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Abstract: 
In this paper, we prove Neutrosophic quasi-metric version of the Banach contraction principle which 

extends the famous Grabiec fixed point theorem. By using this result, we show the existence of fixed point 

for contraction mappings on the domain of words and apply this approach to deduce the existence of 

solutions for some recurrence equations associated with the analysis of Quick sort algorithms and divide 

and Conquer algorithms, respectively.. 
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I. INTRODUCTION 

Fuzzy set theory was first introduced by Zadeh 

[20] in 1965 to describe the situations where data 

are uncertain. Thereafter the concept of fuzzy sets 

was generalized as intuitionistic fuzzy set by 

Atanassov [2] in 1984, has a wide range of 

applications in various fields. With the help of 

continuous t-norm the concept of fuzzy metric 

space was modified by Kramosil and Michalek [9] 

and George and Veeramani [3]. The concept of 

fuzzy quasi-metric space was introduced by Gregori 

and Romaguera [4] by generalizing the concept of 

fuzzy metric space given by Kramosil and Michalek 

[9].  

The concept of intuitionistic fuzzy quasi-metric 

space was introduced by Tirado [17] by 

generalizing the notion of intuitionistic fuzzy metric 

space given by Alaca, Turkoglu and Yildiz [1] to 

the quasi-metric setting and gave intuitionistic 

fuzzy quasi-metric version of the Banach 

contraction principle. 

In 1998, Smarandache [13] characterized the new 

idea called neutrosophic set. Recently, Kirisci et al 

[8] defined neutrosophic metric space as a 

generalization of IFMS and brings about fixed point 

theorems in complete neutrosophic metric space. In 

2020, Sowndrarajan and Jeyaraman et al [15] 

proved some fixed point results in neutrosophic 

metric spaces. Our basic references are [5], [6], [7],  

[10], [16], [19]. 

In this paper, we prove Banach fixed point 

theorem in Neutrosophic quasi-metric space. The 

existence of a solution for a recurrence equation 

which appears in the average case analysis of 

Quicksort algorithms is obtained as an application. 
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We generalize the results of Romaguera, Sapena 

and Tirado [12] and also generalize several known 

results 

 

II. PRILIMINARIES 

 

Definition 2.1.A 7- tuple (Ξ, ℜ, �, � ∗,⋄, ⨀	) is said 
to be an Neutrosophic Quasi Metric Space [NQMS] 

if Ξ	is an arbitrary set, ∗ is a continuous t-norm ⋄ 
and 	⨀  are  continuous  t-conorm  and  ℜ,�,�		are 

fuzzy	sets	on	Ξ × Ξ × �0,∞)	satisfying the follow- 

ing conditions : 

(1) ℜ��, �̃, �) + ���, �̃, �) + ���, �̃, �) ≤ 	3 

(2) 0 ≤ ℜ��, �̃, �) ≤ 1; 0 ≤ ���, �̃, �) ≤ 1	"#$	0 ≤
���, �̃, �) ≤ 1, 

(3) ℜ��, �̃, 0) = 0, 
(4) ℜ��, �̃, �) = ℜ��̃, �, �) = 1 ⇔ � = 	 �̃ for all �	> 0 

(5) ℜ��, '	, � + () ≥ ℜ��, �̃, �) ∗ ℜ��̃, '	, ()	for all       

							�, �̃, ' ∈ Ξ and �, (> 0 

(6) ℜ��, �̃, �):	�0,∞) → �0,1-	is left continuous, 

(7) ���, �̃, 0) = 1, 
(8) ���, �̃, �) = ���̃, �, �) = 0 ⇔ � = 	 �	.for all �	> 0 

(9)���, '	, � + () ≤ ���, �̃, �) ⋄ ���̃, '	, ()	for all  

							�, �̃, ' ∈ Ξ and  �, (> 0 

(10) ���, �̃, �): �0,∞) → �0,1-	is right continuous, 

(11) ���, �̃, �) = 1, 
(12) ���, �̃, �) = ���̃, �, �) = 0 ⇔ � = �̃ for all �> 0 

(13) ���, '	, � + () ≤ ���, �̃, �)	⨀	���̃, '	, (),for all  

        �, �̃, ' ∈ Ξ and  �, (> 0 

(14) ���, �̃, �):	�0,∞) → �0,1-	is right continuous. 

