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Abstract: 
In the realm of computer vision, semantic segmentation is a prominent topic. Scene parsing, a fundamental aspect of computer 

vision, involves segmenting images into semantic categories like sky, road, person, and more, providing a comprehensive 

understanding of the image. The challenge lies in assigning categories to each pixel, especially in diverse scenarios. This work 

introduces an enhanced Pyramid Scene Parsing Network (PSPNet) utilizing a proposed pyramid pooling module and an 

advanced scene parsing network. Leveraging global context information through region-based context aggregation, our model 

employs an Efficient Channel Attention (ECA) mechanism for improved understanding of urban scenarios. The improved 

PSPNet excels in pixel-level prediction, demonstrating superior performance on scene parsing challenges across diverse 

datasets. Validation on the Cityscapes Dataset yields impressive results, with the model achieving 72% mIoU in the training set 

and 67% mIoU in the validation set, showcasing its efficacy in urban scene analysis. 
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I.     INTRODUCTION 

     Before the advent of deep learning, classical machine 

learning techniques like SVM, Random Forest, and K-

means Clustering were used to solve the problem of 

image segmentation. But as with most image-related 

problem statements deep learning has worked 

comprehensively better than the existing techniques and 

has become a norm now when dealing with semantic 

segmentation. Being able to move efficiently and safely 

in driverless vehicles has been a hot research topic in 

recent years, and many companies and research centres 

are trying to come up with the first completely practical 

driverless car model. The purpose is to conduct real-time 

video segmentation tasks for scene interpretation since 

they have a direct impact on vehicle steering and 

braking for safer movements. The entire control 

mechanism of AVs is shown in figure 1. The initial 

strategy for visual scene understanding is semantic 

segmentation. This is a very promising field with a lot of  

 
Fig 1. Autonomous Driving Control System Flowchart. 

 

possible benefits such as an increase in safety, fewer 

costs, comfortable travel, increased mobility, and 

reduced environmental footprint[1]. Semantic 

segmentation is the process of assigning each pixel of 
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Fig 2. Scene parsing issues observed on the ADE20K dataset. 

The first row shows the issue of a mismatched relationship, 

i.e., cars go across the water far less frequently than boats. 

The second row displays categories of misunderstanding, such 

as "building" being easily mistaken with "skyscraper." The 

third row depicts classes that aren't visible. In this case, the 

pillow is quite similar in color and texture to the bedsheet. 

FCN is prone to misclassifying these inconspicuous things. 

 

 

the received image to one of the predefined classes. 

These classes represent the segment labels of the image, 

e.g., roads, cars, signs, traffic lights, or pedestrians [2]. 

Therefore, semantic segmentation is sometimes referred 

to as “pixel-wise classification”. The main advantage of 

semantic segmentation is situation understanding. Scene 

understanding has various benefits in robotics 

applications [3] and the most prominent benefit is in 

autonomous driving [1], [4], [5]. To ensure the 

acquisition and recognition of the surrounding 

environment by the Autonomous Vehicle (AVs), the 

perception module of the self-driving system needs to 

obtain large amount of environmental information 

through various sensors (like Cameras, Lidar, Radars, 

etc.), including the status of the self-driving, traffic flow 

information, road conditions, pedestrians etc. 

Segmentation has also been used in medical applications  

and augmented reality [6]. The first prominent work in 

deep [2] semantic segmentation was fully convolutional 

networks (FCNs) [7], which proposed an end to-end 

method to learn pixel-wise classification. That method 

paved the road to subsequent advances in segmentation 

accuracy. Multi-scale approaches [8], context-aware 

models, and temporal models [9], introduced different 

directions for improving accuracy. All of the above 

approaches focused on the accuracy and robustness of 

segmentation. Although deep convolutional neural 

network (CNN)-based algorithms improve dynamic 

object perception, they encounter obstacles when 

dealing with a wide range of scenarios and a large 

vocabulary. This thesis reviewed numerous challenges 

for complex-scene parsing by looking at the prediction 

results of the FCN baseline supplied in ADE20K [10].  

