RESEARCH ARTICLE OPEN ACCESS

Fekete Szego Coefficient Inequality for Certain New Subclass Of Analytic Functions

Shekhar Choudhury

Assistant Professor, Department of Mathematics, Udalguri College, Udalguri, Assam- 784509

ABSTRACT:

We have introduced subclasses of analytic functions and have obtained sharp upper bounds of the Fekete Szego functional $|a_3 - \mu a_2^2|$ for the analytic function $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, |z| < 1 belonging to these classes and subclasses.

KEYWORDS: Univalent functions, Starlike functions, Close to convex functions and bounded functions.

MATHEMATICS SUBJECT CLASSIFICATION: 30C50

1. Introduction: Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 (1.1)

analytic in the unit disc given by $\mathbb{E} = \{z : |z| < 1|\}$. Let \mathcal{S} be the class of analytic functions of the form (1.1), which are univalent in \mathbb{E} .

In 1916, Bieber Bach ([1], [2]) proved that $|a_2| \le 2$ for the functions $f(z) \in S$. In 1923, Löwner [10] proved that $|a_3| \le 3$ for the functions $f(z) \in S$..

With the known estimates $|a_2| \le 2$ and $|a_3| \le 3$, it was natural to seek some relation between a_3 and a_2^2 for the class S, Fekete and Szegö [4] used Löwner's method to prove the following well known result for the class S.

Let $f(z) \in S$, then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{bmatrix} 3 - 4\mu, if \ \mu \leq 0; \\ 1 + 2\exp\left(\frac{-2\mu}{1 - \mu}\right), if \ 0 \leq \mu \leq 1; \\ 4\mu - 3, if \ \mu \geq 1. \end{cases}$$
 (1.2)

The inequality (1.2) plays a very important role in determining estimates of higher coefficients for some sub classes S([3], [9]).

Let us define some subclasses of S.

We denote by S*, the class of univalent starlike functions

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{A}$$
 and satisfying the condition

$$Re\left(\frac{zg(z)}{g(z)}\right) > 0, z \in \mathbb{E}.$$
 (1.3)

We denote by \mathcal{K} , the class of univalent convex functions

$$h(z) = z + \sum_{n=2}^{\infty} c_n z^n$$
, $z \in \mathcal{A}$

and satisfying the condition

$$Re\frac{\left((zh'(z)\right)}{h'(z)} > 0, z \in \mathbb{E}.$$
 (1.4)

A function $f(z) \in \mathcal{A}$ is said to be close to convex if there exists $g(z) \in S^*$ such that

$$Re\left(\frac{zf'(z)}{g(z)}\right) > 0, z \in \mathbb{E}.$$
 (1.5)

The class of close to convex functions is denoted by \mathbb{C} and was introduced by Kaplan [7] and it was shown by him that all close to convex functions are univalent.

$$S^*(A,B) = \left\{ f(z) \in \mathcal{A}; \frac{zf'(z)}{f(z)} < \frac{1+Az}{1+Bz}, -1 \le B < A \le 1, z \in \mathbb{E} \right\}$$
 (1.6)

$$\mathcal{K}(A,B) = \left\{ f(z) \in \mathcal{A}; \frac{\left(zf'(z)\right)'}{f'(z)} < \frac{1+Az}{1+Bz}, -1 \le B < A \le 1, z \in \mathbb{E} \right\}$$

$$\tag{1.7}$$

It is obvious that $S^*(A, B)$ is a subclass of S^* and $\mathcal{K}(A, B)$ is a subclass of \mathcal{K} .

Several authors studied and introduced various classes and subclasses of univalent analytic functions and established Fekete Szego inequality for the same. ([3]-[9], [12]-15], [22]-[62])

N. Kaur [11] introduced a new subclass as

$$S^*(f,f',\alpha,\beta) = \left\{ f(z) \in \mathcal{A}; (1-\alpha) \left(\frac{zf'(z)}{f(z)} \right)^{\beta} + \alpha \left(\frac{\left(zf'(z) \right)'}{f'(z)} \right)^{1-\beta} < \frac{1+z}{1-z}; z \in \mathbb{E} \right\}$$

and have established its coefficient inequality.

