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Abstract:
This paper major goal is to create a model that may be used to model Italy’s Covid-19 Mortality rate. The

Alpha Power Exponentiated Inverse Exponential distribution, often known as the APEIEx distribution, is employed
in this situation with two shapes and one or more scale parameters. In this work, significant statistical features
including the Survival function, Hazard function, Quantile function, the Middle value (Median), the Lower (1st)
quantile, the Upper (3rd) quantile, the rth Moment, the Moment generating function, and the order statistics are
investigated. With the aid of the BFGS method, the parameters of the proposed distribution are determined using
maximum likelihood estimation. When compared to other distributions employed in this investigation, the proposed
distribution clearly offers a better fit for the Italy’s Covid-19 Mortality rates data. This demonstrates the flexibility
and adaptability of the APEIEx distribution for the Covid-19 Mortality rates in Italy.

Keywords- Alpha Power, Exponentiated Inverse Exponential distribution, Mortality rate, Maximum Likelihood
estimation.

I. INTRODUCTION

The concept of statistics (probability density func-
tion) is useful in various fields of study like medicine,
engineering, economics, and others. In real-life analysis,
many data sets display characteristics of a bathtub, an
inverted bathtub, skewness, kurtosis, monotonic increase,
monotonic decrease, and many more. Scholars may find
it difficult to find a suitable model for modeling such data
sets. For this reason, statisticians bring up the technique
of model modification to help solve real-life phenomena.

Data sets with inverted bathtub failure rates can be
modeled using the Inverse Exponential (IEx) distribution;

however, data sets with heavy tails or high skewness can-
not be well modeled. Additionally, the IEx distribution is
unsuitable for modeling data with bimodality and a high
bathtub failure rate. Due to this outcome of the inverted
Exponential distribution, many scholars have taken up
the responsibility to extend or add parameters to the
inverted Exponential distribution to make it more flexible
and adaptable to solve real-life phenomena.

Marshall-Olkin Alpha Power Inverse Exponential
(MOAPIE) Distribution: Properties and Applications
by [1] and applied the proposed new distribution to real
data representing the survival times in days of guinea
pigs injected with different doses of tubercle bacilli is
given and its goodness-of-fit is demonstrated. On the
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Exponentiated Generalized Inverse Exponential (EGIE)
Distribution by [2], and find out that the model can
be successfully used to model lifetime data sets and
real-life phenomena with inverted bathtub failure rates.
The flexibility of the Transmuted Inverse Exponential
(TIE) Distribution by [3], demonstrates that the TIE
distribution is more robust than the Inverse Exponential
distribution. Properties and Applications of a Two-
Parameter Inverse Exponential (IE) Distribution with
a Decreasing Failure Rate by [4]. Statistical Properties
of the Exponentiated Generalized Inverted Exponential
Distribution by [5]. The Gompertz Inverse Exponential
(GoIE) distribution with applications by [6]. The Inverse
Weibull Inverse Exponential (IWIE) distribution with
Application by [7]. The Transmuted Inverse Exponential
(TIE) distribution by [8]. Theoretical Analysis of the
Kumaraswamy-Inverse Exponential (K-IE) distribution
by [9]. The Exponentiated Inverted Exponential (EIEx)
distribution by [10].

If X is a non-negative exponential random variable,
then the distribution of a random variable Z = 1/X, de-
fines an IEx distribution. [11], defines the Inverse Expo-
nential (IEx) distribution with CDF, F (z) and PDF, f(z)
respectively, as follows;

FIEx(z) = e−
η
z (1)

The corresponding eq. for eq. (1) is given as;

fIEx(z) =
d
dz

(
FIEx(z)

)
fIEx(z) =

η

z2
e−

η
z (2)

∀z, η>0 and η is a scale parameter.

The Alpha Power family has been used by various
scholars in the field of statistics to extend well-known
traditional distributions.