 

(i) Mismatched Relationships: Understanding complex 

scenarios relies on universal and crucial contextual 

interactions. Visual patterns, as seen in Figure 2's first 

row, can lead to misclassification when contextual data 

is lacking. For example, the FCN predicts a boat as a 

"car" in the yellow box, despite the rarity of cars 

crossing rivers. 

 

(ii) Category Confusion: The ADE20K dataset presents 

challenging class label pairings, such as field and earth, 

mountain and hill, and various structures like wall, home, 

building, and skyscraper. Figure 2's second row 

illustrates FCN labeling an object as both a 'skyscraper' 

and a 'building,' highlighting the need to leverage 

category relationships for more accurate classification. 

 

(iii) Inconspicuous Classes: Traditional FCNs overlook 

size differences in scene objects, leading to inconsistent 

predictions across scales. In Figure 2's third row, the 

pillow's similarity to the sheet highlights this issue. 

Ignoring the global scene category may omit the pillow. 

To improve performance for small or large objects, 

focus on sub-regions with inconspicuous-category data. 

The network's narrow receptive field, limiting attention 

to specific sub-regions while disregarding the overall 

scene category, contributes to the problem. The lack of 

contextual linkage, narrow receptive field, and limited 

global knowledge are key factors. To achieve accurate 

scene perception, it's crucial to correctly predict the 

image context, particularly when identifying a boathouse 

by a river. Existing FCN-based models face a challenge 

in utilizing global scene category hints. The traditional 

spatial pyramid pooling method, used for complex scene 

comprehension, lacked proper techniques. The proposed 

spatial pyramid pooling network (PSPNet) overcomes 

this by incorporating global properties, enhancing pixel-

level functionality. The combination of local and global 

clues improves prediction accuracy, supported by a 

supervised loss optimization technique. This work 

outlines three key contributions, emphasizing the 

importance of establishing objectives before delving into 

the paper. 

 

1. In an FCN-based pixel prediction framework, 

proposed a pyramid scene parsing network to 

include complex scenery context data.  
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2. Build an efficient deep ResNet optimization 

approach based on highly supervised loss, it is a 

kind of deeply supervised training strategy for 

training a very deep network.  

3. Implemented Efficient Channel Attention (ECA) 

module with ResNet to teach our model what 

and where should focus on. 

 

 

II.     RELATED WORKS 

     An Autonomous driving has grown in popularity in 

recent years, and semantic segmentation has played a 

key part in detecting barriers and identifying road 

conditions. Traditional methods for pixel classification 

in images involve creating robust handcrafted features 

and using classifiers like Random Forest or boosting-

based models. Post-processing techniques, such as 

conditional random fields (CRF), have been developed 

to enhance initial segmentation results and improve 

accuracy by reducing per-pixel prediction noise from 

classifiers. However, deep learning, particularly with 

deep convolutional neural networks (DCNN), has 

significantly advanced segmentation accuracy, 

outperforming traditional methods and achieving state-

of-the-art performance across various visual tasks over 

the years. Semantic image segmentation deals with the 

assignment of class labels for every pixel of an image 

based on the class it belongs to [11]. It has multiple 

applications in the fields of medical imaging and 

autonomous vehicles. Segmentation has been widely 

used to classify biomedical images to segment neuron 

structures. Ronneberger et al. [12] introduced an 

encoder-decoder (U-Net) type of architecture for 

biomedical image segmentation to improve localization 

accuracy, and detect brain tumours [11], for the purpose 

of colon crypt segmentation, etc. In recent years, 

autonomous driving has gained much popularity and 

semantic segmentation has played an important role in 

perceiving obstacles and recognizing road conditions [1]. 