We will deal with the subclass of $S^*(f, f', \alpha, \beta)$ defined as follows in the present paper:

$$S^*(f, f', \alpha, \beta, A, B) = \left\{ f(z) \in \mathcal{A}; (1 - \alpha) \left(\frac{zf'(z)}{f(z)} \right)^{\beta} + \alpha \left(\frac{\left(zf'(z)\right)'}{f'(z)} \right)^{1 - \beta} < \frac{1 + Az}{1 + Bz}; z \in \mathbb{E} \right\}$$
(1.8)

We will deal with the subclass $S^*(f, f', \alpha, \beta, \delta)$ defined as follows in our next paper:

$$S^*(f, f', \alpha, \beta, \delta) = \left\{ f(z) \in \mathcal{A}; (1 - \alpha) \left(\frac{zf'(z)}{f(z)} \right)^{\beta} + \alpha \left(\frac{\left(zf'(z) \right)'}{f'(z)} \right)^{1 - \beta} < \left(\frac{1 + z}{1 - z} \right)^{\delta}; z \in \mathbb{E} \right\}$$
(1.9)

Symbol ≺ stands for subordination, which we define as follows:

Principle of Subordination: Let f(z) and F(z) be two functions analytic in \mathbb{E} . Then f(z) is called subordinate to F(z) in \mathbb{E} if there exists a function w(z) analytic in \mathbb{E} satisfying the conditions w(0) = 0 and |w(z)| < 1 such that f(z) = F(w(z)); $z \in \mathbb{E}$ and we write f(z) < F(z).

By \mathcal{U} , we denote the class of analytic bounded functions of the form $w(z) = \sum_{n=1}^{\infty} d_n z^n$, w(0) = 0, |w(z)| < 1.

It is known that
$$|d_1| \le 1$$
, $|d_2| \le 1 - |d_1|^2$. (1.11)

2. **PRELIMINARY LEMMAS:** For 0 < c < 1, we write $w(z) = \left(\frac{c+z}{1+cz}\right)$ so that

$$\frac{1+w(z)}{1-w(z)} = 1 + 2cz + 2z^2 + \cdots$$
 (2.1)

3. MAIN RESULTS

THEOREM 3.1: Let $f(z) \in S^*(f, f', \alpha, \beta, A, B)$, then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{(A - B)^{2}(8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta)}{4(3\alpha + \beta - 4\alpha\beta)\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2}} - \frac{(A - B)^{2}}{\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2}}\mu, \\ if \mu \leq \frac{(A - B)8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta - 4\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2}}{(3\alpha + \beta - 4\alpha\beta)}; \end{cases}$$

$$(3.1)$$

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} if \frac{(A - B)8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta - 4\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2}}{2(3\alpha + \beta - 4\alpha\beta)} \leq \mu \leq \\ \frac{(A - B)(\alpha + \beta)^{2}}{(3\alpha + \beta - 4\alpha\beta)}; \\ \frac{(A - B)(\alpha + \beta)^{2}}{(3\alpha + \beta - 4\alpha\beta)}; \\ \frac{(A - B)^{2}}{\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2}}\mu - \frac{(A - B)^{2}(8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta)}{4(3\alpha + \beta - 4\alpha\beta)\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2}}, \\ if \mu \geq \frac{4\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2} - (A - B)8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta)}{(3\alpha + \beta - 4\alpha\beta)}; \end{cases}$$

$$(3.2)$$

The results are sharp.

