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Abstract: 

 This paper presents a rigorous testing and validation methodology for the 

EfficientVisionTransformer(EVT), a state-of-the-art deep learning model designed to predict vegetation 

indices from remotely sensed images in Southern Nigeria. Given the critical role of vegetation monitoring 

in ecological preservation and agricultural productivity, ensuring the accuracy and reliability of such 

models is paramount. The testing methodology uses a multi-pronged approach, including unit testing, 

integration testing, boundary value testing, and overall accuracy evaluation. Unit testing tested the correct 

operation of individual EVT components such as patch embedding, encoder, and decoder modules. 

Integration testing examined the flawless interoperability of various components, identifying any flaws in 

their interactions. Boundary value testing pushed the limits by evaluating the model's performance under 

extreme input situations, examining robustness and capacity to deal with edge cases. Importantly, accuracy 

testing using real-world data from Southern Nigeria demonstrated the EVT's prediction capabilities. The 

model has an amazing root mean square error of 0.04582. Furthermore, the normalized root mean square 

errors were 0.04582 when normalized to the 0-1 range and 0.00864 when normalized to the target 

variable's 1.8-7.1 range. These measurements show that the model is very accurate, with predictions 

departing from real vegetation index values by <1% of the whole data range on average. The extensive 

testing methodology established the EfficientVisionTransformeras a reliable and high-performing solution 

for predicting vegetation index in Southern Nigeria. The findings of this work provide major contributions 

to the advancement of remote sensing and deep learning research, as well as enabling more accurate 

vegetation monitoring, which is vital for ecological conservation, sustainable agriculture, and regional 

economic growth. 

 

Keywords —Software Testing, Validation, Remote Sensing, Deep Learning, Root Mean Square 
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I. INTRODUCTION 

Developing robust and reliable deep learning 

models  requires rigorous quality assurance 

measures. This paper delves into the model testing 

and validation strategies employed to ensure the 

accuracy and efficacy of the deep learning model 

for vegetation index (VI) prediction in Southern 

Nigeria. Vegetation indices (VIs) are numerical 

indicators derived from remote sensing data that 

assess the abundance and condition of vegetation on 

the ground surface. VIs are commonly used to 
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monitor vegetation dynamics, evaluate crop health 

and yield, and investigate the effects of climate 

change on vegetation [14].  

The normalized difference vegetation index 

(NDVI) is a simple and widely used indicator based 

on near-infrared (NIR) and red (RED) light 

reflectance measurements. It is computed as NDVI 

= (NIR−RED)/(NIR+RED) [2]. However, NDVI 

and other classic VIs have drawbacks, including 

sensitivity to meteorological conditions, soil 

background, and saturation effects. As a result, 

more advanced algorithms are required to extract 

useful information from remote sensing data while 

also improving the accuracy and reliability of VI 

prediction. One interesting approach is to employ 

deep learning models such as convolutional neural 

networks (CNNs) and vision transformers (ViTs), 

which can learn complicated and high-level features 

from data and achieve cutting-edge performance in 

a variety of computer vision applications [12].  

Vision transformers (ViTs) are deep learning 

models that process picture data with the 

transformer architecture, which was initially created 

for natural language processing. ViTs partition the 

input image into patches and use self-attention 

processes to detect global and long-range 

relationships between the patches. ViTs have 

outperformed CNNs in a variety of computer vision 

applications, including image classification, object 

recognition, and semantic segmentation [8]. 

However, ViTs have certain downsides, including 

the need for a huge quantity of data and computing 

resources, as well as memory inefficiency due to 

tensor reshaping and element-wise functions in the 

multi-head self-attention (MHSA) module. As a 

result, various modifications and upgrades to ViTs 

have been proposed to overcome these concerns 

and increase their efficiency. One of them is the 

EfficientVisionTransformer (EVT), a family of 

high-speed ViTs that use a sandwich layout, i.e., a 

single memory-bound MHSA between efficient 

feed-forward network (FFN) layers, and a cascaded 

group attention module that feeds attention heads 

with different splits of the full feature, which not 

only reduces computation cost but also improves 

attention diversity [13].  