The Extended Alpha Power Transformed Family of
Distributions: Properties and Applications by [12]. The
Alpha Power Transformation Family: Properties and
Applications by [13]. The Censored Beta-Skew Alpha
Power Distribution by [14]. Alpha Power Exponentiated
Inverse Rayleigh distribution and its applications to real
and simulated data by [15]. Alpha Power Transformed
Weibull-G Family of Distributions: Theory and Ap-
plications by [16]. Alpha Power Inverted Exponential
Distribution: Properties and Application by [17]. A
new alpha power transformed family of distributions:
properties and applications to the Weibull model by
[18]. A new extended alpha power transformed family of
distributions: properties and applications by [19]. A new
extended alpha power transformed family of distributions:
properties, characterizations and an application to a data
set in the insurance sciences by [20].

The Alpha Power transform is define by [21] with
cumulative distribution function (CDF) as;

FAPT (z) =
αF (z) − 1

α− 1
(3)

The corresponding eq. to eq. (3) is;

fAPT (z) =
ln(α)

α− 1
f(z)αF (z) (4)

∀z, α>0, α ̸= 1 and α is a shape parameter.

Other families of distributions have been used by
scholars to extend some well-known distributions, like the
Exponential, Rayleigh, and Lindley distributions. For
further reading, scholars can read from [22], [23], [24],
[25], [26], and [27] to name but a few.

II. ALPHA POWER EXPONEN-
TIATED INVERSE EXPO-
NENTIAL (APEIEx) DISTRI-
BUTION

To develop the APEIEx distribution, we need the help
of the Exponentiated Inverse Exponential (EIEx) distri-
bution.

A. The EIEx distribution

The EIEx distribution CDF can be derived by expo-
nentiating eq. (1) to a certain constant.

F (z) =

(
FIEx(z)

)β

=

(
e−

η
z

)β
(5)

From eq. (5), the PDF is; f(z) = d
dz

(
F (z)

)
f(z) =

βη

z2

(
e−

η
z

)β

(6)

∀z, η, β>0 and β is a shape parameter.

B. The APEIEx distribution

The APEIEx distribution can be derive by utilizing eq.
(5) into eq. (3) and eqs. (5) & (6) into eq. (4).

CDF; FAPEIEx(z) =
αe−

ηβ
z − 1

α− 1
(7)

PDF; fAPEIEx(z) = βηz−2 ln(α)

α− 1
e−

ηβ
z αe−

ηβ
z (8)
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∀z, α, β>0, α ̸= 1 and αβ are shape parameters & η is a
scale parameter.
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Figure 1: The CDF of the APEIEx distribution.

Figure 1, displays the graphical shapes of the CDF of
APEIEx for selected parameter values, and the shapes are
monotonic increase or non-monotonic decrease.
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Figure 2: The PDF of the APEIEx distribution.

Figure 2, displays the graphical shapes of the PDF
of APEIEx distribution for selected parameter values,
and the shapes are reverse J-shape, positively skewed,
increasing, left-skewed, and unimodal.

The hazard and survival functions in relation to the
probability density function are given as follows:

hAPEIEx(z) =
βηz−2 ln(α)e−

ηβ
z αe−

ηβ
z

α− αe−
ηβ
z

(9)

SAPEIEx(z) =
α− αe−

ηβ
z

α− 1
(10)
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Figure 3: The SAPEIEx(z) of the APEIEx distribu-
tion.

Figure 3, displays the graphical shapes of the
SAPEIEx(z) of APEIEx distribution for selected param-
eter values and the shapes shows the reverse of the CDF
shapes (i.e. monotonic decrease or non-monotonic in-
crease).

Figure 4, displays the graphical shapes of the
hAPEIEx(z) of the APEIEx distribution for selected pa-
rameter values and the shapes of increasing, decreasing,
an inverted bathtub.
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Figure 4: The hAPEIEx(z) of the APEIEx distribu-
tion.

III. IMPORTANT STATISTI-
CAL PROPERTIES

In this section, all the important statistical properties
are derived.

A. Quantile function

The random variable of the APEIEx can be calculated
by solving for z from eq. (7).

Let λ = FAPEIEx(z)

z = F−1
APEIEx(λ)

(11)

Hence the random variable zλ for λ ∈ (0, 1) is given
as;

zλ =
−ηβ

ln

{
ln

(
1+λ(α−1)

)
ln(α)

}
(12)

The median of the APEIEx is by putting λ = 1/2, and
we have;

z1/2 =
−ηβ

ln

{
ln

(
1/2+α/2

)
ln(α)

}
(13)

Lower (1st) Quantile of the APEIEx distribution is
by putting λ = 1/4, and we have;

z1/4 =
−ηβ

ln

{
ln

(
3/4+α/4

)
ln(α)

}
(14)

Table 1: Quantile Values for APEIEx(α, β, η) dis-
tribution.

