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ABSTRACT:

We have introduced subclasses of analytic functions and have obtained sharp upper bounds of the Fekete
Szego functional |a; — pa3| for the analytic function f(z) = z + Yoo, a, z™ |z| < 1 belonging to these
classes and subclasses.
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1. Introduction : Let A denote the class of functions of the form

f2)= z+ Xyaa, 2" (1.1)

analytic in the unit disc given by E = {z:|z| < 1]|}. Let § be the class of analytic functions of the form (1.1),
which are univalent in E.
In 1916, Bieber Bach ( [1], [2] ) proved that |a,| < 2 for the functions f(z) &S. In 1923, Lowner

[10] proved that |as| < 3 for the functions f(z) &S..

With the known estimates |a,| < 2and |az| < 3, it was natural to seek some relation between a; and
a,? for the class 8,Fekete and Szego [4] used Lowner’s method to prove the following well known result
for the class §.
Let f(z) &8, then

3—4pif u<0;
la; — paz| < 1+2exp(%ﬁ),if0 Su<1; (1.2)
4p—3,ifu=>1.

The inequality (1.2) plays a very important role in determining estimates of higher coefficients for
some sub classes S([3], [9]).
Let us define some subclasses of §.

We denote by S*, the class of univalent starlike functions
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g(2)=z+ Z b,z"™ € A and satisfying the condition

n=2

zg(z)
Re (g(z))>O,ZEIE. (1.3)

We denote by K, the class of univalent convex functions
[ee]
h(z) = Z+ch2n,Z €EA
n=2

and satisfying the condition

(2’ )
Re*"5 2> 0,z €E. (1.4)

A function f(z) € A is said to be close to convex if there exists g(z) € S* such that

2f1(2)
Re (g(z))>0,ZEIE. (1.5)

The class of close to convex functions is denoted by € and was introduced by Kaplan [7] and it was

shown by him that all close to convex functions are univalent.

$'(AB) ={f@) €A Z}C(S) <2 1<B<A<1z€E} (1.6)
(2r'@) 114z
K (A B) —{f(z)ecﬂ, 75 < 1+BZ,—1§B<AS 1,zeIE} (1.7)

It is obvious that S*(4, B) is a subclass of S* and K (4, B) is a subclass of K.
Several authors studied and introduced various classes and subclasses of univalent analytic functions and
established Fekete Szego inequality for the same. ([3]-[9], [12]-15], [22]-[62])
N. Kaur [11] introduced a new subclass as

1 1-B8

)™ s

f1(2)

1-z

1\ B
S fLaB) ={f@) et - (L2) +“<

and have established its coefficient inequality.
We will deal with the subclass of S*(f, f', &, B) defined as follows in the present paper:
1 1-8

* l ! B zf'(2) A
S S @B AB) =1 f(@) € A (1-a) (L2) +a((f'T))> < iz €Er (18)

We will deal with the subclass S*(f, f', a, 8, 8) defined as follows in our next paper:
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\1-B 5
) < (ﬂ) Z€EES  (1.9)

1-z

' B zf!(z
) =0 € - (52 (2]

Symbol < stands for subordination, which we define as follows:

Principle of Subordination: Let f(z) and F(z) be two functions analytic in E. Then f(z) is called
subordinate to F(z) in E if there exists a function w(z) analytic in E satisfying the conditions w(0) = 0 and
[w(z)| < 1 suchthat f(z) = F(w(2)); ze E and we write f(z) < F(2).

By U, we denote the class of analytic bounded functions of the form w(z) = },-;d,z",w(0) =
0,|lw(2)| < 1. (1.10)

It is known that |d,| < 1,|d,| < 1 — |d|?. (1.11)

2. PRELIMINARY LEMMAS:  For0 < ¢ < 1, we write w(2) = (=) so that

1+w(z)
1-w(2)

=1+ 2cz+2z%+ - (2.1)