Testing deep learning models using typical 

software testing approaches confronts two major 

challenges. The first is the Oracle issue. This relates 

to the challenge of determining exactly what output 

a model should generate for a given input. Unlike 

traditional software, which has a predetermined 

conclusion, deep learning models frequently deal 

with complicated input and nuanced outputs, 

making it difficult to discern the actual output. The 

second obstacle is test adequacy. This relates to the 

problem of selecting the appropriate test inputs to 

accurately assess the model's performance. Simply 

tossing random data at the model is insufficient. We 

require well picked inputs that actually evaluate the 

model's capacity to do its intended goal [1]. 

Broadly speaking, the following techniques have 

been proposed  for evaluating deep learning models 

[1] : 

a.) Differential Testing : Differential Testing 

(DT) evaluates a system's functionality by 

comparing the behavior of multiple 

implementations or models for the same task. The 

difference between their results is used to assess the 

correctness of the tested program. The main 

challenges of DT are identifying the faulty system 

and utilizing a test set. 

b.) Metamorphic Testing: Metamorphic Testing 

(MT) is a useful approach for programs that lack a 

clear oracle. Metamorphic relations (MR) between 

a program's inputs and outputs help identify 

program flaws in MT. 

c.) Mutation Testing: Mutation Testing (MuT) 

is a conventional testing method that evaluates a 

test set and generates fault-revealing test cases. 

MuT evaluates a test suite based on its ability to 

discriminate between the original program and its 

mutants, which are modified versions of the 

program being tested. 
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d.) Combinatorial Testing: Combinatorial 

Testing (CT) evaluates software systems and test 

suites by analyzing value relationships and 

coverage of input data. CT assumes that input 

parameters interact and that certain values may 

result in problems.  

e.) Adversarial Perturbation Testing: 

Adversarial Perturbation Testing (APT), a 

technique for attacking machine learning systems, 

can also be used to evaluate deep learning models. 

An adversarial example is a purposeful attack on a 

deep learning model, causing the system to provide 

incorrect results. 

These methods are time-proven and useful, 

however, the quality and resilience of deep learning 

(DL) models are determined by a variety of criteria, 

including the type and quality of the data, the 

model's complexity and interpretability, the 

system's intended purpose and domain, and the 

potential risks and consequences of failure. 

Different applications may have distinct 

requirements and expectations for these aspects, 

making DL system testing a subjective procedure 

[10]. DL system testing is likewise a difficult 

procedure since there are several sources of 

uncertainty and unpredictability that might affect 

model behavior and outcomes. These include the 

unpredictability and variability of the training and 

testing data, the non-linearity and opacity of the 

model structure and parameters, the existence of 

adversarial and noisy inputs, and the system's 

dynamic and developing character [8]. 

In this paper, we propose using EVT as an 

innovative and effective method for predicting VI 

in Southern Nigeria, where vegetation plays a vital 

role in both the ecology and the economy. We look 

into model testing and validation methodologies for 

EVT to assure model quality and dependability. We 

anticipate that our paper will help develop remote 

sensing and deep learning research while also 

providing important insights for vegetation 

monitoring and management in Southern Nigeria 

and other places. 

II. BACKGROUND 

Vegetation index (VI) estimate is an important 

problem in remote sensing and environmental 

monitoring, and deep learning algorithms have 

shown tremendous promise in this area. However, 

deep learning algorithms for VI estimate present 

considerable hurdles due to data complexity, 

environmental unpredictability, and domain 

uniqueness, necessitating thorough testing and 

validation. Researchers can overcome these 

problems by applying a variety of innovative 

methodologies, ensuring the quality and usefulness 

of models for real-world applications. 

