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Abstract: 

This paper introduces the Efficient Vision Transformer (EVT), a deep learning model designed for precise 

prediction of the Fractional Vegetation Index (FVI) in vegetation monitoring. In order to overcome the 

limitations of existing methods, EVT incorporates resilient attention mechanisms and streamlined 

computations, resulting in high accuracy while utilizing fewer computer resources. Its architecture, which 

includes patch embedding, Transformer encoder layers, and a linear decoder, enables the rapid processing 

of local information and the comprehensive creation of global context, leading to accurate Vegetation 

Index predictions. Its ability to process high-resolution aerial images opens up new avenues for monitoring 

vegetation health and productivity across vast landscapes, providing crucial insights for sustainable land 

management practices. With 17 million parameters compactly packed in 155 MB and lightning-fast CPU 

inference duration of 606 milliseconds, EVT demonstrates exceptional efficiency, providing near-real-time 

insights for precision agriculture and environmental monitoring. The model's computational efficiency and 

low resource requirements make it accessible to a wide range of users, from researchers and environmental 

agencies to agricultural organizations and individual farmers, enabling data-driven decision-making on a 

broader scale. EVT's exceptional accuracy is demonstrated by evaluation measures (Mean Absolute Error 

of 0.03823, Root Mean Square Error of 0.04582, R-squared value of 0.98556), confirming its reliability 

across various assessment frameworks and geographical scales. The EVT model represents a 

groundbreaking solution that offers a future where precision and efficiency come together to support 

informed decision-making for ecosystem health and sustainable land management. 
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I. INTRODUCTION 

A vegetation map is a two-dimensional graphical 

representation of a location-based vegetation 

monitoring system [6]. The vegetation index (VI), 

which is a highly sought-after source of information 

for informed conservation decisions and data on 

biodiversity and natural resources, summarizes this 

information within a spatial framework. Fractional 

vegetation cover (FVC), the ratio of the area 

occupied by vegetation on the ground to the total 

vegetation area, is another term used to refer to the 

proportion of vegetative area to the overall area of 

interest [13]. FVC is a significant biophysical 

metric that describes the Earth's surface system and 

is considered essential for investigating the 
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interactions between the aerosphere, pedosphere, 

hydrosphere, and biosphere [8]. The importance of 

monitoring this parameter was emphasized in Zeng, 

X. et al.,[18] as it provides a deeper understanding 

of land-surface processes, climate change, and 

numerical weather forecasting [18]. 

Two broad methodologies, field and remote 

sensing techniques, have been developed to 

determine fractional vegetation cover. However, 

these methods require substantial human effort, 

expertise, and supervision and do not provide real-

time data. The variations in regional climate and 

temperature can result in changes in vegetation to 

better adapt to these differences. Consequently, the 

vegetation zones in a country demonstrate the 

relationship between vegetation and climatic 

conditions in different geographic regions across 

the nation. Nigeria, with its diverse climatic 

conditions, experiences a significant influence on 

the numerous plant zones within the country [11]. 

Temperature variations, weather conditions, and 

other geographical factors contribute to the 

variations in vegetation from the northern to 

southern hemispheres of Nigeria. Each species in 

Nigeria's vegetation exhibits distinct characteristics 

that distinguish it from others, resulting in a highly 

diverse vegetation landscape. 

Mapping vegetation is a crucial aspect of carbon 

cycle studies. Empirical approaches collect 

sufficient and accurate data from a large number of 

samples to establish statistical correlations between 

FVC and vegetation indicators or individual band 

reflectance. Empirical techniques can achieve 

appropriate accuracy when applied to specific 

vegetation types and at a regional scale. However, 

these methods become less effective in large-scale 

regions due to uncertainties resulting from different 

vegetation types and land conditions, making 

empirical methods inadequate [2]. 

Spectral Mixture Analysis (SMA) is a technique 

that decodes the spectral information in remote 

sensing images (including green vegetation, 

senescent vegetation, various soil types, and water) 

by assuming that spectral variation is generated by 

a small number of surface materials [10]. SMA is 

based on the assumption that the spectral signature 

of a pixel is a linear combination of the endmember 

spectra [9], where each endmember represents a 

distinct spectral signal that differentiates it from 

other surface materials or land cover types on the 

planet. It is commonly assumed that the spectral 

diversity within an endmember is minimal or 

nonexistent. Selecting appropriate endmembers is 

crucial for the success of a mixing model [3]. These 

endmember signatures can either be directly chosen 

from an image (image endmembers) or derived 

from field or laboratory spectra of known materials 

[1]. However, the primary limitation of pixel 

unmixing models lies in estimating representative 

endmembers, as this task is challenging due to the 

complex land surface conditions and diverse 

spectral features found at a large scale [20]. 