3. MAIN RESULTS

THEOREM 3.1: Let f(2) € S*(f,f',a, B, A, B), then

(A= B)*(8a + 3B + 4a? — 12a?B — 9af? — 7ap) (A - B)?
4Ba+ B —4ap){(1-wf +2a(1- P  (1- o +2ad- PP
I (A—B)8a + 3B +4a* — 12a*f — 9ap® — 7af — 4{(1 — ) B + 2a(1 = B)}* 31
ifn = Ba+ B —4apB) ’ G-
(A-B)
2Ba+ B —4ap)
A—B)8 3 4a? — 12a?B — 9af? — 7af — 4{(1 — 2a(1 — 2
la; — uad| < if( )8a +3f + 4a d(/;a+0;ﬁ_4aﬁogﬁ {1 —a)f +2a(1-B)} <us
HA - a)f +2a(1 - )} — (A—B)8a + 3B + 4a® — 12a°f — 9ap* — 7aff 32
Ba+ B —4ap) ’ (G2
(A—B)? (A—B)?*(8a + 3B + 4a?® — 12a*f — 9aB? — 7af)
{A-0B+2a@-pP" ™~ 4Ba+p—4ap)((1 - @) +2a(1- P
o M- B +2a(1 - B} — (A- B)Ba + 3 + 4a® — 12’4 — 9ap® — 7ap
ifu= Ga+p - 4ap) G3)
The results are sharp.
Proof: By definition of S*(f, f', a, B, A, B), we have
1=
zf'(2) B (zf'(z)) _ 1+Aw(2) |
(1-a) ( I ) +a ( = = W@ e U (3.4)

ISSN : 2581-7175 ©IJSRED:AIl Rights are Reserved Page 191



International Journal of Scientific Research and Engineering Development-— Volume 7 Issue 1, Jan-Feb 2024
Available at www.ijsred.com

Expanding the series (3.4), we get

1-a) {1 +pa,z + (2fa, + @a%)zz +—-— —} +a{l+2(1—pBla,z+2(1 - p)Ba,—(B + Z)a%)z2 +

——-3}=0+@A-B)cyz+ (A—-B)(c; — Bc;?)z* + — — -). (3.5)

Identifying terms in (3.5), we get

—_ @B
2 = o) przac—rp) 1 30
e = —AB) (A-B)*(8a+3B+4a®—12a2B—9aB?~7aB) , (3.7)
3 7 23a+p-4ap) > 4Ba+p—4ap){(1-a)p+2a(1-B)}? L '

From (3.6) and (3.7), we obtain

2 (A-B) (A-B)*(8a+3B+4a*-12a*B-9aB>~7apB) (A-B)? 2
43 = 12 = S Garp—sap) 2 43a+B-4aB){(1-a)B+2a(1-B)}? {(1-a)B+2a(1-B)}? ,u] ‘1 (3.8)
Taking absolute value, (3.8) can be rewritten as
2 (A-B) (A-B)? 8a+3f+4a’-12a°B-9aB*~7af 2
|a3 .uazl S 3a+[3—4aﬁ|c2| {(1—[Z)ﬁ+2a(1—ﬁ)}2 4(3(1"‘,8—4(1'8) ‘u'| |C1|‘ (3'9)
Using (1.9) in (3.9), we get
(A-B) (A - B)? [8a + 35 + 4a® — 12a*B — 9af? — 7af
— 2 —~ 7 (1-= 2 _ 2
las =1zl < 5 g —aap U T Y T s 2 | 4Ga + § — 4af) H let
— (A-B) (A—B)z [ 8a+3f+4a?—12a%B-9aB?*-7af _ | _ {(1—(1)ﬂ+2(1(1—ﬁ)}2] 2 (3 10)
T 3a+f-4af  {(1—a)B+2a(1-P)}2 4(3a+p-4apB) (A-B)(3a+B—4aB) lea]®. 3.

8a+3f+4a’-12a?B-9aB?*-7af
4(Ba+p-4ap)

Casel: u <

(3.10) can be rewritten as

(A-B) (A-B)? [(A—B)8a+3ﬁ+4a2—12a2ﬁ—9aﬁz—7aﬁ—4{(1—a)ﬁ+2a(1—ﬁ)}2

_ 2
3a+f—4af = {(1-a)B+2a(1-P)}2 (3a+p-4ap) Ii] G

las — paj <

(3.11)
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(A-B)8a+3f+4a?-12a%B-9aB?*-7af-4{(1-a)B+2a(1-B)}?