Proof: By definition of $S^*(f, f', \alpha, \beta, A, B)$, we have

$$(1-\alpha)\left(\frac{zf'(z)}{f(z)}\right)^{\beta} + \alpha\left(\frac{\left(zf'(z)\right)'}{f'(z)}\right)^{1-\beta} = \frac{1+Aw(z)}{1+Bw(z)}; w(z) \in \mathcal{U}. \tag{3.4}$$

Expanding the series (3.4), we get

$$(1 - \alpha) \left\{ 1 + \beta a_2 z + (2\beta a_3 + \frac{\beta(\beta - 3)}{2} a_2^2) z^2 + - - - \right\} + \alpha \left\{ 1 + 2(1 - \beta) a_2 z + 2(1 - \beta)(3a_3 - (\beta + 2)a_2^2) z^2 + - - - \right\} = (1 + (A - B)c_1 z + (A - B)(c_2 - Bc_1^2) z^2 + - - -).$$
(3.5)

Identifying terms in (3.5), we get

$$a_2 = \frac{(A-B)}{(1-\alpha)\beta + 2\alpha(1-\beta)}c_1 \tag{3.6}$$

$$a_3 = \frac{(A-B)}{2(3\alpha+\beta-4\alpha\beta)}c_2 + \frac{(A-B)^2(8\alpha+3\beta+4\alpha^2-12\alpha^2\beta-9\alpha\beta^2-7\alpha\beta)}{4(3\alpha+\beta-4\alpha\beta)\{(1-\alpha)\beta+2\alpha(1-\beta)\}^2}c_1^2.$$
(3.7)

From (3.6) and (3.7), we obtain

$$a_3 - \mu a_2^2 = \frac{(A-B)}{2(3\alpha+\beta-4\alpha\beta)} c_2 + \left[\frac{(A-B)^2(8\alpha+3\beta+4\alpha^2-12\alpha^2\beta-9\alpha\beta^2-7\alpha\beta)}{4(3\alpha+\beta-4\alpha\beta)\{(1-\alpha)\beta+2\alpha(1-\beta)\}^2} - \frac{(A-B)^2}{\{(1-\alpha)\beta+2\alpha(1-\beta)\}^2} \mu \right] c_1^2.$$
 (3.8)

Taking absolute value, (3.8) can be rewritten as

$$|a_3 - \mu a_2^2| \le \frac{(A-B)}{3\alpha + \beta - 4\alpha\beta} |c_2| + \frac{(A-B)^2}{\{(1-\alpha)\beta + 2\alpha(1-\beta)\}^2} \left| \frac{8\alpha + 3\beta + 4\alpha^2 - 12\alpha^2\beta - 9\alpha\beta^2 - 7\alpha\beta}{4(3\alpha + \beta - 4\alpha\beta)} - \mu \right| |c_1^2|. \tag{3.9}$$

Using (1.9) in (3.9), we get

$$|a_{3} - \mu a_{2}^{2}| \leq \frac{(A - B)}{3\alpha + \beta - 4\alpha\beta} (1 - |c_{1}|^{2}) + \frac{(A - B)^{2}}{\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2}} \left| \frac{8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta}{4(3\alpha + \beta - 4\alpha\beta)} - \mu \right| |c_{1}^{2}|$$

$$= \frac{(A - B)}{3\alpha + \beta - 4\alpha\beta} + \frac{(A - B)^{2}}{\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2}} \left[\left| \frac{8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta}{4(3\alpha + \beta - 4\alpha\beta)} - \mu \right| - \frac{\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2}}{(A - B)(3\alpha + \beta - 4\alpha\beta)} \right] |c_{1}|^{2}. (3.10)$$

Case I:
$$\mu \le \frac{8\alpha + 3\beta + 4\alpha^2 - 12\alpha^2\beta - 9\alpha\beta^2 - 7\alpha\beta}{4(3\alpha + \beta - 4\alpha\beta)}$$
.