In recent years, statistical machine learning 

approaches have gained popularity in the process of 

retrieving FVC values. These approaches are 

computationally efficient and consistently perform 

well in non-linear fitting [13]. Three main methods 

exist for esimating the FVC: empirical methods, 

pixel unmixing modelling and physical model-

based methods [15]. Machine learning methods 

estimate FVC by training on a representative 

sample database containing pre-processed 

reflectance and related simulated land surface 

parameter data, which occurs during the learning 

phase [13]. Several algorithms and machine 

learning methods for generating FVC products on 

regional and global scales have been presented by 

Jia, K. et al. These strategies have shown 

satisfactory results, although some effort in feature 

engineering is required [7]. 

In this paper, we propose the 

EfficientVisionTransformer (EVT) for improved 

computation and accuracy. The EVT focuses on 

image regression with a specific emphasis on 
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forecasting the critical Fractional Vegetation Index 

(FVI). By employing robust attention mechanisms 

and deliberate optimizations, the EVT achieves 

remarkable accuracy in FVI estimation while 

requiring fewer computational resources. This 

enables broader access to various vegetation 

monitoring scenarios, ranging from rural areas to 

global satellite data. The capabilities of EVT 

accelerate research and provide actionable 

information for precision agriculture, environmental 

monitoring, and sustainable land management, 

thereby paving the way for informed decisions that 

support thriving ecosystems. 

II. RELATED WORKS 

Remote sensing has a wide range of applications 

in the implementation of software systems. These 

applications include the analysis of agricultural 

diseases, the classification of different types of 

seeds, and object recognition. In this section, we 

provide a review of related studies on software 

models used in remote sensing for vegetation 

monitoring and optimization efforts. 

In a study conducted by Zhang L. et al.[19], the 

deep learning ENVINet-5 model was employed to 

monitor vegetation coverage in a research area 

using medium-resolution Landsat Thematic Mapper 

(TM) and Operational Land Imager (OLI) satellite 

images. The training and verification samples were 

manually labeled using a fusion image and a high-

resolution satellite image obtained from Google 

Earth. The labels were classified into four types of 

ground objects: desert, water body, cultivated land, 

and construction land. The normalized difference 

vegetation index (NDVI) was calculated for the 

area of interest using this data [19]. 

Yu, R. et al. [16] proposed an innovative 

approach to estimate fractional vegetation cover 

(FVC) using deep transfer learning. The method 

consisted of two steps. In the first step, a physical 

model known as the PROSPECT + SAIL radiative 

transfer model (PROSAIL) was utilized to generate 

a large number of simulated training samples. In the 

second step, a long short-term memory network 

(LSTM) was pretrained using the simulated training 

dataset obtained in the first phase. The pretrained 

network was then fine-tuned using a small number 

of real samples derived from satellite images. 

Zeebaree, S. R. et al. [17] introduced the 

Convolutional Stacked AutoEncoder Recurrent 

Neural Network (CSAERNet) as an efficient deep 

learning architecture for classification. This 

involved utilizing a convolutional neural network 

(CNN) to extract features from an input, feeding 

these features into a stacked autoencoder (SAE) for 

dimensionality reduction, and finally passing the 

reduced dimensions into a recurrent neural network 

(RNN) to enhance accuracy [17]. 

Fan, S. et al. [5] suggested a plant recognition 

approach based on a deep fully convolutional 

network with feature fusion (FCN-FF). Initially, the 

FCN-FF extracted hierarchical characteristics from 

optical remote sensing images and then fused high-

level and low-level information from a deep layer 

and a shallow layer to identify vegetation. The 

fusion of multiple layers of features improved the 

accuracy of vegetation recognition in complex 

images [5]. 

Sadeghi-Tehran, P. et al [12] developed a multi-

feature learning approach for measuring vegetation 

development in outdoor field situations. The newly 

proposed method was compared with state-of-the-

art and earlier learning approaches for digital 

images. The methods were evaluated under various 

environmental conditions using criteria such as (1) 

comparison with ground-truth photos, (2) variance 

over the course of a day due to variations in 

ambient lighting, (3) comparison with manual 

measurements, and (4) evaluation of performance 

over the course of a wheat canopy's life cycle. The 

authors claimed that the strategy successfully 

addressed environmental challenges encountered in 

field conditions [12]. 
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Traditionally, convolutional neural networks 

(CNNs) excel in local feature extraction but 

struggle to capture long-range correlations within 

images. Transformers' self-attention processes 

bridge this gap, providing a comprehensive 

understanding of vegetation patterns and leading to 

more accurate outcomes. Several studies suggest 

that Transformer-based models outperform 

traditional CNNs in fractional vegetation index 

(FVI) prediction accuracy. For instance, Efficient 

ViT achieves cutting-edge performance on remote 

sensing datasets, indicating its potential for high-

precision vegetation assessments. Transformers are 

capable of processing not only FVI values but also 

multiple vegetation index (VI) values 

simultaneously, providing a more complete picture 

of vegetation health and environmental conditions. 

This expands the range of possible applications for 

VI prediction tasks. 