λ (1.5, 0.05, 0.9) (1.6, 0.05, 0.8) (1.7,0.06,0.7)
0.1 0.0213 0.0192 0.0204
0.2 0.0311 0.0281 0.0300
0.3 0.0422 0.0383 0.0410
0.4 0.0563 0.0512 0.0549
0.5 0.0753 0.0686 0.0737
0.6 0.1034 0.0943 0.1014
0.7 0.1495 0.1366 0.1470
0.8 0.2413 0.2205 0.2377
0.9 0.5154 0.4716 0.5087

The Upper (3rd) Quantile of the APEIEx distribution
is by putting λ = 3/4, and we have;

z3/4 =
−ηβ

ln

{
ln

(
1/4+3α/4

)
ln(α)

}
(15)

B. Moment

For Z ∼APEIEx(α,λ,η), the rth moment can express
as;

ω′
r = E(Zr) =

∫ ∞

0

zrβηz−2 ln(α)

α− 1
e−

ηβ
z αe−

ηβ
z dz (16)

Using series notation αx =
∑∞

k=0
(lnα)k

k! xk

αe−
ηβ
z =

∞∑
k=0

(lnα)k

k!

(
e−

ηβ
z

)k

ω′
r =

βη ln(α)

α− 1

∫ ∞

0

zrz−2e−
ηβ
z

∞∑
k=0

(lnα)k

k!

(
e−

ηβ
z

)k

dz

=
βη ln(α)

α− 1

∞∑
k=0

(lnα)k

k!

∫ ∞

0

zr−2

(
e−

ηβ
z

)k+1

dz

(17)

Skewness and Kurtosis

In relation of the APEIEx distribution, the Galton
skewness and Moors kurtosis is define as;

Gs =
Q(1/4) +Q(3/4)− 2Q(1/2)

Q(3/4)−Q(1/4)

Mk =
Q(3/8) +Q(7/8)−Q(1/8)−Q(2/8)

Q(6/8)−Q(2/8)

where Q = quantile values

The effects of the additional parameters α&β is seen
clearly in Figures 5 and Figures 6.
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C. Moment generating function (Mgf)

For Z ∼APEIEx(α,λ,η), the Mgf can express as;

MZ(t) = E(etZ) =

∞∑
r=0

tr

r!
E(Zr) (18)

Utilizing E(Zr) from eq. (17)

MZ(t) =
βη ln(α)

α− 1

∞∑
r=0

∞∑
k=0

tr

r!

(lnα)k

k!

∫ ∞

0

zr−2

(
e−

ηβ
z

)k+1

dz

(19)

D. Order Statistics

For the ordered random sample Z1, Z2, Z3, . . . , Zn,
the kth minimum and maximum order statistics of the
APEIEx distribution are given as follows;

fZ1
(z) = n

n−1∑
t=0

(−1)t
(
n− l

t

)
fAPEIEx(z)

(
FAPEIEx(z)

)t

fZn
(z) = nfAPEIEx(z)

(
FAPEIEx(z)

)n−1

(20)
Hence;

fZ1
(z) = nβηz−2 ln(α)

α− 1
e−

ηβ
z αe−

ηβ
z

n−1∑
t=0

(−1)t
(
n− l

t

)
×

(
αe−

ηβ
z − 1

α− 1

)t

fZn
(z) = nβηz−2 ln(α)

α− 1
e−

ηβ
z αe−

ηβ
z

(
αe−

ηβ
z − 1

α− 1

)n−1

(21)

IV. PARAMETER ESTIMA-
TIONS

Since n is the random sample from APEIEx∼(α, β, η),
the joint probability density function is;

lnL(θ) = ln

( n∏
i=1

f(xi; θ)

)
; where θ ∈ (α, β, η) > 0

= n ln(β) + n ln(η)− n ln(α− 1) + n ln (lnα)

