in such a way that accuracy is 

optimized. After comparing the test results of 100 

labeled data selected using various criteria, we have 

three key observations. First, selecting 100 labeled 

samples that are similar to one another (green curve) 

ch worse than randomly selecting the 

100 samples (e.g. Fig. 5), which shows that it is 

highly important to select samples in an informed 

way. Second, when selecting 100 labeled samples 

that are dissimilar to one another but not necessarily 

e (red curve), the model has an 

accuracy considerably better than the previous 

result, but still underperforms compared to random 

selection, as shown in Fig. 5. This result 
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demonstrates the importance of selecting labeled 

samples for which the model has low confidence. 

Finally, we observe that the results with 80% 

randomly selected data with 20% data being both 

dissimilar and difficult to classify (purple curve) 

had an accuracy exceeding that of the randomly 

selected labels. We also observe from Fig. 5 that

most dissimilar labels were also close to random 

selection, which supports the idea that selecting 

labels that are dissimilar and difficult to classify can 

potentially yield higher accuracies. 

 

Fig. 5. Graph of accuracy as a function of number of ep

selection with 100 labeled data. 

D. Results for Grad-CAM and SHAP 

We implemented Grad-CAM and SHAP only on the 
supervised model, due to its higher performance 
based on our metrics. We implemented Grad
on two images, one for an uninfected image and one 
for a parasitized or infected image, both which the 
model classified correctly. 
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Fig. 6 XAI methods for infected(a, b, c) and uninfected(d, e, f) classes where 

model correctly predicted class. Images (a, d) are Grad

images (b,c) are the superimposed heatmap on original image, and images (c, 

f) are SHAP values. 

 

For the correctly classified images, we see that the 

Grad-CAM creates a heatmap on the area of the 

image that contributed most to the model’s 

prediction. For the parasitized image (

clearly see that the targeted area of infection was 

towards the bottom right of the blood cell. This 

helps us validate that our model is indeed looking at 

the correct place, as the bottom right was where the 

malaria infection was occuring. Furthermore, th

SHAP values help to further validate the Grad

CAM’s findings, as SHAP indicates for the infected 

image that the bottom right had positive SHAP 

values, which meant those pixels helped push the 

model positively towards predicting this class (

6c). For the uninfected images, the images of the 

blood cells to the naked eye are harder due to the 

absence of a specific area that exhibits protruding 

colors unlike (FIG. 6c). As seen in the uninfected 

blood cell image (FIG. 6f), despite having any area 

that stands out, our Grad-CAM model indicated that 

roughly the whole area of the blood cell was used to 

arrive at the conclusion of uninfected (

However, SHAP indicates that the top right corner 

and the bottom left corner of the blood cell helped 

push the model towards classifying the uninfected 

class (FIG. 6f); on the other hand, we see negative 

SHAP values or blue SHAP values towards the 

bottom right corner, indicating that this area had the 

possibility of pushing the model towards classifying 

the model towards predicting the wrong class.

 
    

Fig. 7. XAI methods for infected(a, b, c) and uninfected(d, e, f) classes

model incorrectly predicted class. Images (a, d) are Grad
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XAI methods for infected(a, b, c) and uninfected(d, e, f) classes where 

model correctly predicted class. Images (a, d) are Grad-CAM heatmaps, 

heatmap on original image, and images (c, 

For the correctly classified images, we see that the 

CAM creates a heatmap on the area of the 

image that contributed most to the model’s 

prediction. For the parasitized image (FIG. 6a), we 

clearly see that the targeted area of infection was 

towards the bottom right of the blood cell. This 

helps us validate that our model is indeed looking at 

the correct place, as the bottom right was where the 

malaria infection was occuring. Furthermore, the 

SHAP values help to further validate the Grad-

CAM’s findings, as SHAP indicates for the infected 

image that the bottom right had positive SHAP 

values, which meant those pixels helped push the 

model positively towards predicting this class (FIG. 

the uninfected images, the images of the 

blood cells to the naked eye are harder due to the 

absence of a specific area that exhibits protruding 

As seen in the uninfected 

, despite having any area 

CAM model indicated that 

roughly the whole area of the blood cell was used to 

arrive at the conclusion of uninfected (FIG. 6e). 