Data complexity refers to the high dimensionality, 

heterogeneity, and noise of remote sensing data, all 

of which can have an impact on deep learning 

model performance and generalization. For 

example, satellite images might have varying 

resolutions, cloud cover, atmospheric distortion, 

and lighting conditions. Data augmentation, multi-

scale and multi-modal learning, and attention 

processes are some strategies for dealing with data 

complexity [16]. 

Environmental variability refers to the dynamic 

and diverse nature of the earth's surface, which can 

alter plant features and the link between VI and 

spectral reflectance. Seasonal fluctuations, land 

cover transitions, and human activities can all have 

an impact on vegetation structure, phenology, and 

health. Some strategies used to deal with 

environmental unpredictability include temporal 

modeling, domain adaptation, and transfer learning 

[5]. 

Domain specificity relates to the sensitivity of VI 

estimate methods to certain plant kinds, 

geographies, and applications. For example, various 

plant kinds may have distinct spectral signatures, 

different places may have different environmental 

conditions, and different applications may have 
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different VI needs and goals. Some strategies used 

to address domain specificity include fine-tuning, 

meta-learning, and explainability [9]. 

Testing and validation are critical processes in 

ensuring the accuracy and generalizability of deep 

learning models for VI estimation. However, due to 

the aforementioned issues, testing and validation 

can be complex and time-consuming. To assess the 

models' functionality, accuracy, and robustness in 

different scenarios and domains, various testing and 

validation strategies are used, including unit testing, 

integration testing, system testing, cross-validation, 

performance metrics, and qualitative analysis [15].  

Testing deep learning models is an important step 

in ensuring their dependability and resilience in 

real-world scenarios. However, assessing these 

models presents distinct issues due to their 

complexity, nondeterminism, and data reliance. As 

a result, multiple testing procedures have been 

created and modified to solve these issues and 

evaluate various elements of deep-learning models. 

In this section, we will summarize and compare 

three commonly used testing strategies: unit testing, 

integration testing, and system testing. 

  Unit testing is the process of examining individual 

model components, such as layers or modules, in 

isolation to ensure that they perform as intended. 

The PyTorch unit test framework automates this 

process by providing tools for creating and 

executing test cases, verifying assertions, and 

reporting findings [1]. Unit testing can assist 

uncover problems and errors in model 

implementation while also validating the model 

design and parameters. However, unit testing alone 

cannot guarantee the model's overall performance 

and behavior since it does not take into account the 

interactions and dependencies between model 

components, as well as the input and output data 

[10].  

Integration Testing evaluates how many 

components interact and collaborate to reach the 

model's ultimate purpose. Depending on the 

complexity and structure of the model, integration 

testing can be performed at several levels of 

granularity, including layer-level, module-level, and 

model-level [3]. Integration testing can help 

uncover errors and inconsistencies in model 

integration while also evaluating the model's 

usefulness and efficiency. However, creating and 

implementing integration testing can be difficult 

since it necessitates specifying appropriate test 

inputs, outputs, and criteria for each level of 

integration [5]. 

System testing is an approach that uses real-world 

data and situations to evaluate the overall 

performance of the entire model in the intended 

task. System testing can be done in a variety of 

ways, depending on the evaluation objectives and 

criteria [11]. System testing can help evaluate the 

model's accuracy, robustness, and generalizability, 

as well as detect any flaws and weaknesses in its 

behavior. However, system testing can be costly 

and time-consuming since it necessitates big and 

diversified datasets, realistic and representative test 

cases, and rigorous and thorough analysis [10] 

III. METHODOLOGY 

The technique used for model testing and 

validation of the EfficientVisionTransformer takes 

a thorough approach to assure model quality and 

accuracy. The testing procedures uses a variety of 

methodologies, including boundary value testing, 

unit testing, integration testing, and accuracy 

evaluation. This section outlines the comprehensive 

testing methodology employed.  

a.) Unit testing is a software engineering technique 

adopted for deep learning models. It entails 

isolating and testing each component or module of 

the model individually. This strategy aids in the 

early detection and resolution of difficulties, 

ensuring that each component performs properly 

prior to integration. Unit testing also enhances code 

reuse and maintainability, which are critical for 

complicated deep learning models. 
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b.) Boundary value testing is an important step in 

determining the model's resilience and behavior at 

the limits of its input domain. This method includes 

feeding the model edge cases, outliers, and inputs 

that push the limits of its predicted operation. 