In this case, we say that (Ξ, ℜ, �, � ∗,⋄,⨀	) 
is a Neutrosophic Quasi-Metric (NQM) on	Ξ. If in 

addition ℜ,�, "#$	�  satisfy ℜ��, �̃, �) = ℜ��̃, �, �) , 

���, �̃, �) = ���̃, �, �) and ���, �̃, �) = ���̃, �, �) for 

all �, �̃ ∈ Ξ  and �	 > 0 then ( Ξ, ℜ, �, � ∗,⋄,⨀	) is 

called a Neutrosophic Metric �/0)  on Ξ  and 

(Ξ, ℜ, �, � ∗,⋄,⨀	) is called a Neutrosophic metric 

space �/01). 
 

Example 2.2. Let (Ξ, 23) be a quasi-metric space. 

Define	4-norm 5∗6 = min{5, 6},	4-conorm	 
5 ⋄6  = max{5 , 6 } and 4 -conorm 5⊙6  = 

max{5, 6} and for all �, �̃ ∈ Ξ and �	> 0,  

ℜ89  (�, �̃, �) = 
:

:;89��,<=) , �89  (�, �̃, �) =
89��,<=)

:;89��,<=)        and     

�89 	��, �̃, �) =8
9��,<=)
:  

Then (Ξ, ℜ, �,� ∗,⋄,⨀	)	is a />01 . We call this 

NQM ( ℜ,�, �	)  induced by the metric 23  the 

standard NQM. Furthermore it is easy to check that 

(ℜ89 )⁻¹ =ℜ89@A  Bℜ89CD	= ℜ89E , (�89 )⁻¹ = �89@A, B�89CD 
=�89E ,B�89CFG = �89@A 	, B�89CH = �89E.	 The topology 

ℑ89 generated by 23  coincides with the topology 

ℑℜ��K9  generated by the induced NQM (ℜ,�,�,∗, ⋄,  
⊙) 

 

Remark 2.3. It is clear that if (Ξ, ℜ,�, � ∗,⋄,⨀	)	is 

an NQM -space then (Ξ, ℜ, ∗) is a fuzzy quasi-

metric space. Conversely if (Ξ, ℜ , ∗) is a fuzzy 

quasi-metric space on Ξ, then (Ξ, ℜ, 1 - ℜ, 
G
ℜ –1, ∗, 

⋄, ⊙) is an NQM -space where 5 ⋄6= 1 - [(1 - 5) 

∗ (1 - 6)] for all 5, 6∈ [0, 1]. If (ℜ, �, �,∗, ⋄, ⊙) 

is an NQM on Ξ, then (ℜ⁻¹, �⁻¹, � -1
 , ∗, ⋄, ⊙) is 

also an NQM on Ξ where ℜ⁻¹, �⁻¹ and � -1
  are the 

fuzzy sets in Ξ ×	Ξ × (0, ∞) defined by ℜ⁻¹(�, �̃, �) = 

ℜ (�̃, �, �), �⁻¹(�, �̃, �) = � (�̃, �, �) and � -1
(�, �̃, �) = 

� (�̃, �, �).  

Moreover if we denote ℜH ,  � ˢ and � k
 the fuzzy 

sets on Ξ
2
 × [0, ∞) given byℜ(�, �̃, � ) = min{ℜ 

(�, �̃, �), ℜ⁻¹ (�, �̃, �)}, � ˢ (�, �̃, �) = max{� (�, �̃, �), 

�⁻¹(�, �̃, � )} and�  k
(�, �̃, � ) = max{� (�, �̃, �), �⁻¹ 

(�, �̃, �)}. Then (ℜH, � ˢ, �k 
,∗, ⋄, ⊙) is an NM on Ξ. 

In order to construct a suitable topology on an NQM 

-space ( Ξ, ℜ, �, � ∗,⋄,⨀	)	 it seems natural to 

consider balls L(�, M, �) defined similarly to Park 

[11] and Alaca, Turkoglu and Yildiz [1] by L(�, M, 

�)= {�̃ ∈ Ξ: ℜ(�, �̃, �) > 1 - M, � (�, �̃, �) <	M and � 

(�, �̃, �) <	M for all �∈Ξ } M∈ (0, 1) and �> 0. Then 

one can prove as in park [11] that the family of sets 

of the form {L(�, M, �) : �	∈	Ξ, 0 <	M< 1, �> 0} is a 

base for the topology  ℑℜ,�,�	on Ξ. 