(3.10) can be rewritten as

$$|a_{3} - \mu a_{2}^{2}| \leq \frac{(A-B)}{3\alpha + \beta - 4\alpha\beta} + \frac{(A-B)^{2}}{\{(1-\alpha)\beta + 2\alpha(1-\beta)\}^{2}} \left[\frac{(A-B)8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta - 4\{(1-\alpha)\beta + 2\alpha(1-\beta)\}^{2}}{(3\alpha + \beta - 4\alpha\beta)} - \mu \right] |c_{1}|^{2}.$$

$$(3.11)$$

Subcase I (a):
$$\mu \leq \frac{(A-B)8\alpha+3\beta+4\alpha^2-12\alpha^2\beta-9\alpha\beta^2-7\alpha\beta-4\{(1-\alpha)\beta+2\alpha(1-\beta)\}^2}{(3\alpha+\beta-4\alpha\beta)}$$
.

Using (1.9), (3.11) becomes

$$|a_3 - \mu a_2^2| \le \frac{(A-B)^2 (8\alpha + 3\beta + 4\alpha^2 - 12\alpha^2\beta - 9\alpha\beta^2 - 7\alpha\beta)}{4(3\alpha + \beta - 4\alpha\beta)\{(1-\alpha)\beta + 2\alpha(1-\beta)\}^2} - \frac{(A-B)^2}{\{(1-\alpha)\beta + 2\alpha(1-\beta)\}^2} \mu$$
(3.12)

Subcase I (b):
$$\mu \geq \frac{(A-B)8\alpha+3\beta+4\alpha^2-12\alpha^2\beta-9\alpha\beta^2-7\alpha\beta-4\{(1-\alpha)\beta+2\alpha(1-\beta)\}^2}{(3\alpha+\beta-4\alpha\beta)}$$
.

We obtain from (3.11)

$$|a_3 - \mu a_2^2 \le \frac{(A-B)}{3\alpha + \beta - 4\alpha\beta}.$$
 (3.13)

Case II:
$$\mu \ge \frac{8\alpha + 3\beta + 4\alpha^2 - 12\alpha^2\beta - 9\alpha\beta^2 - 7\alpha\beta}{4(3\alpha + \beta - 4\alpha\beta)}$$

Preceding as in case I, we get

$$|a_{3} - \mu a_{2}^{2} \leq \frac{1}{3\alpha + \beta - 4\alpha\beta} + \frac{1}{\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2}} \left[\mu - \frac{4\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2} - (A - B)8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta}{(3\alpha + \beta - 4\alpha\beta)}\right] |c_{1}|^{2}.$$

$$(3.14)$$

Subcase II (a):
$$\mu \le \frac{4\{(1-\alpha)\beta+2\alpha(1-\beta)\}^2-(A-B)8\alpha+3\beta+4\alpha^2-12\alpha^2\beta-9\alpha\beta^2-7\alpha\beta}{(3\alpha+\beta-4\alpha\beta)}$$

(3.14) takes the form

$$|a_3 - \mu a_2^2 \le \frac{(A-B)}{3\alpha + \beta - 4\alpha\beta}$$
 (3.15)

Combining subcase I (b) and subcase II (a), we obtain

$$|a_{3} - \mu a_{2}^{2}| \leq \frac{(A-B)}{3\alpha + \beta - 4\alpha\beta} i f^{\frac{(A-B)8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta - 4\{(1-\alpha)\beta + 2\alpha(1-\beta)\}^{2}}{(3\alpha + \beta - 4\alpha\beta)}} \leq \mu \leq \frac{4\{(1-\alpha)\beta + 2\alpha(1-\beta)\}^{2} - (A-B)8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta}{(3\alpha + \beta - 4\alpha\beta)}$$

$$(3.16)$$

Subcase II (b):
$$\mu \ge \frac{4\{(1-\alpha)\beta+2\alpha(1-\beta)\}^2-(A-B)8\alpha+3\beta+4\alpha^2-12\alpha^2\beta-9\alpha\beta^2-7\alpha\beta}{(3\alpha+\beta-4\alpha\beta)}$$