− 2

n∑
i=1

ln(zi)− ηβ

n∑
i=1

z−1
i + ln(α)

n∑
i=1

e
− ηβ

zi

(22)
From eq. (22), differentiate wrt α, β, η and equate the
results to zero;

∂ lnL(θ)

∂β
=

n

β
− η

n∑
i=1

z−1
i − η ln(α)

n∑
i=1

(
z−1
i e

− ηβ
zi

)
= 0

(23)

∂ lnL(θ)

∂η
=

n

η
− β

n∑
i=1

z−1
i − β ln(α)

n∑
i=1

(
z−1
i e

− ηβ
zi

)
= 0

(24)

∂ lnL(θ)

∂α
=

n

α ln(α)
− n

α− 1
+

1

α

n∑
i=1

e
− ηβ

zi = 0 (25)
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From eq. (23) to eq. (25) are non-linear, and their
numerical solutions are needed.
Here we will use the BFGS algorithm, and both the gra-
dient vector of the log-likelihood function and the Hessian
matrix are needed. Hence, the observed information ma-
trix is;

J−1(λ) =


∂2 lnL(θ)

∂α2

∂2 lnL(θ)
∂α∂β

∂2 lnL(θ)
∂α∂η

∂2 lnL(θ)
∂β2

∂2 lnL(θ)
∂β∂η

∂2 lnL(θ)
∂η2


where λ = (α, β, η)

′
.

The expressions for terms in the Hessian matrix are
available if need arises.

For large sample (1− δ)100% confidence interval for
the APEIEx parameters are express as follows;

α̂± Zδ/2

√
Σ11

β̂ ± Zδ/2

√
Σ22

η̂ ± Zδ/2

√
Σ33

V. MONTE CARLO SIMULA-
TION

Through simulation with 1000 repetitions for each sam-
ple size (n) = 75,125,175,...,425 the parameter estimates
of APEIEx distribution, the Mean Square Error (MSE),
Average Bias (AB), and Root Mean Square Error (RMSE)
are calculated.
The random samples used for the simulation are calculated
through the help of eq. (12)

zλ =
−ηβ

ln

{
ln

(
1+λ(α−1)

)
ln(α)

}
(26)

where λ ∈ (0, 1)
The equation Mean Square Error (MSE), Average Bias
(AB), and Root Mean Square Error (RMSE) are define
respectively as;

MSE =
1

M

M∑
i=1

(Φ̂i − Φ)2 (27)

AB =
1

M

M∑
i=1

(Φ̂i − Φ) (28)

and

RMSE =

√√√√ 1

M

M∑
i=1

(Φ̂i − Φ)2 (29)

Table 2: The estimates, corresponding ABs,
MSEs, and RMSEs.

α = 0.50, β = 1.50, η = 2.00

n
Estimates ABs

α̂ β̂ η̂ α̂ β̂ η̂
75 0.6005 1.5308 2.0158 0.1005 0.0308 0.0158
125 0.5821 1.5105 2.0000 0.0820 0.0105 0.000039
175 0.5609 1.5028 1.9969 0.0609 0.0028 -0.0031
225 0.5236 1.5104 2.0033 0.0236 0.0104 0.0033
275 0.5236 1.5078 2.0021 0.0236 0.0078 0.0021
325 0.5234 1.5058 2.0008 0.0234 0.0058 0.00077
375 0.5169 1.5047 2.0004 0.0169 0.0047 0.00036
425 0.5119 1.5095 2.0044 0.0119 0.0095 0.0044
475 0.5118 1.5040 2.0003 0.0118 0.0040 0.00025

n
MSEs RMSEs

α̂ β̂ η̂ α̂ β̂ η̂
75 0.5020 0.0313 0.0228 0.7085 0.1769 0.1511
125 0.1623 0.0194 0.0138 0.4029 0.1392 0.1174
175 0.0925 0.0127 0.0084 0.3042 0.1127 0.0918
225 0.0550 0.0109 0.0075 0.2346 0.1045 0.0864
275 0.0465 0.0086 0.0055 0.2156 0.0929 0.0743
325 0.0371 0.0074 0.0047 0.1926 0.0859 0.0686
375 0.0276 0.0060 0.0036 0.1662 0.0772 0.0603
425 0.0244 0.0055 0.0035 0.1563 0.0743 0.0593
475 0.0228 0.0049 0.0031 0.1511 0.0697 0.0555

Table 3: The estimates, corresponding ABs,
MSEs, and RMSEs.