Some traditional methods focus on designing powerful 

handcrafted features and using random forest or 

boosting-based classifiers for predicting the class of 

image pixels. With the use of DCNN, it has been 

possible to achieve state-of-the-art performance for 

various visual tasks. Such as, by performing supervised 

training of a large network on the ImageNet dataset. 

Different deep architectures modified for training in 

different domains have been introduced since the 

advancement of deep learning-based segmentation 

methods. A network with a sliding window setup to 

predict pixel labels was suggested by [13] which was 

slow in processing and less accurate. Various other 

implementations involved the use of features from 

different layers of the architecture as discussed in [14]. 

Relevant work done by[15], to add fully-connected 

random fields to CNNs led to a significant upgrade in 

the segmentation performance. Various other approaches 

involving the use of a pyramid architecture to 

concatenate various feature maps also proved well. The 

DeepLab v1 and DeepLab v2 paved the way for 

DeepLab v3+ [16] which incorporates advanced 

elements from the previous two implementations. 

Besides, some recent developments have been shown in 

scene parsing and semantic segmentation areas. Pixel-

level prediction tasks like scene parsing and semantic 

segmentation make significant progress thanks to strong 

deep neural networks [9], which were inspired by 

replacing the fully-connected layer in classification with 

the convolution layer [17]. [18] As discussed above, 

there are a variety of potential methods to be 

implemented for the task of semantic segmentation.  

 

 

III.    Proposed method 
      In this part we discussed about our proposed 

improved PSPNet model. 

A. PSPNet Overall Architecture 

With the pyramid pooling module, the proposed 

pyramid scene parsing network (PSPNet) [19] is 

illustrated in Figure 2. Given an input image in Figure 

2(a), I use a pre-trained ResNet152 [20] model with the 

dilated network strategy [21] to extract the feature map. 

The final feature map size is 1/8 of the input image, as 

shown in Figure 2 (b). On top of the map, the pyramid 

pooling module is used to show in (c) to gather context 

information. Using a 4-level pyramid, the pooling 

kernels cover the whole, half of, and small portions of 

the image. They are fused as the global prior. Then 

concatenate the prior with the original feature map in the 

final part of (c). It is followed by a convolution layer to 

generate the final prediction map in (d). To explain the 

structure, PSPNet provides an effective global 

contextual prior for pixel-level scene parsing. The 

pyramid pooling module can collect levels of 

information, more representative than global pooling. In 

terms of computational cost, the proposed PSPNet does 

not much increase compared to the original dilated FCN 

network. In end-to-end learning, the global pyramid 

pooling module and the local FCN feature can be 

optimized simultaneously. First, given an input image,  
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and then use CNN to get the feature map of the last 

convolutional layer, then a pyramid parsing module is 

applied to harvest different sub-region representations, 

followed by up-sampling and concatenation layers to 

form the final feature representation, which carries both 

local and global context information. Finally, the 

representation is fed into a convolution layer to get the 

final per pixel prediction. 

 

B. Pyramid Pooling Module 

A hierarchical global prior, containing information 

with different scales and varying among distinct sub-

regions, is proposed to further decrease context 

information loss between different sub-regions. As 

shown in Figure 3, it's termed a pyramid pooling module 

for the global scene before the deep neural network's 

final-layer-feature-map is built. Under four distinct 

pyramid scales, the pyramid pooling module merges 

features. Global pooling to yield a single bin output is 

the coarsest level, depicted in red. The next pyramid 

level divides the feature map into sub regions and 

creates pooled representations for various places. The 

feature map with various sizes is produced by the 

pyramid pooling module at various levels. If the level 

size of the pyramid is N, a 1 × 1 convolution layer is 

employed after each pyramid level to decrease the 

dimension of context representation to 1/𝑁  of the 

original one to retain the weight of the global feature. 

Then, using bilinear interpolation, directly upsample the 

low-dimension feature maps to achieve the same size 

feature as the original feature map. Finally, as the final 

pyramid pooling global feature, multiple tiers of features 

are concatenated. The number of pyramid levels and the 

Fig 4. In left, Standard Convolution (l=1), in right side, 

Dilated Convolution (l=2). 

