
International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 4, July- Aug 2023

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 348

Cross-Site Scripting (XSS) Attacks and Defense Methods

Chetankumar Nooli*, Akshay Badiger**, Dr.Pijush Barthakur***

*(Master of Computer Application,Visvesvaraya Technological University/KLS Gogte Institute Of Technology , Belagavi
Email: chetannooli94@gmail.com)

** (Master of Computer Application,Visvesvaraya Technological University/KLS Gogte Institute Of Technology , Belagavi
Email: akshaybadiger007@gmail.com)

***(Master of Computer Application,Visvesvaraya Technological University/KLS Gogte Institute Of Technology , Belagavi
Email: pbarthakur@git.edu)

--************************----------------------------------

Abstract:
Cross-Site Scripting (XSS) is a type of hacking attack where bad actors sneak harmful code into

websites that you trust. This code can then be unintentionally executed by other users who visit the
website, leading to various security issues and potentially allowing the attackers to steal sensitive
information or take control of the user's account.

XSS attacks can team up with phishing and other tricks to become even more dangerous. But the scary
part is, they are already pretty hard for users to spot because they look real and trustworthy. This makes
them a big threat to online services like banks and shopping websites, where attackers can steal sensitive
information and cause a lot of trouble for users[1].

The innovative CSP approach is designed to combat real-time XSS attacks by leveraging a combination of
tools: Web Application Firewall (WAF), Intrusion Detection System (IDS), Intrusion Prevention System
(IPS), and advanced AI algorithms. Unlike traditional methods, CSP shows great promise in quickly
identifying and thwarting XSS threats, making it a potent and effective solution. By integrating intelligent
AI technologies with robust security measures, this approach has proven to be more reliable and capable of
safeguarding online services from the malicious insertion of harmful code into trusted websites. Its success
in detecting and neutralizing such attacks marks CSP as a superior and vital defense mechanism in the
digital landscape [2].

Web applications are widely used in finance, e-commerce, healthcare, and other fields, making their
security a top priority. These applications may have vulnerabilities that attackers exploit to steal user
credentials. XSS attacks are particularly critical vulnerabilities that compromise web application security.

Keywords —Cross-Site Scripting, Hacking attack, Harmful code, Sensitive information,

Vulnerabilities, Trustworthy.

--************************----------------------------------

I. INTRODUCTION

As the number of users using web applications
increases, it also makes them more vulnerable to
hackers because sensitive data is exchanged more
frequently. As a result, there is a critical need to
enhance security and privacy measures for web
applications to protect against hackers who exploit

vulnerabilities by injecting malicious code into
trusted websites, aiming to steal or damage valuable
information. Despite various research efforts to
address this issue, the problem of web application
vulnerabilities persists[2].

 One common hacking method is Cross-Site
Scripting (XSS), wherein attackers inject malicious
code into web pages. When the server responds, the

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 4, July- Aug 2023

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 349

injected script is reflected back to the user, leading
to a non-persistent XSS attack, also known as
Reflective XSS. Unlike other XSS types, this attack
does not store the malicious code on the targeted
website permanently. Instead, it relies on user
actions to trigger the execution. Although it may not
directly steal confidential data, when combined with
other attacks, it can create more significant threats
and deception, making users vulnerable to
unintentionally running harmful scripts[1].

 XSS attacks can be categorized based on their
impact vector and method of influence. They
include Active XSS, which requires no additional
user actions; Passive XSS, triggered by user
interactions like clicking or hovering; Reflected
XSS; Stored XSS; and XSS based on the document
object model (DOM)[3].

Fig 1 : General idea behind XSS attacks [1]

There are broadly two types of XSS attacks

A. Non-persistent XSS attack
B. Persistent XSS attack
C. Other XSS attack

A) Non-persistent XSS attack

 Non-persistent XSS attack is a type of
security vulnerability that can be found on some
websites. In this attack, the attacker injects harmful
code, usually in the form of a script, into the
website's search results, error messages, or other
responses that are sent back to the user's browser.
The injected code is then reflected from the website
back to the user's browser and executed without the
user's knowledge.

The main objective of this attack is to steal the
user's session cookie, which contains important
information about the user's login session. For this
attack to work, two conditions must be met: the
website must allow the injection of scripts, and the
user needs to click on a specially crafted link or
interact with a manipulated part of the website[2].