 

Definition 2.4. Let (Ξ, ℜ, �,� ∗,⋄,⨀	)	be a /01.  

A sequence {� n}n in Ξ is called a Cauchy if for each 

ε ∈ (0, 1) and each � > 0, there exists n0 ∈�	such 

that ℜ (� n, � m,	�) > 1 - ε, � (� n, � m,	�) < ε and � (�n,  
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� m, � ) < ε whenever n, m ≥ n0. We say that 

( Ξ, ℜ,�, � ∗,⋄,⨀	)	 is complete if every Cauchy 

sequence is convergent.  

 

Definition 2.5. A sequence {xn}n in an /01	 
(Ξ, ℜ, �, � ∗,⋄,⨀) is said to be converges to a point 

�	∈	Ξ if and only if 

 NOPQ→Rℜ� �, �Q, �) = 1, NOPQ→R�� �, �Q, �) = 0	 
"#$ NOPQ→R���, �Q, �) = 0, for all ϱ > 0. 

 

Definition 2.6. Let (Ξ, ℜ, �, � ∗,⋄,⨀	)	be an /01.  

A sequence {� n }n in Ξ is called G-Cauchy if for 

each p ∈� and each �	> 0, NOPQ→Rℜ	��Q, �n+p,, ϱ)  = 

1, NOPQ→R�� �Q, �Q;S,�) = 0 and 

NOPQ→R�B�Q, �Q;S, �C = 0.  We say that (Ξ, ℜ,�, �, 
∗,⋄,⨀	)	is G-complete if every G-Cauchy sequence 

is convergent. 

 

III. BANACH   CONTRACTION IN 

NEUTROSOPHIC QUASI METRIC SPACES 

 

Definition 3.1. A B-contraction on an /01	 
(Ξ, ℜ, �, � ∗,⋄,⨀	)	 is a self mapping f on Ξ  such 

that there is a constant k ∈ (0, 1) satisfying  

          ℜ	( f (�), f (ς ̃), kϱ) ≥ ℜ	(�, ς ̃, ϱ), � (f (�), f (ς ̃), 
kϱ) ≤ � (�, ς ̃, ϱ) and � (f (�), f(ς ̃), kϱ) ≤		� (�, ς ̃, ϱ) 

for all �, ς ̃∈ Ξ, ϱ > 0. 

Definition 3.2. A sequence { � n}n in an NQMS 

(Ξ, ℜ, �, � ∗,⋄,⨀	)	is said to be G-Cauchy if it is a 

G-Cauchy sequence in the NMS (Ξ, ℜH , �T , �U ,∗,⋄
,⨀	). 
Definition 3.3. An NQMS (Ξ, ℜ, �,� ∗,⋄, ⨀	)	 is 

called G-bicomplete if the /01	�Ξ, ℜH, �T, �U ,∗,⋄
,⨀	) is G-complete. In this case we say that 

(ℜ,�,� ∗,⋄,⨀	)	is a fuzzy quasi-metric on Ξ.  

 

Definition 3.4. A B-contraction on an (Ξ, ℜ,�, � ∗
,⋄,⨀) is a self-mapping f on Ξ such that there is a 

constant k ∈ (0, 1) satisfying   

							ℜ	�	V	��), V	��̃), W�)
≥ 	ℜ	�W, �̃, �), �	�V	��), V	��̃), W�)
≤ 	�	��, �̃, �)	"#$	 

�	�V��), V��̃), W�) ≤ �	��, �̃, �)	VXY	"NN	�, �̃ ∈ 	Z,	 
�	 > 	0. 
The number k is called a contraction constant of  f.  

 

Theorem 3.5. Let ( Ξ,ℜ,�,� ∗,⋄,⨀	)	 be a G-

bicomplete NQMS such that 

lim`→R 			ℜ� �, ς=, ϱ) = 1, lim`→R�� �, ς=, ϱ) = 0	and 

	lim`→R���, ς=, ϱ) = 0,	for all �, ς	.∈	Ξ.  

Then every B-contraction on Ξ has a unique fixed 

point. 

 

Proof.  Let f :	Ξ⟶ 	Ξ be a B-contraction on Ξ with 

contraction constant k ∈ (0, 1). Thenℜ(f (�), f (�̃), k�) 

≥ ℜ(�, �̃, �), � (f (�), f (�̃), k�) ≤ � (�, �̃, �) and 

��V��), V��̃), W�) ≤ ���, �̃, �) for all �, �̃	∈	Ξ,	�> 0.  