Analyzing the model's performance under these 

settings allows us to find possible weaknesses, edge 

case behaviors, and opportunities for improvement. 

c.)  Integration testing is the practice of merging 

different components or modules to assess their 

overall functioning. Integration testing in deep 

learning models guarantees that all of the 

components, such as feature extraction, attention 

mechanisms, and classification layers, function 

together flawlessly. This testing technique aids in 

the identification and resolution of integration 

issues, ensuring that the model's overall 

performance matches the required criteria. 

d.) Accuracy testing is a critical component of 

assessing the EfficientVisionTransformer's 

performance. This technique entails calculating the 

model's predicted accuracy using a wide set of test 

data that is typical of real-world circumstances. 

Mean square error, mean absolute error, the root 

mean square error and Normized root mean square 

error [4], were accuracy measures that are 

generated and examined to evaluate the model's 

efficacy and indicate areas for improvement. 

Furthermore, the model's accuracy is compared to 

other cutting-edge models or human performance, 

offering a comparative overview of its capabilities. 

This comprehensive testing technique, which 

includes boundary value testing, regression testing, 

interpretability testing, unit testing, integration 

testing, and accuracy testing, provides a strong 

foundation for ensuring the quality and correctness 

of the EfficientVisionTransformer model. By 

painstakingly implementing these various testing 

methodologies, we can verify the EVT's 

dependability, generalizability, and trustworthiness 

in real-world scenarios.  

IV. RESULTS AND DISCUSSION 

TABLE I 
UNIT AND INTEGRATION  

Test Case Patch 

Embedding 

Output Shape 

Encoder 

Output Shape 

Decoder 

Output Shape 

Functionality 

Tested 

Output 

dimensions 

after patch 

embedding 

Dimensions of 

Encoder output 

Dimensions of 

decoder output 

Sample Data 

Shape 

(4, 3, 600, 600) (4,3,600,600) (4, 3, 600,600) 

Actual Result (4, 600, 37, 37) (4,1369,600) (4, 1) 

Expected 

Result 

(4, 600, 37, 37) (4,1369,600) (4, 1) 

Pass/Fail Pass Pass Pass 

 

Table I shows the results of test scenarios meant to 

validate the EfficientVisionTransformer's (EVT) 

output dimensions at various processing stages. It 

compares the predicted output forms to those 

achieved throughout the testing procedure. 

 

Test Case: This column indicates the functionality 

under test, which in this case is the dimensional 

output of each stage of the EVT model. 

 

Functionality Tested: This column contains a more 

complete description of what each test case verifies. 

It explains that the tests are testing the dimensions 

of the model's output at three important points: after 

the patch embedding layer, after the encoder, and 

after the decoder.  

 

Sample Data Shape: This column displays the 

shape of the input data used in the test scenarios. In 

this case, the sample data takes the shape of (4, 3, 

600, 600), indicating a set of four images, each 

having three channels (RGB) and a height and 

width of 600 pixels. 
 

Actual Result versus Expected Result: These 

columns compare the dimensions generated by the 

EVT during testing (Actual Result) to the expected 

dimensions based on the model's design. 
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Pass/Fail: This last column shows the results of 

each test scenario. In this case, all three tests 

succeeded, indicating that the EVT's output 

dimensions are consistent with expectations. 

