# CHOLESKY FACTORIZATION WITH MATLAB 

K.Bhanu Priya*, M.Dhanalakshmi*, Jyothi.G*, M.Bhavani Keerthana**,M.Swathi ${ }^{* *}$,J.Vasavi**,M.Greeshma**,B.Firdose** driyothivellanki@gmail.com<br>* (Lecturers, Department of Mathematics, Sri Durga Malleswara Siddhartha Mahila Kalasala, Vijayawada, A.P, India).<br>** (Students, Mathematics, Sri Durga Malleswara Siddhartha Mahila Kalasala, Vijayawada, A.P, India). ************************

## Abstract:

A linear system of equations with a positive definite symmetric matrix can be efficiently solved using Cholesky decomposition. In this paper, the software MATLAB was used to compute the Cholesky factorization for the symmetric matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & 4 & 7 \\
2 & 13 & 23 & 38 \\
4 & 23 & 77 & 122 \\
7 & 38 & 122 & 294
\end{array}\right] \text {. We also compared the result obtained by using the MATLAB }
$$

built-in routine "chol()" with the solution obtained from direct method.
Keywords-MATLAB, Symmetric Matrix, Upper Triangular Matrix, Decomposition and Positive Definite.

## I. INTRODUCTION

A square matrix is said to be symmetric if it is equal to its transpose. i.e., a symmetric matrix is one where $a_{i j}=a_{j i}$ for all i and j . In other words, $[A]=[A]^{T}$. Such systems occur commonly in bothmathematical and engineering/science problem contexts.Special solution techniques are available for such systems. They offer computationaladvantages because only half the storage is needed and only half the computation time isrequired for their solution. One of the most popular approaches involves Choleskyfactorization (also calledCholesky decomposition). This algorithm is based on the fact that a symmetric matrix canbe decomposed, as in $A=U^{T} U$.That is, the resulting triangular factors are the transpose of each other.The terms of $A=U^{T} U$ can be multiplied out and
set equal to each other. The factorization can be generated efficiently by recurrence relations.

## IIMATLAB FUNCTION:

MATLAB has a built-in function chol that generates the Cholesky factorization. It has thegeneral syntax, $U=\operatorname{chol}(X)$ where $U$ is an upper triangular matrix so that $\mathrm{U}^{\prime} * \mathrm{U}$ $=X$. In this paper, we clearly showed howit can be employed to generate both thefactorization and a solution for the same matrix.

## III.PROCEDURE FOR CHOLESKY FACTORIZATION OF A SYMMETRIC POSITIVE DEFINITE MATRIX:

If a matrix $A$ is symmetric and positive definite, we can find its LU decomposition such that the upper triangular matrix $U$ is the transpose of the lower triangular
matrix L, which is called Cholesky factorization.
Consider the Cholesky factorization procedure for a 4X4 matrix.
$\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{12} & a_{22} & a_{23} & a_{24} \\ a_{13} & a_{23} & a_{33} & a_{34} \\ a_{14} & a_{24} & a_{34} & a_{44}\end{array}\right]=\left[\begin{array}{cccc}u_{11} & 0 & 0 & 0 \\ u_{12} & u_{22} & 0 & 0 \\ u_{13} & u_{23} & u_{33} & 0 \\ u_{14} & u_{24} & u_{34} & u_{44}\end{array}\right]\left[\begin{array}{cccc}u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44}\end{array}\right]$
$\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{12} & a_{22} & a_{23} & a_{24} \\ a_{13} & a_{23} & a_{33} & a_{34} \\ a_{14} & a_{24} & a_{34} & a_{44}\end{array}\right]$
$=\left[\begin{array}{cccc}a_{14} & a_{24} & a_{34} & a_{44} \\ u_{11}^{2} & u_{11} u_{12} & u_{11} u_{13} & u_{11} u_{14} \\ u_{12} u_{11} & u_{12}^{2}+u_{22}^{2} & u_{12} u_{13}+u_{22} u_{23} & u_{12} u_{14}+u_{22} u_{24} \\ u_{13} u_{11} & u_{13} u_{12}+u_{23} u_{22} & u_{13}^{2}+u_{23}^{2}+u_{33}^{2} & u_{13} u_{14}+u_{23} u_{24}+u_{33} u_{34} \\ u_{14} u_{11} & u_{14} u_{12}+u_{24} u_{22} & u_{14} u_{13}+u_{24} u_{23}+u_{34} u_{33} & u_{14}^{2}+u_{24}^{2}+u_{34}^{2}+u_{44}^{2}\end{array}\right]$