It immediately follows that  

	ℜH(f (�), f (�̃), k�) ≥ ℜH(�, �̃, �),	�T (f (�), f (�̃), k�) ≤ 

�T(�, �̃, �) and	�U�V��), V��̃), W�) ≤ �U��, �̃, �)	for 

all �, �̃∈	Ξ,	�	> 0. 

 Hence f  is a B-contraction on the G-complete 

fuzzy metric space (Ξ, ℜH , �T , �U ,∗,⋄,⨀	) and  f  has 

a unique fixed point.  

 

IV. NON-ARCHIMEDEAN IN 

NEUTROSOPHIC QUASI METRIC SPACES 

 

Definition 4.1. An NQMS (Ξ, ℜ,�, �,∗,⋄,⨀	)	 is 

called a non-Archimedean NQMS if (ℜ,�, �,∗,⋄
,⨀	)	is a non-Archimedean NQM on Ξ, that is, 

     ℜ(�, �̃, �)   ≥   min{	ℜ (�, ', �), ℜ (', �̃, �)}, 

 � (�, �̃, �)   ≤   max{� (�, ', �), � (', �̃, �)} 

 and  ���, �̃, �)   ≤   max{	�(�,	', �), �(', �̃, �)}, for 

all	�, �,. '	∈	Ξ and �	> 0. 

 
Lemma 4.2. Each G-Cauchy sequence in a non-

Archimedean NQMS is a Cauchy sequence. 

 

Proof. Let (�n) be G-Cauchy sequence in the non-

Archimedean NQMS (Ξ, ℜ, �, �,∗,⋄,⨀	) , then for 

each �	> 0, we have 		limQ→∞ℜⁱ(�Q, �Q+1, �) = 1, 

limQ→∞�ˢ	(�Q, �Q+1, �) = 0 and NOPQ→∞�U��Q, �Q;1, �) 
= 0,		which implies that, for each ε ∈ (0, 1), there is 

n0 ∈	ℕ such that  
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ℜⁱ(�Q, �Q+1, �)  > 1 – ε,	�T(�Q, �Q+1, �)  < ε  and  

�U��Q, �Q;1, �) < h for each n ≥ n0. 

Now let m > n ≥ n0. Then m = n + j, for some j ∈ ℕ.  

So, 

            ℜⁱ ( �Q , �i , � ) ≥ min{ ℜⁱ ( �Q , �Q +1, � ),    

ℜⁱ(�Q;1, �Q+2, �) ...,ℜⁱ(�Q;jF1, �Q+j, �) } 

                                         >  1 – ε , 
																		�T(�Q, �i, �)   ≤   max{�T(�Q, �Q+1, �), 

�T(�Q;1, �Q+2, �) ...,�T(�Q;jF1, �Q+j, �)} 

                                         < ε 
And 

																		�U(�Q, �i, �)   ≤   max{�U(�Q, �Q+1, �), 

�U(�Q;1, �Q+2, �)  ...,�U(�Q;jF1, �Q+j, �)} 

			< h 

We conclude that ( �Q ) is a Cauchy sequence in 

( Ξ, ℜ,�, �,∗,⋄, ⨀	). 
 

Theorem  4.3.   Each bicomplete non-Archimedean 

NQMS is G-bicomplete. 

 

Proof. Let (�Q) be a G-Cauchy sequence in the 

bicomplete non-Archimedean NQMS ( Ξ, ℜ, �, �,∗
,⋄,⨀	). By Lemma 4.2, (�Q) is a Cauchy sequence in 

(Ξ, ℜ, �, �,∗,⋄, ⨀	). Hence there is	�	∈	Ξ such that 

NOPQ→∞ℜH� �, �Q, �) = 1, NOPQ→∞�T� �, �Q, �) = 0    

and NOPQ→∞�U��, �Q, �) = 0 for all �	> 0. We 

conclude that (Ξ, ℜH , �T, �U ,∗,⋄,⨀	)	is G-complete, 

that is, �Ξ, ℜ, �, �,∗,⋄,⨀	)	is G-bicomplete. 

 
Corollary  4.4.  Each complete non-Archimedean 

NMS is G-complete. 