 

size of each level may also be changed. They have 

something to do with the size of the feature map given 

into the pyramid pooling layer. In a few strides, the 

structure abstracts distinct sub-regions by using varying-

size pooling kernels. As a result, the multi-stage kernels 

should keep a suitable representation gap. The proposed 

pyramid pooling module has four levels, each having bin 

sizes of 1 × 1, 2 × 2, 3 × 3, and 6 × 6. 

 

C. Dilated Residual Networks (DRNs) 

    A unique dilated residual network is proposed as the 

backbone network in PSPNet in this paper. 

Convolutional networks for image classification 

gradually lower picture resolution until the image is 

represented by small feature maps with no discernible 

spatial organization. A loss of spatial sharpness like this 

might diminish image classification performance and 

make model transfer to downstream applications that 

need exact scene information more challenging. Dilation, 

 

Fig 3. Architecture of the Pyramid Scene Parsing Network (PSPNet). 
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Fig 5. Converting a ResNet into a Dilated Residual network 

(DRN). 

 

 

Fig 6. Diagram of Receptive Field Mechanism. 

 

 

which raises the resolution of output feature maps 

without diminishing the receptive field of individual 

neurons, can help solve these challenges. It shows that 

dilated residual networks (DRN) [21] outperform their 

non-dilated counterparts in image classification without 

increasing the model’s depth or complexity. then 

gridding artifacts introduced by dilation, develop an 

approach to removing these artifacts (‘degridding’), and 

show that these further increases the performance of 

DRNs. In addition, it also shows that the accuracy 

advantage of DRN's is further magnified in downstream 

applications such as object localization and semantic 

segmentation.  Here, equation 1 is Standard Convolution 

and equation 2 is Dilated Convolution. 

 

(𝐹 × 𝑘)(𝑝) = ∑ 𝐹(𝑠)𝑘(𝑡)

𝑠+𝑡=𝑝

                         (1) 

(𝐹 × 𝑙𝑘)(𝑝) = ∑ 𝐹(𝑠)𝑘(𝑡)

𝑠+𝑙𝑡=𝑝

                        (2) 

 
Where, 𝐹(𝑠)  = Input, 𝑘(𝑡)  = Applied Filter, ∗ 𝑙 =
 𝑙 −dilated convolution, (𝐹 × 𝑙𝑘)(𝑝)= Output. 

The left one is the standard convolution. The right one is 

the dilated convolution. We can see that at the  

 

 
Fig 7. Diagram of our efficient channel attention (ECA) 

module. Given the aggregated features obtained by global 

average pooling (GAP), ECA generates channel weights by 

performing a fast 1D convolution of size k, where k is 

adaptively determined via a mapping of channel dimension C. 

 

 

summation, it is 𝑠 + 𝑙𝑡 = 𝑝  that we will skip some 

points during convolution. field is larger compared with 

the standard one. 
 

D. Efficient Channel Attention (ECA) 

To reduce computing expenses, a deep learning and 

computer vision method known as the Efficient Channel 

Attention (ECA) [22]module enhances feature maps 

inside particular channels. The ECA module has shown 

promise in reducing overfitting and enhancing the 

discriminative power of neural networks. It is flexible 

and works with many different network topologies, 

including deep residual networks and CNNs. The 

Efficient Channel Attention (ECA) module provides an 

appealing collection of features that distinguishes it as a 

notable addition to deep neural networks. ECA is 

notable for its lightweight and low computational 

overhead, making it ideal for real-time applications. Its 

dynamic channel-wise recalibration function enables 

networks to modify channel importance adaptively 

based on the input feature map, improving the model's 

ability to collect subtle information. Its versatility is a 

crucial feature since ECA can easily integrate into 

different CNN designs, allowing for easy 

experimentation to see how it affects overall 

performance. Furthermore, ECA's localized attention 

mechanism distinguishes itself by effectively capturing 

local channel-wise dependencies, with a focus on 

specific regions along the channel dimension. 