Equating every row of the matrices on both sides of equation(i) yields
$u_{11}=\sqrt{a_{11}}$
$u_{12}=\frac{a_{12}}{u_{11}}$
$u_{13}=\frac{a_{13}}{u_{11}}$
$u_{14}=\frac{a_{14}}{u_{11}}$
$u_{22}=\sqrt{a_{22}-u_{12}^{2}}$
$u_{23}=\frac{\left(a_{23}-u_{13} u_{12}\right)}{u_{22}}$
$u_{24}=\frac{\left(a_{24}-u_{14} u_{12}\right)}{u_{22}}$
$u_{33}=\sqrt{a_{33}-u_{23}^{2}-u_{13}^{2}}$
$u_{34}=\frac{\left(a_{43}-u_{24} u_{23}-u_{14} u_{13}\right)}{u_{33}}$
$u_{44}=\sqrt{a_{44}-u_{34}^{2}-u_{24}^{2}-u_{14}^{2}}$
All the above can be combined into two formulas as
$u_{k k}=\sqrt{a_{k k}-\sum_{i=1}^{k-1} u_{i k}^{2}}$ for $k=$
1: $N$
$u_{k m}=\frac{\left(a_{k m}-\sum_{i=1}^{k-1} u_{i m} u_{i k}\right)}{u_{k k}}$ for $m=k+$ $1: N$ and $k=1: N$

## IV STATEMENT OF THE

PROBLEM:Use MATLAB programme code to compute the Cholesky factorization for the symmetric matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & 4 & 7 \\
2 & 13 & 23 & 38 \\
4 & 23 & 77 & 122 \\
7 & 38 & 122 & 294
\end{array}\right] \text { and also compare }
$$

the result obtained by using the MATLAB built-in routine "chol()" with the solution obtained from direct method.

## V DIRECT SOLUTION FOR THE PROBLEM:

For the first row (i=1), Eq. (ii) is employed to compute
$u_{11}=\sqrt{a_{11}}=\sqrt{1}=1$
Then, Eq. (iii) can be used to determine
$u_{12}=\frac{a_{12}}{u_{11}}=\frac{2}{1}=2$
$u_{13}=\frac{a_{13}}{u_{11}}=\frac{4}{1}=4$
$u_{14}=\frac{a_{14}}{u_{11}}=\frac{7}{1}=7$
For the second row $(\mathrm{i}=2)$ :
$u_{22}=\sqrt{a_{22}-u_{12}^{2}}=\sqrt{13-4}=\sqrt{9}=3$
$u_{23}=\frac{\left(a_{23}-u_{13} u_{12}\right)}{u_{22}}=\frac{23-8}{3}=5$
$u_{24}=\frac{\left(a_{24}-u_{14} u_{12}\right)}{u_{22}}=\frac{38-14}{3}=8$
For the third row $(\mathrm{i}=3)$ :

$$
\begin{gathered}
u_{33}=\sqrt{a_{33}-u_{23}^{2}-u_{13}^{2}}=\sqrt{77-25-16}=6 \\
u_{34}=\frac{\left(a_{34}-u_{24} u_{23}-u_{14} u_{13}\right)}{u_{33}}=\frac{122-40-28}{6} \\
=9
\end{gathered}
$$

For the fourth row $(\mathrm{i}=4)$ :

$$
\begin{aligned}
& u_{44}=\sqrt{a_{44}-u_{34}^{2}-u_{24}^{2}-u_{14}^{2}} \\
&=\sqrt{294-81-64-49}=10
\end{aligned}
$$

Thus, the Cholesky factorization yields

$$
U=\left[\begin{array}{cccc}
1 & 2 & 4 & 7 \\
0 & 3 & 5 & 8 \\
0 & 0 & 6 & 9 \\
0 & 0 & 0 & 10
\end{array}\right]
$$

This factorization can be verified as follows
$U^{T} U=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 10\end{array}\right]\left[\begin{array}{cccc}1 & 2 & 4 & 7 \\ 0 & 3 & 5 & 8 \\ 0 & 0 & 6 & 9 \\ 0 & 0 & 0 & 10\end{array}\right]$