Preceding as in subcase I (a), we get

$$|a_3 - \mu a_2^2| \le \frac{(A-B)^2}{\{(1-\alpha)\beta + 2\alpha(1-\beta)\}^2} \mu - \frac{(A-B)^2 (8\alpha + 3\beta + 4\alpha^2 - 12\alpha^2\beta - 9\alpha\beta^2 - 7\alpha\beta)}{4(3\alpha + \beta - 4\alpha\beta)\{(1-\alpha)\beta + 2\alpha(1-\beta)\}^2}$$
(3.17)

Combining (3.12), (3.16) and (3.17), the theorem is proved.

Corollary 3.2: Putting $\alpha = 1, \beta = 0, A = 1, B = -1$ in the theorem, we get

$$|a_3 - \mu a_2^2| \le \begin{cases} 1 - \mu, if \mu \le 1; \\ \frac{1}{3}if 1 \le \mu \le \frac{4}{3}; \\ \mu - 1, if \mu \ge \frac{4}{3} \end{cases}$$

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent convex functions.

Corollary 3.3: Putting $\alpha = 0, \beta = 1, A = 1, B = -1$ in the theorem, we get

$$|a_3 - \mu a_2^2| \le \begin{cases} 3 - 4\mu, if \mu \le \frac{1}{2}; \\ 1if \frac{1}{2} \le \mu \le 1; \\ 4\mu - 3, if \mu \ge 1 \end{cases}$$

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent starlike functions.

Corollary 3.4: Putting A = 1, B = -1 in the theorem, we get

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{1}{\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2}} \left[\frac{8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta}{(3\alpha + \beta - 4\alpha\beta)} - 4\mu \right], \\ if \mu \leq \frac{8\alpha + 3\beta + 4\alpha^{2} - \beta^{2} - 3\alpha\beta^{2} - 7\alpha\beta}{4(3\alpha + \beta - 4\alpha\beta)}; \\ \frac{1}{3\alpha + \beta - 4\alpha\beta} \\ if \frac{8\alpha + 3\beta + 4\alpha^{2} - \beta^{2} - 3\alpha\beta^{2} - 7\alpha\beta}{4(3\alpha + \beta - 4\alpha\beta)} \leq \mu \leq \\ \frac{8\alpha + 3\beta + 8\alpha^{2} + \beta^{2} - 24\alpha^{2}\beta - 6\alpha\beta^{2} - 7\alpha\beta}{4(3\alpha + \beta - 4\alpha\beta)}; \\ \frac{1}{\{(1 - \alpha)\beta + 2\alpha(1 - \beta)\}^{2}} \left[4\mu - \frac{8\alpha + 3\beta + 4\alpha^{2} - 12\alpha^{2}\beta - 9\alpha\beta^{2} - 7\alpha\beta}{(3\alpha + \beta - 4\alpha\beta)} \right], \\ if \mu \geq \frac{8\alpha + 3\beta + 8\alpha^{2} + \beta^{2} - 24\alpha^{2}\beta - 6\alpha\beta^{2} - 7\alpha\beta}{4(3\alpha + \beta - 4\alpha\beta)} \end{cases}$$

These estimates were derived by N. Kaur [11] and are results for the subclass $S^*(f, f', \alpha, \beta)$ of univalent starlike functions.