 

V. APPLICATION  

 

Let Σ be a non-empty alphabet.  Let Σ
∞
 be 

the set of all finite and infinite sequences over Σ, 

where we adopt the convention that the empty 

sequence Φ is an element of Σ
∞
. The symbol ⊑

	denote the prefix order on Σ
∞
, that is, � ⊑ �̃ ⟺ �	is 

a prefix of	�̃. Now, for each �	∈ Σ
∞
 denote by l(�) 

the length of �. Then l(�) ∈ [1, ∞) whenever �	≠ Φ 

and l(Φ) = 0. For each � , �̃ ∈ Σ
∞
 let � ⊓ �̃be the 

common prefix of �and �̃ . Thus the function 23⊑ 

defined on Σ
∞
 x Σ

∞
 by  

23⊑(�, �̃) = n0,																		OV		� ⊑ �̃				
2
Fo��⊓<=),						X4ℎqYrOsq

t	 
is a quasi-metric on Σ

∞
 (We adopt the convention 

that 2
-∞

 = 0).  Actually, 23⊑ is a non-Archimedean 

quasi-metric on Σ
∞
 and the non-Archimedean quasi-

metric (23⊑ )
s
 is the Baire metric on Σ

∞
, that is, 

(23⊑)
s
(�, �) = 0 and (23⊑ )

s
(�, �̃) = 2

Fo��⊓<=)
for all�, �̃∈ 

Σ
∞
 such that �≠ �̃ . It is well known that (23⊑) s

is 

complete. From this fact it is clear that 23⊑  is 

bicomplete. The quasi-metric 23⊑ ,which was 

introduced by Smyth [16], will be called the Baire 

quasi-metric. Observe that condition 23⊑  (�, �̃) = 0 

can be used to distinguish between the case that �is 

a prefix of �	.and the remaining cases. 

 

Example 5.1. Let 23⊑	 be a (non-Archimedean) 

quasi-metric on a set Ξ and let	ℜ89⊑ , �89⊑"#$	�89⊑ 

are fuzzy sets in	Ξ × Ξ × [0, ∞) given by  

ℜ89⊑(�, �̃, �) = 
:

:;89⊑��,<=) , �89⊑(�, �̃, �) =	 89⊑��,<=)
:;89⊑��,<=)        

and     �89⊑��, �̃, �) = 
89⊑��,<=)

:  

for all �, �̃ ∈ Ξ and � > 0. Then (ℜ89⊑, �89⊑,	�89⊑ , ∧, 

∨, ∇) is a (non-Archimedean) NQM on Ξ, where ∧ 

denotes the continuous t-norm ,∨ and ∇	denotes the 

continuous t-conorm given by 5 ∧6  = min{5 , 

6}, 5 ∨6 = max{5,6} and	5	∇	6	 = 	max 

	{5,6}. It is clear that ℑℜ��89⊑ = 	ℑ89⊑ and that (Ξ, 

ℜ89⊑, �89⊑,	�89⊑ , ∧, ∨, ∇) is bicomplete if and only    

if (Ξ, 23⊑) is bicomplete. 

 

Proposition 5.2.  (Σ
∞
,	ℜ89⊑, �89⊑,	�89 , ∧, ∨, ∇)  is a 

G-bicomplete non-Archimedean NQMS.  

         Consequently, Theorem 3.5 can be applied to 

this useful space. 

 

Proposition 5.3.  (Σ
∞
,	ℜ89⊑1

, �89⊑0
 ,�89⊑0

,∧, ∨, ∇) is 

a G-bicomplete non-Archimedean NQMS.  

     The neutrosophic non-Archimedean quasi-

metric (ℜ89⊑1
, �89⊑0

,�89⊑0
, ∧, ∨, ∇)	is given by 

	ℜ89⊑1
(�, �̃, 0) = 0, �89⊑0

 (�, �̃, 0) = 1 and 

								�89⊑0
��, �̃,0) = 1 for all �, �̃ ∈ Σ

∞
. 
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ℜ89⊑1
(�, �̃, �) = 1,  �89⊑0

 (�, �̃, �) = 0 and  

								�89⊑0
��, �̃, �) = 0	if �	is a prefix of �̃	and �> 0, 

ℜ89⊑1
(�, �̃, �) = 1 – 2

Fo��⊓<=), 
		�89⊑0

(�, �̃, �) = 2
Fo��⊓<=)

   and 

		�89⊑0
��, �̃, �) = 2

@{��⊓|=)

GF2
@{��⊓|=) if � is not a prefix of �	.and 

	� ∈ (0, 1), 

	ℜ89⊑1
(�, �̃, �) = 1, �89⊑0

 (�, �̃, �) = 0 and 

			�89⊑0
��, �̃, �) = 0 if � is not a prefix of �̃	and �	> 1. 