Here's how the attack unfolds step by step:
1. The attacker sends a link to the user, containing

the malicious script code. This link is often sent
through email or some other web-page.

2. If the user clicks on the link, the malicious
code becomes part of the request sent to the
website's server. The website's security
measures may not detect this malicious code.

3. The server processes the request and includes
the injected script in the response sent back to
the user's browser.

4. When the user's browser receives the response,
it unknowingly executes the malicious script.

5. As a result, the executed script sends the user's
session cookies to the attacker's domain,
granting unauthorized access to the user's
private data.

6. The attacker can then store these stolen cookies
for future use[5].

Fig 2: The Non-persistent XSS attack[4]

It's crucial to understand that non-persistent XSS
attacks are among the most common types of XSS
attacks and are relatively easy to detect. When a
successful attack occurs, the user's browser may
display a warning or alert indicating that a script is
being executed.[3].

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 4, July- Aug 2023

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 350

To safeguard against such attacks, websites must
implement robust security measures to prevent the
injection of malicious scripts and ensure that user
input is properly sanitized and validated. This way,
the risk of falling victim to non-persistent XSS
attacks can be significantly reduced [8].

I. Non-persistent XSS vulnerability

Imagine you have found a website called "Natas,"
which is like a dictionary. It allows you to search
for words containing a specific set of letters you
enter. For example, if you type "camp" in the search
box, it will show you all the words containing
"camp" like "campfire,""camping," and so on.

Fig 3: Natas website [1]

Now, when you looked at the website's source code,
you found a piece of code that handles the search
functionality. This code takes the input you provide
and uses a program called "grep" to find the
matching words in a file called "dictionary.txt."

Here's how the code works:

1. It checks if you have entered anything in the

search box (called "needle").
2. If you did enter something, the value you entered

is stored in a variable called "$val."
3. Then, the code runs the "grep" command, which

searches for the value you entered in the
"dictionary.txt" file.

4. If there are any matches, the website displays
them as search results.

Now, the problem with this code is that it doesn't
validate or check the input you provide properly. It
directly uses the value you entered in the "grep"
command without any filtering or security checks.

This creates a vulnerability that hackers could
exploit. They can craft special input, containing not
only regular search words but also harmful
commands. When the website processes this
malicious input, it will execute those harmful
commands as well.

 because the website doesn't properly validate the
input, it becomes an easy target for exploitation by
attackers who can trick the site into running
harmful commands. This is why it's crucial for
developers to implement proper input validation
and security measures to protect
against such attacks[1].

B) Persistent XSS attack:

Persistent XSS attacks are a subset of Stored XSS

attacks. In this type of attack, the injected script is

permanently stored in the server's databases through

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 4, July- Aug 2023

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 351

various means, like comment fields, logs, or forums.

Whenever the victim requests information from the

server, the injected script is retrieved and executed,

potentially leading to cookie theft or the download

of a Trojan horse program.

It works in the following steps:

1. The attacker identifies a vulnerability in a web

application and inserts a malicious script code

into it.

2. When a user interacts with the application and

sends a request, the web page containing the

malicious code is accessed.

3. The malicious script is then sent to the user's

web browser as part of the application's

response.

4. The script gets executed in the user's browser

and can steal sensitive information, such as

session cookies.

5. The stolen cookies are sent back to the attacker,

who stores them on their domain for later use.

Cookies are small pieces of data stored in a user's

web browser, containing user-related information.

Attackers can exploit XSS vulnerabilities to steal

these cookies and gain unauthorized access to

specific web resources based on the user's stored

data[4].

Fig 4: The Stored XSS attacks [4]

I. Persistent XSS vulnerability :

In an XSS attack, attackers can insert malicious

scripts into the website, and when other users view

the comments, these scripts get executed in their

web browsers. The attackers can then steal sensitive

information, like session cookies, or perform

malicious actions on the users' computers.

In this particular forum, the vulnerability is

demonstrated by showing the code snippets

responsible for storing and displaying comments.

The code responsible for saving comments doesn't

verify the input, which means any text, including

harmful scripts, can be stored in the database.