References:

- [1] Alexander, J.W Function which map the interior of unitcircle upon simple regions, Ann. Of Math., **17** (1995), 12-22.
- [2] Aoufet. al., Fekete Szego Inequalities for p valentstarlike and convex functions of complex order, Journal of the Egyptian Mathematical Society, 22 (2014), 190 196.
- [3] Bieberbach, L. Uber die KoeffizientemderjenigenPotenzreihen, welcheeineschlichteAbbildung des Einheitskrsisesvermitteln, S. B. Preuss. Akad. Wiss. 38 (1916), 940-955.
- [4] De Branges L., A proof of Bieberbach Conjecture, *Acta. Math.*, **154** (1985), 137-152.
- [5] Duren, P.L., Coefficient of univalent functions, Bull. Amer. Math. Soc., 83 (1977), 891-911.
- [6] Fekete, M. and Szegö, G, EineBemerkunguberungeradeschlichtefunktionen, *J.London Math. Soc.*, 8 (1933), 85-89.
- [7] Garabedian, P.R., Schiffer, M., AProof for the Bieberbach Conjecture forthe fourth coefficient, *Arch. Rational Mech. Anal.*, 4 (1955), 427-465.
- [8] Kaur, C. and Singh, G., Approach To Coefficient Inequality For A New Subclass Of Starlike Functions With Extremals, *International Journal Of Research In Advent Technology*, **5**(2017)
- [9] Kaur, C. and Singh, G., Coefficient Problem For A New Subclass Of Analytic Functions Using Subordination, *International Journal Of Research In Advent Technology*, **5**(2017)
- [10] Kaur. G, Singh. G, Arif. M, Chinram. R, Iqbal. J, A study of third and fourth Hankel determinant problem for a particular class of bounded turning functions, *Mathematical Problems in Engineering*, 22, 511-526, 2021
- [11] Kaur N., Fekete Szego Inequality Alongwith Their Extremal Functions Making Results Sharp For Certain Subclasses Of Analytic Functions, *Webology*, 18(4), 2021, 3075-3083
- [12] Keogh, F.R., Merkes, E.P., A coefficient inequality for certain classes of analytic functions, *Proc. Of Amer. Math. Soc.*, **20**, 8-12, 1989.
- [13] Koebe, P., Uber Die uniformisiesrungbeliebigeranalyischeerKurven, *Nach. Ges. Wiss.Gottingen* (1907), 633-669.
- [14] Lindelof, E., Memoire surcertainesinegalities dans la theorie des functions monogenes et surquelques proprieties nouvellles de cesfontions dans la voisinage d'un point singulier essential, *Acta Soc. Sci. Fenn.*, **23** (1909), 481-519.

- [15] Löewner, C. (1917), Untersuchungenuber die VerzerrungbeiKonformenAbbildungendes Einheitskreises |z| < 1, diedurchFunktionenmitnichtver-schwindenderAbleitunggeliefertwardin, Ber. Verh. Sachi. Ges. Wigg. Leipzig, Vol. 69, pp.89-106
- [16] Ma, W. and Minda, D. unified treatment of some special classes of univalent functions, *In Proceedings of the Conference on Complex Analysis*, Int. Press Tianjin (1994), 157-169.
- [17] Miller, S.S., Mocanu, P.T. And Reade, M.O., All convex functions are univalent and starlike, *Proc. of Amer. Math. Soc.*, 37 (1973), 553-554.
- [18] Nehari, Z. (1952), Conformal Mappings, McGraw-Hill, New York.
- [19] Nevanlinna, R., Uber die Eigenshafteneineranalytischenfunkion in der umgebungeinersingularen stele order Linte, *Acta Soc. Sci. Fenn.*, 50 (1922), 1-46.
- [20] Pederson, R., A proof for the Bieberbach conjecture for the sixth coefficient, *Arch. Rational Mech. Anal.*, 31 (1968-69), 331-351.
- [21] Pederson, R. and Schiffer, M., A proof for the Bieberbach conjecture for the fifth coefficient, *Arch. Rational Mech. Anal.*, 45 (1972), 161-193.
- [22] Rani, M., Singh, G., Some Classes Of Schwarzian Functions And Its Coefficient Inequality That Is Sharp, *Turk. Jour. Of Computer and Mathematics Education*, **11** (2020), 1366-1372.
- [23] Rathore, G. S., Singh, G. and Kumawat, L. et.al., Some Subclaases Of A New Class Of Analytic Functions under Fekete-Szego Inequality, *Int. J. of Res. In Adv. Technology*, **7**(2019)
- [24] Rathore. G. S., Singh, G., Fekete Szego Inequality for certain subclasses of analytic functions, *Journal Of Chemical*, *Biological And Physical Sciences*, **5**(2015),
- [25] Singh. G, Fekete Szego Inequality for a new class and its certain subclasses of analytic functions, General Mathematical Notes, 21 (2014),
- [26] Singh. G, Fekete Szego Inequality for a new class of analytic functions and its subclass, Mathematical Sciences: International Research Journal, 3 (2014),
- [27] Singh. G., Construction of Coefficient Inequality For a new Subclass of Class of Starlike Analytic Functions, *Russian Journal of Mathematical Research Series*, **1** (2015), 9-13.
- [28] Singh, G., Introduction of a new class of analytic functions with its Fekete–Szegö Inequality, *International Journal of Mathematical Archive*, **5** (2014), 30-35.
- [29] Singh, G, An Inequality of second and third Coefficients for a Subclass of Starlike Functions Constructed Using nth Derivative, *Kaav Int.J. Of Sci. Eng. And Tech.*, **4** (2017), 206-210.