 Proposition 5.3 allows us to apply any of the 

Proposition 5.2 and Theorem 3.5 to the complexity 

analysis of quicksort algorithm , to show , in direct 

way, the existence and uniqueness of solution for 

the following recurrence equation: 

T (1) = 0 and T (n) =
2�Q	F	1)

Q +
Q	;	1
Q T(n -1), n ≥ 2. 

Consider as an alphabet Σ the set of non-

negative real numbers, that is, Σ = [0, ∞). We 

associate to T the functional Φ: Σ
∞⟶ Σ

∞
 given by  

(Φ(�)) 1 = T(1)  and  (Φ(�))n = 
2�Q	F	1)

Q + Q	;	1
Q � n - 1, for 

all n ≥ 2.If �	∈ Σ
∞
 has length n < ∞, we write � = 

�1�2�3.........�n, and if �	is an infinite word we write 

�=�1�2�3.... Next we show that Φ is a B-contraction 
on the G-bicomplete non-Archimedean NQMS (Σ

∞
, 

ℜ89⊑, �89⊑,�89⊑,∧, ∨, ∇) with contraction constant  
1

2
. 

       To this end, we first note that, by construction, 

we have l(Φ( � )) = l( � ) + 1 for all  �∈ Σ
∞
 (in 

particular l(Φ( � )) = ∞ whenever l( � ) = ∞). 

Furthermore, it is clear that	� ⊑ �̃ ⟺	Φ(�) ⊑ Φ(�̃) 
and consequently Φ(� ⊓ �̃) ⊑	Φ(�) ⊓ Φ(�̃), for all �, 
�̃ ∈ Σ

∞
. 

Hence l(Φ(� ⊓ �̃)) ≤ l(Φ(�) ⊓	Φ(�̃)), for all �, �̃ ∈ Σ
∞
. 

From the preceding observations we deduce that for 

all � , �̃ ∈ Ξ , if � is a prefix of �̃ , then ℜ89⊑ (Φ( � ), 
Φ(�̃),:

2
) = ℜ89⊑��, �̃, �)= 1 , �89⊑  (Φ(�), Φ(�̃),:

2
) = 

�89⊑	��, 	�., �) = 0 and �89⊑ (Φ( � ),Φ( �̃ ), :
2

) = 

�89⊑��, �̃, �)= 0and if  � is not a prefix of		�̃, then for 

all	�	> 0. 

ℜ89⊑(Φ(�), Φ(�̃), :
2
)		=		

}
2}

2
	;	2@{�Φ��)	⊓Φ�|=))  

         ≥  

}
2

}
2
	;	2@{BΦ��⊓|=)C   ≥ 

}
2}

2
	;	2@�{��⊓|=)~1)  

                                  ≥  
:

:;	2@{��⊓|=) ≥		ℜ89⊑��, �̃, �), 
�89⊑ (Φ(�), Φ(�̃), :

2
)		=		 2

@{�Φ��)	⊓Φ�|=))
}
2
	;		2@{�Φ��)	⊓Φ�|=)) 

          ≤		 2
@{BΦ��⊓|=)C

}
2
	;	2@{BΦ��⊓|=)C  ≤  

2
@�{��⊓|=)~1)

}
2
	;	2@�{��⊓|=)~1) 

                                  ≤  
2
@{��⊓|=)

:	;2
@{��⊓|=)  ≤  �89⊑��, �̃, �) 

and  

	�89⊑(Φ(�), Φ(�̃), :
2
)		=		2@{�Φ��)	⊓Φ�|=))}

2

   ≤		2@{BΦ��⊓|=)C}
2

 

                                  ≤ 
2
@�{��⊓|=)~1)

}
2

 

                                  ≤  
2
@{��⊓|=)

: 		≤ �89⊑��, �̃, �). 
Therefore, Φ is a B-contraction on (Σ

∞
,ℜ89⊑,

�89⊑, �89⊑, ∧, ∨, ∇) with contraction constant	1
2
 . So, 

by Theroem 3.5, Φ has a unique fixed point �.  = 

�. 1 �. 2 �. 3 ........, which is obviously the unique 

solution to the recurrence equation T, that is,�.1 = 0 

and �.n  =  
2�Q	F	1)

Q 	+ 	Q	;	1Q �.QF1	for all n ≥ 2.                         