Subcase I (a): p < Ga+p-4ap)

Using (1.9), (3.11) becomes

(A-B)?(8a+3B+4a?-12a%F—-9aB?~7ap) _ (A-B)?
4Ba+p-4af){(1-a)p+2a(1-F)}? {(1-a)p+2a(1-p)}2 K

las — pa3| < (3.12)

. (A-B)8a+3f+4a?-12a%B-9aBf?-7af-4{(1-a)B+2a(1-B)}?
Subcase I (b): u = (GatB_1ap) .

We obtain from (3.11)

las —naf < 42

S Satp_tap (3.13)

8a+3f+4a?—12a%B-9aB*-7ap

Casell: p = 4(3a+p—4ap)

Preceding as in case I, we get

1 4{(1-a)B+2a(1-B)}*—(A-B)8a+3B+4a*—12a%B-9aB?*~7af
2
|- Jleal?

— ud? 1
lag — paz < 3a+p—4ap + {1-a)B+2a(1-B)}? Ba+p-4ap)

(3.14)

: 4{(1-a)B+2a(1-B)}*~(A-B)8a+3B+4a’~12a*f-9aB*~7af
Subcase Il (a): u < Ga+p-4ap)

(3.14) takes the form

— 12 (A-B)
|as pa; < - (3.15)

+p—-4af
Combining subcase I (b) and subcase II (a), we obtain

i (A-B)8a+3B+4a?—12a?B—9aB?*~7af—4{(1—a)B+2a(1-B)}?
¢ (GBa+p-4ap)
4{(1-a)B+2a(1-B)}°—(A-B)8a+3B+4a’—12a?B-9aBf?*-7af

(Ba+p-4ap)

2 (4-B)
las Ha2|S3a+ﬁ—4aﬁ

<u<

(3.16)

) 4{(1-a)B+2a(1-B)Y* —(A-B)8a+3B+4a’—12a?B-9aB%-7af
Subcase II (b): u = Ga+f—4ap)
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Preceding as in subcase I (a), we get

las — ,ua%l < (A-B)? _ (A-B)?(8a+3B+4a?-12a?B-9aB?*-7af)

T {@-a)B+2a(1-p)}? K 4Ba+p-4ap){1-a)p+2a(1-p)}? (3.17)

Combining (3.12), (3.16) and (3.17), the theorem is proved.

Corollary 3.2: Puttinga =1, =0,4 = 1,B = —1 in the theorem, we get

(l—wifu<s1;

|1_1< 4

la; —pad| <{3/T=H=3
4

M—L#uzg

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent convex

functions.
Corollary 3.3: Puttinga =0, =1,A =1,B = —1 in the theorem, we get

( . 1
|3_4,Ll,lf[.l.S 5;
1
1if§SuS1;
4u—3,ifu=1

las —ua%| <

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent starlike

functions.

Corollary 3.4: Putting A = 1,B = —1 in the theorem, we get

1 8a + 3F + 4a? — 12a*B — 9aB? — 7ap
(- a)f +2a(1 - )Y Ba+p - 4ap) -
8a + 3f + 4a? — f? — 3apf? — 7ap
1(Ga + f — 4af) '

4pl,

ifu<
1
3a+f —4af
_8a+3B+4a?—p?—3aB?—7apf
4Ba+p —4ap)
8a + 38 +8a® + f* — 24’ — 6af* — Taf
4(3a+ B — 4apB) ’
1 A _8a+3[§+4a2—12(12[3—905[?2—705[?
(a-op +2a-pr|™ Ga+f —4ap)
8a + 36 + 8a? + B? — 24a%B — 6aB? — 7apf
4(Ba+ B —4apB)

las — paj| < sps

if u=

These estimates were derived by N. Kaur [11] and are results for the subclass S*(f, f', a, ) of univalent

starlike functions.
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