α = 0.30, β = 1.30, η = 1.80

n
Estimates ABs

α̂ β̂ η̂ α̂ β̂ η̂
75 0.3488 1.3249 1.8089 00.0488 0.0249 0.0089
125 0.3405 1.3093 1.7991 0.0405 0.0093 -0.00086
175 0.3314 1.3033 1.7962 0.0314 0.0033 -0.0038
225 0.3116 1.3079 1.8023 0.0116 0.0079 0.0023
275 0.3117 1.3064 1.8009 0.0117 0.0064 0.00086
325 0.3116 1.3048 1.8002 0.0116 0.0048 0.00022
375 0.3083 1.3041 1.7999 0.0083 0.0041 -0.000063
425 0.3057 1.3077 1.8033 0.0057 0.0077 0.0033
475 0.3059 1.3033 1.7997 0.0059 0.0033 -0.00031

n
MSEs RMSEs

α̂ β̂ η̂ α̂ β̂ η̂
75 0.1153 0.0204 0.0125 0.3396 0.1428 0.1117
125 0.0456 0.0122 0.0076 0.2136 0.1105 0.0874
175 0.0270 0.0078 0.0050 0.1642 0.0884 0.0706
225 0.0176 0.0070 0.0041 0.1325 0.0837 0.0642
275 0.0144 0.0054 0.0032 0.1198 0.0738 0.0562
325 0.0115 0.0046 0.0026 0.1072 0.0680 0.0512
375 0.0089 0.0037 0.0021 0.0944 0.0611 0.0453
425 0.0079 0.0034 0.0020 0.0888 0.0584 0.0446
475 0.0075 0.0030 0.0018 0.0866 0.0549 0.0422

where Φ(α, β, η) and M number of repetitions

According to Table 2 and Table 3, the estimates,
average bias, mean square error, and root mean square
error all tend to decrease for the chosen initial parameters
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as the sample size (n) rises.

VI. APPLICATION

We used actual data sets in this part to apply the
APEIEx distribution. Information criteria, goodness-of-
fit, negative log-likelihood, and the p-value are used to
assess the APEIEx distribution’s performance.

The proposed distribution is compared with well-
known distributions, these distributions are;

� Alpha Power Inverted Exponential (APIEx) distribu-
tion by [17]

FAPIEx(z) = (α− 1)−1

(
αe−

η
z − 1

)
fAPIEx(z) = η log(α)(α− 1)−1z−2e−

η
z αe−

η
z

; z, α, η > 0, α ̸= 1

� Generalized Alpha Power Inverted Exponential
(GAPIEx) distribution

FGAPIEx(z) = (α− 1)−β

(
αe−

η
z − 1

)β

fGAPIEx(z) = βη log(α)(α− 1)−βz−2e−
η
z αe−

η
z ×(

αe−
η
z − 1

)β−1

; z, α, η > 0, α ̸= 1

� Exponentiated Inverse Exponential (EIEx) distribu-
tion

FEIEx(z) =

(
e−

η
z

)β

fEIEx(z) =
βη

z2

(
e−

η
z

)β

; z, β, η > 0

� Exponential (Ex) distribution

FEx(z) = 1− e−ηz

fEx(z) = ηe−ηz ; z, η > 0

� Inverse Exponential (IEx) distribution

FIEx(z) = e−
η
z

fIEx(z) =
η

z2
e−

η
z ; z, η > 0

Data Set: Italy’s COVID-19 mortality
rate data

Table 4, consist of Italy COVID-19 mortality rates data,
and the data is retrieved from [23].

The summary statistics for data is provided in Table
5. The data is positively skew and the kurtosis is <3,
hence the data is platykurtic.

Table 4: Italy’s COVID-19 mortality rate data.