Similarly, when the comments are retrieved from

the database and displayed on the website, there is

no proper validation or filtering of the content.

[1,4]This allows attackers to inject HTML tags or

scripts into the comments, which will then be

rendered and executed when viewed by other users.

To exploit this vulnerability, an attacker could craft

a comment containing a malicious script, and when

other users view the comment, the script would be

executed in their browsers, leading to potential data

theft or other malicious activities.

Fig 5: Tool to check Persistent XSS vulnerability [1]

C) DOM based XSS attack:

A DOM-based Cross-Site Scripting (XSS) attack is

a type of cyber-attack that targets web applications

and websites. In this attack, malicious code is

injected into the user's browser, taking advantage of

vulnerabilities in the Document Object Model

(DOM) rather than the HTML code.

International Journal of Scientific Research and Engineering Development

©IJSRED:

The process of a DOM-based XSS attack can be

broken down into the following steps:

1. The attacker sends a harmful link containing a

malicious script to the user through email, a bulletin

board, or a deceptive webpage.

2. When the user clicks on the link, their browser

sends a request to the associated website, and the

server responds with a seemingly harmless page.

3. However, the malicious script embedded in the

page is executed on the user's browser, allowing it

to access sensitive data such as cookies.

4. The attacker then gains access to the user's stolen

cookies, which can be used for unauthorized

activities.

DOM provides a platform- and language

interface that allows scripts and applications to

access and modify the content of HTML and XML

documents. Exploiting weaknesses in DOM, the

attacker can modify the targeted website's DOM,

making it execute the malicious script.

To prevent XSS attacks, it is crucial to detect

vulnerabilities in web applications. Various

methods and tools like BeEF, Xenotix XSS,

Acunetix, XSpider-MAX-Patrol, Nemesida

Scanner, and Wapiti are available for this purpose.

However, some existing security tools might be

resource-intensive, affecting computer performance.

DOM-based XSS attacks trick users into executing

malicious scripts that appear trustworthy and are

often embedded in web applications. For instance,

attackers may exploit JavaScript code used for form

validation, allowing them to inject their harmful

code and compromise the user's browse

To protect against DOM-based XSS attacks, web

developers should prioritize input validation and

data sanitization. Users should exercise caution

when clicking on links from unknown sources and

keep their browsers and security software up

date to minimize the risk of falling victim to such

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 4, July

 Available at www.ijsred.com

©IJSRED: All Rights are Reserved

based XSS attack can be

1. The attacker sends a harmful link containing a

malicious script to the user through email, a bulletin

user clicks on the link, their browser

sends a request to the associated website, and the

server responds with a seemingly harmless page.

3. However, the malicious script embedded in the

page is executed on the user's browser, allowing it

ve data such as cookies.

4. The attacker then gains access to the user's stolen

cookies, which can be used for unauthorized

and language-neutral

interface that allows scripts and applications to

ntent of HTML and XML

documents. Exploiting weaknesses in DOM, the

attacker can modify the targeted website's DOM,

To prevent XSS attacks, it is crucial to detect

vulnerabilities in web applications. Various

and tools like BeEF, Xenotix XSS,

Patrol, Nemesida-

Scanner, and Wapiti are available for this purpose.

However, some existing security tools might be

intensive, affecting computer performance.

s into executing

malicious scripts that appear trustworthy and are

often embedded in web applications. For instance,

attackers may exploit JavaScript code used for form

validation, allowing them to inject their harmful

code and compromise the user's browser[5].

based XSS attacks, web

developers should prioritize input validation and

data sanitization. Users should exercise caution

when clicking on links from unknown sources and

keep their browsers and security software up-to-

inimize the risk of falling victim to such

attacks. By staying vigilant and implementing

proper security measures, the impact of DOM

based XSS attacks can be significantly

Fig 5: Search Algorithm for XSS vulnerability [

XSS Vulnerabilities Detection Software:

In today's digital landscape, data protection

software and equipment play a crucial role in

safeguarding sensitive information from security

threats. However, many of these solutions suffer

from cumbersome operation and redundant

performance, causing slow device performance and

increased resource consumption for users.

Additionally, while certain tools can detect Cross

Site Scripting (XSS) vulnerabilities, they come with

drawbacks related to web application construction.