Importantly, it emphasizes efficiency without sacrificing 

the network's representational capability, all while  
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Fig 8: Real image frame (left) vs Ground Truth (middle) vs 

Predicted Segmentation (right). 

 

 

retaining a less parameterized attention mechanism. The 

ECA module intends to improve the efficiency of the 

attention mechanism in CNNs, allowing models to be 

more performant and computationally efficient. Because 

of its versatility and lightweight, it is a preferred 

candidate for improving various CNN designs in 

computer vision. ECA module can be expressed by 

mathematically: The first step is to apply global average 

pooling on the feature map 𝑌 ∈ 𝑅𝑊×𝐻×𝑐  to gain the 

vector 𝑌𝑎𝑣𝑔 ∈ 𝑅1×1×𝑐 in order to aggregate the channel 

information. 

 

 𝑌𝑎𝑣𝑔 = 𝐺𝐴𝑃(𝑦) =
1

𝐻×𝑊
∑ ∑ 𝑌𝑖,𝑗

𝑊
𝑗=1

𝐻
𝑖=1                  (3)               

  

Where 𝐺𝐴𝑃(. )  apprises global average pooling. 𝑌 

apprises the input feature map. 𝐻  and 𝑊  apprises the 

length and width of the feature map. 

 

 𝑊 = 𝜎(𝐶1𝐷𝑘(𝑌))                                   (4) 

  

Where 𝜎 apprises the sigmoid activation function. 𝐶1𝐷 

apprises the one-dimensional convolution. 𝑘  apprises 

convolution kernel size. 

 

𝐶 = ∅(𝑘) = 2(𝑦×𝑘−𝑏)                               (5)  

  

 

Fig 9: Training mIoU vs number of Training images. 

 

 
Fig 10: Validation mIoU vs number of Validation images. 

 

 

Where 𝐶 apprises the channel size of feature map. 𝑦 & 𝑏 

apprises parameters to 2 and 1. 𝑘 apprises convolution 

kernel. 

𝑘 = 𝜑(𝑐) = |
𝑙𝑜𝑔2(𝑐)

𝑦
+

𝑏

𝑦
|

𝑜𝑑𝑑

 

  

Where |𝑡|𝑜𝑑𝑑 apprises nearest odd number of 𝑡. 

 

 

IV.    Experiments 
       In this section, we will demonstrate the 

experimental results and relevant topics. 

 
A. Dataset, Evaluation Metrics and Experimental Setup 

     Cityscapes [23] is a semantic urban scene 

understanding dataset. It contains 5,000 high-quality  
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Table 1: Overall Training and Validation Result. 

 

 Training Set Validation Set 

Accuracy 0.971 0.952 

mIoU 0.72 0.67 

Loss value 0.121 0.145 

 
Table 2: Initialization Parameters Settings for Training. 

 

Shape Batch 

size 

Momen 

-tum 

LR Epochs Weight 

decay 

400 × 380 8 0.9 0.01 50 1𝑒−4 

 

 

pixel-level finely annotated images collected from 50 

cities in different seasons. The images are divided into 

sets with numbers 2,975, 500, and 1,525 for training, 

validation, and testing. It defines 19 categories 

containing both stuff and objects. Also, 20,000 coarsely 

annotated images are provided for two settings in 

comparison, i.e., training with only fine data or with 

both the fine and coarse data. The dataset includes 

images taken in different seasons (spring, summer, fall), 

as well as under different weather conditions. 