- [30] Singh, G, Fekete–Szego Inequality for asymptotic subclasses of family of analytic functions, *Stochastic Modelling And Applications*, 26 (2022),
- [31] Singh, G, Coefficient Inequality for Close to Starlike Functions Constructed Using Inverse Starlike Classes, *Kaav Int. J. Of Sci. Eng. And Tech.*, **4** (2017), 177-182.
- [32] Singh, G, Coeff. Inequality for a subclass of Starlike functions that is constructed using nth derivative of the functions in the class, *Kaav Int. J. Of Sci. Eng. And Tech.*, **4** (2017), 199-202.
- [33] Singh G., Fekete Szego Inequality For A Complicated Class Of Analytic Functions Approaching To A Class In The Limit Form And Other Class Directly, *IJRES*, 10 (9), 619-624, 2022
- [34] Singh, G., Fekete–Szegö Inequality for functions approaching to a class in the limit form and another class directly, *Journal Of Information And Computational Sciences*, 12 (4), 2022, 181-186
- [35] Singh, G., Garg, J., Coefficient Inequality For A New Subclass Of Analytic Functions, Mathematical Sciences: International Research Journal, 4(2015)
- [36] Singh G, Sharma N., Two new subclasses of already defined class of Analytic functions and establishment of their coefficient inequality, NeuroQuantology, 20 (10), 4967-4976, 2022
- [37] Singh, G, Singh, Gagan, Fekete–Szegö Inequality For Subclasses Of A New Class Of Analytic Functions, *Proceedings Of The World Congress On Engineering*, (2014),.
- [38] Singh G, Houque M. A., A specially designed class of univalent functions and establishment of its coefficient inequality, *NeuroQuantology*, 20 (10), 2855-2859, 2022
- [39] Singh G, Kaur C, Analytic functions subordinate to leaf-like domain, *Advances in Mechanics*, 10 (1), 1444-1448, 2022
- [40] Singh, G, Sarao, M. S., and Mehrok, B. S., Fekete Szegö Inequality For A New Class Of Analytic Functions, *Conference Of Information And Mathematical Sciences*, (2013).
- [41] Singh. G, Singh. Gagan, Sarao. M. S., Fekete Szegö Inequality for a New Class of Convex Starlike Analytic Functions, *Conf. Of Information and Mathematical Sciences*, (2013).
- [42] Singh, G., Kaur, G., Coefficient Inequality for a Subclass of Starlike Function generated by symmetric points, *Ganita*, **70** (2020), 17-24.
- [43] Singh ,G., Kaur, G., Coefficient Inequality For A New Subclass Of Starlike Functions, *International Journal Of Research In Advent Technology*, **5**(2017),
- [44] Singh, G., Kaur, G., Fekete-Szegö Inequality For A New Subclass Of Starlike Functions, International Journal Of Research In Advent Technology, **5**(2017),