Notably, web applications often authorize internet

resources to expand consumer privileges, granting

authorized users’ greater access to web resource

functionalities compared to unauthorized users.

The existing XSS vulnerability detection software,

such as the Online Web Security Scanner, focuses

on searching for vulnerabilities only in the open,

publicly accessible parts of websites that do not

require access authorization. However,

thisapproach overlooks the possibility of XSS

vulnerabilities existing in hidden or restr

of a web resource.

Volume 6 Issue 4, July- Aug 2023

www.ijsred.com

Page 352

attacks. By staying vigilant and implementing

proper security measures, the impact of DOM-

based XSS attacks can be significantly reduced.

vulnerability [3]

Detection Software:

In today's digital landscape, data protection

software and equipment play a crucial role in

safeguarding sensitive information from security

threats. However, many of these solutions suffer

from cumbersome operation and redundant

rmance, causing slow device performance and

increased resource consumption for users.

Additionally, while certain tools can detect Cross-

Site Scripting (XSS) vulnerabilities, they come with

drawbacks related to web application construction.

plications often authorize internet

resources to expand consumer privileges, granting

authorized users’ greater access to web resource

functionalities compared to unauthorized users.

The existing XSS vulnerability detection software,

Security Scanner, focuses

on searching for vulnerabilities only in the open,

publicly accessible parts of websites that do not

require access authorization. However,

thisapproach overlooks the possibility of XSS

vulnerabilities existing in hidden or restricted areas

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 4, July- Aug 2023

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 353

Consequently, there is a pressing need for

applications that can thoroughly search for XSS

vulnerabilities in web applications. Addressing this

demand, this paper presents a program developed in

the Delphi programming language, designed to

leverage the symmetrical utility of high-quality

algorithms for discovering XSS vulnerabilities.

The proposed program offers the following

functions:

1. Detection of all types of XSS vulnerabilities,

including reflected, stored, and DOM-based

XSS.

2. Pre-authorization in web applications and

cookie storage to simulate user access.

3. Compilation of internal URLs in a web

application to ensure comprehensive

vulnerability scanning.

4. Generation of reports detailing the detected

vulnerabilities.

5. Provision of actionable recommendations to

address the identified vulnerabilities.

To detect reflected XSS vulnerabilities, the paper

presents a search algorithm. Reflected XSS

involves malicious code embedded in the HTTP

response, rather than being stored in the application.

The algorithm triggers the submission of forms

using the POST method, inserting values in the sent

elements and receiving an HTML message in

response. The incoming message is analyzed for

vulnerabilities. If the analysis reveals that the

incoming JS code sets the value stored in the

document object model to true (document.

vulnerable = true), the page is marked as containing

a potential threat of the corresponding type.

Otherwise, the page is deemed safe and not added

to the final list of vulnerabilities[4].

Detection Techniques
Detection techniques are important for keeping

web applications safe from Cross-Site Scripting
(XSS) attacks that can harm users. Here are some

important ways to detect and prevent XSS
attacks[3,2]:

1. Check Inputs Carefully

Make sure to carefully check and clean
anyinformation provided by users on the
website. This way, harmful scripts that
attackers might try to inject can be blocked
before causing any damage.

2. Encode Output Data:

Before showing any information on the
website, convert special characters into safe
code. This helps in preventing harmful scripts
from running in users' browsers.

3. Set Content Security Policies (CSPs):

Website administrators can set rules for which
sources are safe to fetch content from. By
doing this, unauthorized scripts can be blocked,
protecting the site from various types of XSS
attacks.

4. Use Web Application Firewalls (WAFs):

Add an extra layer of protection to the web
application by using WAFs. These security
tools analyze incoming requests and responses
for suspicious patterns, blocking potential
XSS attacks.

5. Regularly Check for Vulnerabilities:

Perform frequent security checks to find and
fix weak points before attackers can exploit
them. This proactive approach keeps the
website safe and improves security over time.

6. Test Content Security Policies:

Before implementing strict CSPs that might
block important resources, use CSPRO mode
to test and generate reports on potential policy
violations. This helps fine-tune CSPs without
disrupting the website's normal functions.[6]

By using these detection techniques, web
administrators can reduce the risk of XSS attacks
and make their web applications more secure for
users.