Furthermore, all images have a fixed resolution of 

2048 × 1024  pixels. The detection model we trained 

and tested on a workstation whose parameters were as 

follows: Intel(R) Xeon(R) Gold 6226R CPU@2.90GHz 

2.89 GHz (2 processors) CPU, 128 GB DDR4 random-

access memory (RAM), NVIDIA GeForce RTX 3090 

with 24 GB VRAM GPU, and Ubuntu 20.04 OS. The 

initialization parameters of the network are shown in. To 

build a comparable basis, we focus on the same metrics 

as described in the work of [7]. IoU is defined as the 

ratio of intersection of ground truth and predicted 

segmentation outputs over their union. If we are  

calculating for multiple classes, the IoU of each class is 

calculated and their mean is taken. 

 
B. Results and Discussion 

     The proposed PSPNet model is successful in scene 

parsing and semantic segmentation for traffic images as 

shown in figure 8. We evaluate it in Cityscapes datasets. 

I got the following result after implementing the said 

model. The pixel accuracy increases too since the more 

the images, the better can the model learn and generalize 

the objects in the scene. The training pixel accuracy was 

found to be about 97% whereas the validation pixel 

accuracy was more than 95%. It first starts training the 

network with a large learning rate and then slowly 

reducing/decaying it until local minima are obtained. 

Table 3: Comparison of Results with Existing Methods. 

 

Methods FCN Dilation CRF-RNN PSPNet 

mIoU 58.3 60.3 57.6 65.8 

Methods DeepLab UNet UPerNet Ours 

mIoU 66.1 65.4 64.2 67.0 

 

 

The learning rate is reducing over time (represented with 

a green line), since the learning rate is large initially, we 

still have relatively fast learning toward as tending 

toward minima learning rate gets smaller and smaller, 

end up oscillating in a tighter region around minima 

rather than wandering far away from it. It is empirically 

observed to help both optimization and generalization.  

The Loss versus several images in the training set as 

well as in the validation set respectively. Both graphs 

depict that as the number of images increases, the error 

loss decreases too since the more the images, the better 

can the model learn, and memorize, and thus fewer 

errors and loss is produced. The training loss was 

decreased to about 12% whereas the validation loss was 

about 14%. We also made sure no overfitting is 

occurring. The PSPNet model was finely tuned and 

debug before being implemented. Then it was trained 

and validated for 50 epochs which gave the following 

results including metric mean IoU (mean Intersection 

over Union over all class labels) Accuracy of the 

training images, validation images as well as each class 

label, at the end of the 50th epoch. Table 4 shows the 

IoU accuracy of each class label. The higher the 

accuracy, the more likely the objects are to be 

segmented accurately in the images and the videos. We 

tried adding important class labels as of now and more 

labels can be added in the future to give better scene 

understanding. Figure 9 and figure 10 show the Mean 

IoU versus the number of images in the training set as 

well as the validation set respectively. Both graphs 

depict that as the number of images increases, the mean 

IoU (average IoU of all the class labels) increases too 

since more the images, the better can the model learn 

and generalize the objects in the scene and thus can 

segment more accurately in the test images and videos. 

The training mean IoU was found to be more than 72% 

whereas the validation pixel accuracy was more than 

67%. Now the following segmented results are found on 

test image frames. Figure 8 shows the result of the 

proposed PSPNet model on various image frames. The 

semantic segmentation yields good results for most 

objects in traffic scenes, with some misclassifications. 

Improvements can be achieved through model fine-
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tuning, increased training data, and additional class 

labels. Accurate segmentation is observed for visible 

objects like cars, pedestrians, roads, buildings, and signs, 

but challenges arise with unlabelled objects and adverse 

weather conditions. Despite challenges, the overall 

outcome is satisfactory for traffic scene segmentation. 

 

III. CONCLUSIONS 

       In conclusion, our enhanced PSPNet excels in pixel-

level categorization for diverse urban scenes. The model, 

featuring a novel pyramid pooling module and advanced 

scene parsing network with ECA mechanism, 

demonstrates superior performance on Cityscapes 

Dataset, achieving 72% mIoU in the training set and 67% 

mIoU in the validation set. This research contributes 

significantly to semantic segmentation models, 

particularly in urban scene analysis. 
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