4.571 7.201 3.606 8.479 11.410 8.961 10.919
10.908 6.503 18.474 11.010 17.337 16.561 13.226
15.137 8.697 15.787 13.333 11.822 14.242 11.273
14.330 16.046 8.646 8.905 8.906 7.407 7.445
7.214 6.194 4.640 5.542 5.073 4.416 4.859
4.408 4.639 3.148 4.040 4.253 4.011 3.564
3.827 3.134 2.780 2.881 3.341 2.686 2.814
2.508 2.450 1.518 11.950 10.282 11.775 10.644
10.138 9.037 12.396

Table 5: Summary Statistics of Italy COVID-19
mortality rates data.

N Max. Min. Mean Median Mode Skew Kurt
59 18.47 1.52 8.16 7.45 4.57 0.46 -0.84

The TTT-transform plot shows a concave above the
450 line and no outliers in the boxplot, as shown in Figure
7 for the data set. This gives a clear picture of how the
shapes in Figure 4 (hazard function shapes) can model the
data set.
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Figure 7: The TTT-transform plot, the Boxplot
and the Histogram of Italy COVID-19 mortality
rates data.

The maximum likelihood with a standard in brackets
of the APEIEx distribution and other well-known distri-
butions are provided in Table 6.

Table 6: The MLEs and the Standard Error (in
parentheses) for Italy COVID-19 mortality rates
data.

Distribution α̂ β̂ η̂
APEIEx 0.0111(0.0116) 1.9669(1.3402) 6.1440(4.1865)
GAPIEx 1.0072(0.4498) 3.4118(5.5168) 1.6518(2.1455)

APIEx 0.0111(0.0115) - 12.0815(1.5058)

EIEx - 4.9901(55.2049) 1.1303(12.5038)

Ex - - 0.1226(0.0160)

IEx - - 5.6406(0.7343)

The APEIEx distribution fits the COVID-19 death
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rates data for Italy better than the other distributions, as
seen in Table 7. The APIEx distribution also fits the data,
however the APEIEx distribution offers the highest neg-
ative log-likelihood (− lnL), smallest Akaike information
criterion (AIC), lowest Kolmogorov-Smirnov test (K−S),
and highest p− value.

Table 7: The − lnL, Goodness-of-fit and the p −
values results for Italy COVID-19 mortality rates
data.

Distribution − lnL AIC K − S p− value
APEIEx 173.5015 353.0031 0.1599 0.0873
GAPIEx 184.1777 374.3555 0.2637 <5%
APIEx 173.5020 351.0040 0.1603 0.0863
EIEx 184.1642 372.3285 0.2631 <5%
Ex 182.8387 367.6775 0.2425 <5%
IEx 184.1642 370.3285 0.2631 <5%

Figure 8, which provides the fitted densities of
Italy’s COVID-19 mortality rates, makes it clear that the
APEIEx and APIEx distributions fit the data well and the
GAPIEx, EIEx, Ex, and IEx distributions do not fit the
data.
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Figure 8: The Fitted densities plot of Italy
COVID-19 mortality rates data.

Conclusion for Italy’s COVID-19 mortality rates
data application

� In terms of data application, we can see that
the APEIEx distribution outperforms the other
models utilized in the study in terms of nega-
tive log-likelihood, information criterion (AIC), and
goodness-of-fit (K − S).

� The GAPIEx, EIEx, Ex, and IEx distributions are all
<5% in terms of the p−values, whereas the APEIEx
has the greatest value.

� The APEIEx distribution fitted the data well than the
other models used, although the APIEx distribution
also provide better fitted, see Figure 8.

VII. CONCLUSION

This paper proposes a new distribution called the ”Al-
pha Power Exponentiated Inverse Exponential (APEIEx)
distribution”. The main aim of this study is to develop
the APEIEx distribution and use it on data sets that
show characteristics of skewness, kurtosis, bathtub, and
inverted bathtub. Some important statistical properties
of the APEIEx are derived. The APEIEx distribution
is applied to uncensored data and compared with other
well-known models by using information criterion (AIC),
goodness-of-fit (K − S), and their p− values.
The APEIEx distribution provided the best fit on the data
set, with the highest negative log-likelihood (− lnL) &
p− values and the smallest AIC & K − S.
Furthermore, researcher(s) can use the new model on cen-
sored data for further studies, and for more flexibility, fu-
ture researcher(s) can use the Transmuted technique.
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