- [45] Singh, G., Kaur, G., Fekete-Szegö Inequality For Subclass Of Analytic Function Based On Generalized Derivative, *Aryabhatta Journal Of Mathematics And Informatics*, **9**(2017),
- [46] Singh, G., Kaur, G., Coefficient Inequality For a subclass of analytic function using subordination method with extremal function, *Int. J. Of Advance Res. In Sci&Engg*, 7 (2018)
- [47] Singh, G., Kaur, G., Arif, M., Chinram R, Iqbal J, A study of third and fourth Hankel determinant problem for a particular class of bounded turning functions, *Mathematical Problems in Engineering*, 2021
- [48] Singh, G. and Kaur, G., 4th Hankel determinant for α bounded turning function, *Advances in Mathematics: Scientific Journal*, 9 (12), 10563-10567
- [49] Singh, G., Kaur, N., Fekete-Szegö Inequality For Certain Subclasses Of Analytic Functions, Mathematical Sciences: International Research Journal, 4(2015)
- [50] Singh G, Patil A. S., An extraordinary class of asymptotic analytical functions with coefficient inequality, *NeuroQuantology*, 20 (10), 4960-4966, 2022
- [51] Singh, G, Singh, B, Fekete Szego Coefficient Inequality of Regular Functions for A Special Class, International Journal of Research in Engineering and Science, 10(8), 2022, 556-560
- [52] Singh, G, Singh, P., Fekete Szegö Inequality For Functions Belonging To A Certain Class Of Analytic Functions Introduced Using Linear Combination Of Variational Powers Of Starlike And Convex Functions, *Journal Of Positive School Psychology*, **6** (2022), 8387-8391.
- [53] Singh. G, Rani M, An advance subclass of Analytic Functions having a unique coefficient inequality, *Int. J. of Research in Engineering and Science*, 10 (8), 2022, 474-476
- [54] Singh, G., Singh, G., Singh, G., A subclass of bi-univalent functions defined by generalized Sãlãgean operator related to shell-like curves connected with Fibonacci numbers, *International Journal of Mathematics and Mathematical Sciences*, 2019
- [55] Singh, G., Singh, G., Singh, G., A generalized subclass of alpha convex biunivalent functions of complex order, *Jnanabha*, 50 (1), 65-71, 2020
- [56] Singh, G., Singh, G., Singh, G., Upper bound on fourth Hankel determinant for certain subclass of multivalent functions, *Jnanabha*, 50 (2), 122-127, 2020
- [57] Singh, G., Singh, G., Singh, G., Certain subclasses of univalent and biunivalent functions related to shell-like curves connected with Fibonacci numbers, *General Mathematics*, 28 (1), 125-140, 2020
- [58] Singh, G., Singh, G., Singh, G., Certain subclasses of Sakaguchitype bi-univalent functions, *Ganita*, 69 (2), 45-55, 2019

- [59] Singh, G., Singh, G., Certain Subclasses of Bi-Close-to-Convex Functions Associated with Quasi-Subordination, *Abstract and Applied Analysis*, 1, 1-6, 2019
- [60] Singh, G., Singh, G., Singh, G., Fourth Hankel determinant for a subclass of analytic functions defined by generalized S~al~agean operator, *Creat. Math. Inform.*, 31(2), 229-240, 2022
- [61] Singh, G., Singh, G., Certain subclasses of multivalent functions defined with generalized Salagean operator and related to sigmoid function and lemniscate of Bernoulli, *J. Frac. Calc. Appl*, 13 (1), 65-81, 2022
- [62] Srivastava H. M., G. Kaur, Singh. G, Estimates of fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, *Journal of Nonlinear and Convex Analysis*, 22 (3), 511-526, 2021