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 4, July- Aug 2023

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 354

II. CONCLUSIONS

In conclusion, Cross-Site Scripting attacks are
dangerous threats to web applications and users.
They can lead to data breaches and harm user trust.
Detecting and preventing XSS attacks require a
proactive approach, using secure coding practices,
input validation, and advanced security mechanisms
like CSPs and WAFs. By staying informed and
implementing robust security measures, website
owners can better protect their applications and
ensure a safer online experience for users.

REFERENCES
[1] An analytical study on Cross-Site Scripting, 2020.Mehul Singh

Department of CSE ASET, Amity University, Noida,India

 https://ieeexplore.ieee.org/abstract/document/9132894/

mehulsingh11@gmail.com
Prabhishek Singh Department of CSE ASET, Amity University, Noida
prabhisheksingh88@gmail.com
Dr. Pramod Kumar Department of CSE Krishna Engineering College,
Ghaziabad, Uttar Pradesh
drpramoderp@live.com

[2] Detection and Prevention of Cross-site ScriptingAttack with
Combined Approaches.

 https://ieeexplore.ieee.org/abstract/document/9369796/

 Hsing-Chung Chen1,2,*, (Senior Member, IEEE), Aristophane
 Nshimiyimana1, Cahya Damarjati1,3, Pi-Hsien Chang1,4,*,
 1Department of Computer Science & Information Engineering, Asia
 University No.500, Liufeng Road, Wufeng District, Taichung City,
 Taiwan 2 Dept. of Medical Research, China Medical University
 Hospital, China Medical University, Taiwan 3 Dept. of Information
 Technology, Universitas Muhammadiyah Yogyakarta, Yogyakarta, I
 ndonesia 4 Information Management Center, Taichung City
 Government *Corresponding authors: Hsing-Chung Chen (e-mail:
 cdma2000@asia.edu.tw, shin8409@ms6.hinet.net), Pi-Hsien Chang (e-
 mail: ps491@taichung.gov.tw)2021

[3] Detection of Web Cross-Site Scripting (XSS) Attacks.Mohammad
Alsaffar,Saud Aljaloud, Badiea Abdulkarem Mohammed,Zeyad Ghaleb
Al-Mekhlafi,Tariq S. Almurayziq ,Gharbi Alshammari and
Abdullah Alshammari, 2022

 https://www.mdpi.com/2079-9292/11/14/2212

[4] A Comparative Analysis of Cross Site Scripting (XSS)Detecting and
Defensive Techniques. Shaimaa Khalifa Mahmoud Marco Alfonse
Computer Science Department, Computer Science Department,Faculty
of Computer and Information Sciences, Faculty of Computer and
Information Sciences, Ain Shams University, Cairo, Egypt Ain Shams
University, Cairo, Egypt shaimaa_khalifa.cs@yahoo.com
marco@fcis.asu.edu.eg Mohamed Ismail Roushdy Abdel-Badeeh M.
Salem Computer Science Department, Computer Science Department,
Faculty of Computer and Information Sciences, Faculty of Computer
and Information Sciences, Ain Shams University, Cairo, Egypt Ain
Shams University, Cairo, Egypt mroushdy@cis.asu.edu.eg
abmsalem@yahoo.com

 https://ieeexplore.ieee.org/abstract/document/8260024/

[5] Adaptive Cross-Site Scripting (XSS) attacks and defense
mechanisms:classification and state-of-the-artShashank
Gupta1 • B. B. Gupta,2023

 https://link.springer.com/article/10.1007/s13198-015-0376-0

[6] Automated Detection of Cross-Site Scripting in Websites,2022

Ahmed E, Mohamed K, Hamdy N, Badreldin E, OsamaRMilitary Technical
College, Cairo, Egypt,ahmedehab25299@gmail.com,

 https://iugrc.journals.ekb.eg/article_302316_2f0dec1b617235f54e54d7b
4baf17075.pdfmshaqwieer@yahoo.com,hamdunasser22@gmail.com,bad
r7189@gmail.com,osamaradwanborhan@gmail.comSupervisor: Dr.
Khaled MetwallyMilitary Technical College, Cairo, Egypt,
k.metwally@mtc.edu.eg