 

Result : 5.4 

We conclude the paper by applying our 

results to the complexity analysis of Divide and 

Conquer algorithm. Divide and Conquer algorithms 

solve a problem by recursively splitting it into 

subproblems each of which is solved separately by 

the same algorithm, after which the results are 

combined into a solution of the original problem. 

Thus, the complexity of a Divide and Conquer 

algorithm typically is the solution to the recurrence 

equation given by T(1) = c and T(n) = aT�Q�� + h(n). 

Where a, b, c ∈ ℕ with a, b ≥ 2, n range over the set 

{b 
p
 :p = 0, 1, 2,...} and h(n) ≥ 0 for all n ∈	ℕ. As in 

the case of Quicksort algorithm, take Σ = [0, ∞) and 

put Σᴺ={�	∈ Σ
∞
 : l(�) = ∞ }.Clearly Σᴺ is a closed 

subset of (Σ
∞
, (ℜ89⊑)

i
, (�89⊑ )ˢ, ��89⊑)k	, ∧, ∨, ∇), 

(Σᴺ,ℜ89⊑,�89⊑, �89⊑, ∧, ∨, ∇) is a non-Archimedean 

neutrosophic G-bicomplete quasi metric space by 

proposition 5.2. 
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     Now, we associate to T the functional Φ : Σᴺ		→
		Σᴺ given by (Φ(�))1 = T(1) and (Φ(�))n =		����  + h(n) 

if n ∈ { b 
p
 : p = 1, 2, ... } and (Φ(�))n = 0 otherwise 

for all	� ∈	ΣN
. 

For our purposes here it suffices to observe that for 

each�, �̃ ∈ Σ
N
, the following inequality holds l(Φ(�) 

⊓ Φ(�̃)) ≥ 1 + l(� ⊓ �̃). In fact, If l(� ⊓ �̃) = 0, then 

l(Φ(�) ⊓	Φ(�̃))  ≥ 1 and if b 
p 

> l(� ⊓ �̃) ≥ b 
p-1

, p ≥ 1, 

then b 
p+1 

> l(Φ(�) ⊓Φ(�̃)) ≥ b 
p
. 

   Hence, for each  �, �̃ ∈ Σ
N
 and �	> 0, we obtain 

ℜ89⊑	(Φ(�), Φ(�̃), :
2
)		=		

}
2}

2
	;	2@{�Φ��)	⊓Φ�|=))  

          ≥  

}
2

}
2
	;	2@{BΦ��⊓|=)C  ≥ 	

}
2}

2
	;	2@�{��⊓|=)~1)  

                                  ≥  
:

:;	2@{��⊓|=) ≥	ℜ89⊑��, �̃, �), 
�89⊑ (Φ(�), Φ(�̃), :

2
)		=		 2

@{�Φ��)	⊓Φ�|=))
}
2
	;		2@{�Φ��)	⊓Φ�|=)) 

          ≤		 2
@{BΦ��⊓|=)C

}
2
	;	2@{BΦ��⊓|=)C ≤  

2
@�{��⊓|=)~1)

}
2
	;	2@�{��⊓|=)~1) 

                                  ≤  
2
@{��⊓|=)

:	;2
@{��⊓|=) ≤  �89⊑��, �̃, �) 

and  

	�89⊑(Φ(�), Φ(�̃), :
2
)		=		 2@{�Φ��)	⊓Φ�|=))}

2

  ≤		2@{BΦ��⊓|=)C}
2

 

          ≤  
2
@�{��⊓|=)~1)

}
2

 

                                  ≤  
2
@{��⊓|=)

:  ≤ �89⊑��, �̃, �). 
Therefore Φ is a B-contraction on  

(Σ
N, , ℜ89⊑, /89⊑, 	�89⊑, ∧ , ∨, ∇	)  with contraction 

constant 
1

2
 . So, by Theorem 3.5, Φ has a unique 

fixed point �.  = �. 1�. 2�. 3… . Consequently, the 

function F defined on  

{b
p
: p = 0, 1, 2 ...} by F (b 

p
) = ��� for all p ≥ 0, is 

the unique solution to the recurrence equation of the 

given Divide and Conquer algorithm 
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