However, SHAP indicates that the top right corner 

and the bottom left corner of the blood cell helped 

model towards classifying the uninfected 

; on the other hand, we see negative 

SHAP values or blue SHAP values towards the 

bottom right corner, indicating that this area had the 

possibility of pushing the model towards classifying 

owards predicting the wrong class.  

 
XAI methods for infected(a, b, c) and uninfected(d, e, f) classes where 

model incorrectly predicted class. Images (a, d) are Grad-CAM heatmaps, 
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images (b,c) are the superimposed heatmap on original image, and images (c, 
f) are SHAP values. 

 

For the incorrectly classified images, which 

happened to be less than 2.5% of all the images in 

the test set, we see that this occurs when there isn’t 

a clear spot of infection in the original blood cell 

image (Fig. 7f). The incorrectly classified image is 

also indicated by a heatmap that spanned the entire 

image, with no clear distinction of colors (Fig 7b 

and 7e). Compared to the SHAP values displayed 

in (FIG. 6c and 6f), the SHAP values for instances 

where the model predicted incorrectly contain a 

greater mix of red(positive) and blue(negative) 

SHAP values (FIG. 7c and 7f). This discrepancy 

between SHAP values indicates how confused the 

model is between predicting the parasitized class 

and the uninfected class, constantly being thrown in 

between positive and negative SHAP values. 

However, (Fig 7f.) shows that the malaria pigment 

in the upper right corner had negatively contributed 

to the model predicting the uninfected class, which 

means our model is doing the correct job of 

identifying where the malaria infection is; however, 

it seems like our model felt the positive SHAP 

values around the outer edges pushed the model 

into identifying the image as uninfected, which 

happened to be the wrong class. The same concept 

occurs in (FIG. 7c), except for the fact that the 

bottom left corner pigmentation had tricked the 

model into thinking the image was parasitized, 

when in reality it was uninfected. While the Grad-

CAM thought the middle area of the blood cell was 

the most important in deciding that this image was 

parasitized (FIG 7b), SHAP seemed to think the 

bottom left corner was the area that influenced the 

model’s prediction the most (Fig 7c). By using 

SHAP and Grad-CAM in conjunction, we see that 

we can better identify exactly where the model is 

looking at and gain insight into what pushed the 

model into making correct predictions and incorrect 

predictions. 
 

 

IV.CONCLUSIONS 

From its remarkable results using the FixMatch 

pipeline, we conclude that semi-supervised learning 

shows promise in the application of malaria 

detection and has the potential to solve the problem 

of the difficulty involved in collecting labeled data. 

It can compromise lots of labeled data with only a 

small decrease in accuracy and achieved results 

comparable to state-of-the-art research on malaria 

classification on the same dataset. Sample selection 

also shows great promise for improving semi-

supervised learning. Additionally, we find that 

semi-supervised learning is slightly less effective 

compared to supervised learning in the context of 

malaria detection, however XAI methods such as 

Grad-CAM and SHAP give us deeper insight into 

our models and helps mitigate the “black box 

problem” with neural networks. Due to time 

constraints, we were unable to implement Grad-

CAM and SHAP to the semi-supervised model, 

thus being unable to thoroughly explain why the 

semi-supervised model does worse than the 

supervised. In terms of future work, implementation 

of XAI into our semi-supervised model would be 

most obvious once its performance becomes on par 

with the fully supervised model. In addition, our 

model can be improved through data augmentation 

and helping the model focus on specific 

characteristics. Furthermore, the Grad-CAM and 

SHAP tools can be used to further advance our 

model and understanding of malaria classification 

by comparing these tools to relevant biological data 

on malaria, including professional doctor diagnosis 

of blood cells. 
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