 

The patch embedding layer converts the input 

image into a series of patches. The intended and 

actual output shapes of (4, 600, 37, 37) show that 

the layer successfully turned the batch of four 

images into a sequence of 600 patches, each 

represented by a vector of 37 features. The encoder 

processes the previous stage's patch sequence. The 

intended and actual output shape of (4, 1369, 600) 

indicate that the encoder converted the series of 600 

patches for every image in the batch into a new 

sequence of 1369 elements, each with a dimension 

of 600. The decoder generates the final prediction 

based on the encoder's output. 
 

TABLE II 

BOUNDARY VALUE 

Test Case Case 1 Case 2 Case 3 

Functionality Test 

Minimum 

value (1.8) 

Test  

Maximum 

Value (7.1) 

Test Minimum 

and Maximum 

(1.8 & 7.1) 

Result -0.138 -0.138 -0.139 

 
This test is designed to evaluate the model's 

behavior at the limits of its predicted input range. 

By putting boundary images into the model, we 

may uncover possible concerns such as unexpected 

outputs or mistakes that may occur when the model 

faces extreme input values in real-world scenarios. 

  The findings show that the model makes 

consistent predictions in circumstances when all 

pixels have the same minimum or maximum value. 

However, the varied forecast in Case 3 indicates 

that the model's behavior may be more complex 

when dealing with mixed input values. 

 

TABLE III 

MODEL ACCURACY 

Test Case  Case 1 Case 2 

Functionality RMSE NRMSE 1 

(0-1) 

NRMSE 2 

(I.8 – 7.1) 

Result 0.04582 0.04582 0.00864 

 

Table III shows the results of the Normalized Root 

Mean Square Errors (NRMSE) for different test 

values. The EfficientVisionTransformer achieved a 

Root mean Square Error (RMSE) of 0.04582. When 

normalized with data range (0-1), the RMSE equals 

the NRMSE.  NRMSE 2 shows the result when 

normalized with range (1.8-7.1). The Normalized 

Root Mean Square Error (NRMSE) is calculated by: 

  
NRMSE  =        RMSE    

 

      Range Max – Range Min   ….      (1) 

 

Where RMSE  =  Root Mean Square Error 

Range Max =  Maximum value of the observed 

data 

Range Min = Minmum value of the observaed data 

 
NRMSE 1 is normalized for the target range (0-1). 

The number of 0.04582 indicates that the model's 

average error is approximately 4.5% of the target 

variable's range. In other words, on average, the 

model's predictions depart from real values by 4.5% 

of the variable's potential range. NRMSE 2 shows a 

better perforance showing a 0.8% deviation on the 

target variable. 

Normalized Root Mean Square Error (NRMSE) is 

an important measure in remote sensing. It is used 

to evaluate the accuracy of models that forecast the 

geographical distributions of various parameters 

acquired from remote sensing data, such as 

vegetation indices, soil moisture, and land surface 

temperatures. 

V. CONCLUSIONS 

This paper investigates the application of 

simplistic model testing and validation procedures 

as it applies to deep learning models. It explores the 

challenges associated with testing and validation of 

deep learning models for VI estimation, 
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emphasizing the importance of addressing data 

complexity, environmental variability, and domain 

specificity. To ensure the robustness and 

generalizability of the EfficientVisionTransformer 

(EVT) model, the study implementes a 

comprehensive testing methodology incorporating 

unit testing, integration testing, boundary value 

testing, regression testing, interpretability analysis, 

and accuracy evaluation.  The results demonstrated 

that the EVT produced consistent and accurate VI 

predictions, with a Normalized Root Mean Square 

Error (NRMSE) of approximately 0.8% when 

normalized for the target range (1.8 - 7.1). These 

findings suggest that EVTs hold promise for VI 

estimation in Southern Nigeria and potentially other 

regions. Future research areas include investigating 

the explainability of the EVT model to acquire a 

better understanding of its decision-making 

processes. Furthermore, research into transfer 

learning techniques may allow the EVT model to be 

adapted to different geographical areas and plant 

types, increasing its generalizability for larger real-

world applications. 
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