A right-hand-side vector that is the sum of the rows of [A] can be generated as
$\gg b=[\operatorname{sum}(A(1,:)) ; \operatorname{sum}(A(2,:))$;
$\operatorname{sum}(\mathrm{A}(3,:)) ; \operatorname{sum}(\mathrm{A}(4,:))]$;
$\mathrm{b}=14$
76
226
461
Next, the Cholesky factorization can be computed with
$=\left[\begin{array}{ccccc}1 & 2 & 4 & 7 & >7 \\ 2 & 4+9 & 8+15 & 14+24 & U=\operatorname{chol}(A) \\ 4 & 8+15 & 16+25+36 & 28+40+54 & \mathrm{U} \\ 7 & 14+24 & 28+40+54 & 49+64+81+100\end{array}\right]=$
$=\left[\begin{array}{cccc}1 & 2 & 4 & 7 \\ 2 & 13 & 23 & 38 \\ 4 & 23 & 77 & 122 \\ 7 & 38 & 122 & 294\end{array}\right]=A$
After obtaining the factorization, it can be used to determine a solution for a right-hand-side vector $\{b\}$ which is the sum of the rows of [A]

$$
b=\left[\begin{array}{c}
14 \\
76 \\
226 \\
461
\end{array}\right]
$$

First, an intermediate vector $\{\mathrm{d}\}$ is created by solving $U^{T}\{d\}=\{b\}$
Then, the final solution can be obtained by solving $[U]\{X\}=\{d\}$

VI SOLUTION USING MATLAB
CODE:Make a MATLAB routine
"cholesky()", which implements the formulas in (ii) and (iii) to perform Cholesky factorization for the matrix A
$=\left[\begin{array}{cccc}1 & 2 & 4 & 7 \\ 2 & 13 & 23 & 38 \\ 4 & 23 & 77 & 122 \\ 7 & 38 & 122 & 294\end{array}\right]$.

The matrix is entered in standard fashion as
>>A $=\left[\begin{array}{lll}1 & 247 ; 21323 & 48 ; 42377122 ; 7\end{array}\right.$ 38122 294];

| 1 | 2 | 4 | 7 |
| :---: | :---: | :---: | :---: |
| 0 | 3 | 5 | 8 |
| 0 | 0 | 6 | 9 |
| 0 | 0 | 0 | 10 |

We can test that this is correct by computing the original matrix as >> $\mathrm{U}^{\prime} * \mathrm{U}$
ans $=$

| 1 | 2 | 4 | 7 |
| :---: | :---: | :---: | :---: |
| 2 | 13 | 23 | 38 |
| 4 | 23 | 77 | 122 |
| 7 | 38 | 122 | 294 |

To generate the solution, we first compute >> d=U'\b
$\mathrm{d}=$
14
16
15
10
And then use this result to compute the solution
>> $\mathrm{X}=\mathrm{U} \backslash \mathrm{d}$
$\mathrm{X}=$

## CONCLUSION:

We computed the Cholesky factorization for the symmetric matrix $A$ $=\left[\begin{array}{cccc}1 & 2 & 4 & 7 \\ 2 & 13 & 23 & 38 \\ 4 & 23 & 77 & 122 \\ 7 & 38 & 122 & 294\end{array}\right]$
with the aid of the
software MATLAB. We observed that Cholesky's method provides an efficient way to decompose asymmetric matrix and that the resulting triangular matrix and its transpose can beused to evaluate right-hand-side vectors efficiently. Also, the solutions obtained by Direct method and by MATLAB code are the same.

## REFERENCES:

[1].Applied Numerical Methods Using MATLAB, 2nd Edition Won Y. Yang, Wenwu Cao, Tae-Sang Chung,John Morris.
[2].Fausett,L.V., Applied Numerical Analysis Using MATLAB, Prentice-Hall, Upper Saddle River,NJ, 1999.
[3].Hamming,R.W., Numerical Methods for Scientists and Engineers, $2^{\text {nd }}$ ed., MCGrawHill, New York, 1973.
[4].Schilling,R.J., and Harris, S.L., Applied Numerical Methods for Engineers using MATLAB and C, Brooks/Cole, Pacific Grove, CA, 2000.
[5]. Applied Numerical Methods Using MATLAB By R. V. Dukkipa.
[6].Introduction to Numerical Methods and Matlab Programming for Engineers Todd Young and Martin J. Mohlenkamp Department of Mathematics Ohio University Athens, OH 45701.