The development of Vision Transformers (ViTs), 

a unique design that exploits the power of attention 

processes to capture long-range dependencies 

within images, has resulted in a paradigm change in 

computer vision research. Dosovitskiy et al. first 

developed ViTs, which have exhibited 

extraordinary performance in a variety of visual 

comprehension tasks, challenging convolutional 

neural networks' (CNNs) long-standing 

supremacy[4]. 

The attention mechanism is central to ViTs, 

allowing the model to selectively focus on 

significant sections of the input image while taking 

into account their interactions with other regions. 

This is accomplished by the self-attention operation, 

which computes the pairwise similarities of all 

input pieces, allowing the model to capture 

complex spatial and semantic linkages [14]. 

The ViT attention mechanism is inspired by the 

Transformer architecture, which was first 

developed for natural language processing tasks 

[14]. Images, on the other hand, are two-

dimensional entities by definition, as opposed to 

sequential data in words. To adapt Transformers to 

the visual domain, ViTs divide the input picture 

into non-overlapping patches, which are then 

linearized and fed sequentially into the Transformer 

encoder [4]. 

III. METHODOLOGY 

The model is made up of the Patch embedding 

layer, the encoder layer, and the linear layer. In 

order to accurately predict vegetation indices (VIs), 

the EfficientVisionTransformer utilizes a well-

coordinated pipeline. The first stage, patch 

embedding, divides the input image into smaller 

patches, making them more manageable for further 

processing. Each patch is then projected into a high-

dimensional vector that captures its main features. 

This stage, similar to linear convolutional filters 

collecting local information, lays the foundation for 

subsequent processing. 

After patch embedding, the model rearranges 

these vectors into a sequence compatible with the 

Transformer encoder. This is where the power of 

multi-head attention comes into play, allowing the 

model to attend to multiple sections of the image 

simultaneously. The model dynamically establishes 

and re-establishes associations between different 

patches, just like a language model deriving context 

from words in a sentence. Through these complex 

attention mechanisms, the model captures intricate 

long-range relationships within the image, which 

are crucial for interpreting subtle vegetation 

patterns. 

The Transformer encoder incorporates feed-

forward layers, which introduce non-linearity and 

expressiveness to these dependencies. Finally, by 

averaging the attention outputs across patches, a 

global context is generated, resulting in a single 

vector that summarizes the entire image. This 

vector is then fed into the final layer, a linear 

decoder, which predicts the VI value. Two notable 

enhancements used in the model are sandwich 

encoder layers and cascaded group attention, which 
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greatly improve efficiency. These strategies 

effectively coordinate information flow and 

attention mechanisms, enabling the model to 

achieve state-of-the-art accuracy while remaining 

computationally feasible. 

In summary, the EfficientVisionTransformer 

integrates multiple stages, ranging from local 

feature extraction to global context building, to 

produce precise and efficient VI predictions. This 

paves the way for novel applications in vegetation 

monitoring and ecosystem management. To 

summarize the key points: 

3.1. Patch Embedding Layer 

1)  Division: Divides the input image into 

16x16 pixel patches (3 channels for RGB).

2)  Embedding: Utilizes a convolutional layer 

to embed each patch into a 600

vector. 

3)  Spatial Preservation: Maintains patch 

placements to improve spatial awareness.

3.2. Transformer Encoder 

Encoder Layers: The Transformer consists of six 

encoder layers. 

Multi-Head Attention: Each layer employs multi

head attention with 8 heads, allowing for parallel 

attention to different regions of the 

deeper understanding. 

Feed-Forward Network: Each layer includes a 

feed-forward network with 2048 hidden units, 

introducing non-linearity and greater 

expressiveness. 

3.3. Linear Decoder 

Encoder Layers: The Transformer consists of six 

encoder layers.The training procedure of the 

EfficientVisionTransformer aims to minimize the 

Mean Squared Error (MSE) between its predicted 

vegetation indices (VI) and the actual values for 

aerial photographs. To achieve this, a dataset 
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paves the way for novel applications in vegetation 
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Division: Divides the input image into 

16x16 pixel patches (3 channels for RGB). 

Embedding: Utilizes a convolutional layer 

to embed each patch into a 600-dimensional 

Spatial Preservation: Maintains patch 

improve spatial awareness. 

Encoder Layers: The Transformer consists of six 

Head Attention: Each layer employs multi-

head attention with 8 heads, allowing for parallel 

attention to different regions of the image for 

Forward Network: Each layer includes a 

forward network with 2048 hidden units, 

linearity and greater 

Encoder Layers: The Transformer consists of six 

s.The training procedure of the 

EfficientVisionTransformer aims to minimize the 

Mean Squared Error (MSE) between its predicted 

vegetation indices (VI) and the actual values for 

aerial photographs. To achieve this, a dataset 

consisting of 3700 training phot

images, and 16 test images is utilized. Each image is 

in the RGB format and has dimensions of 600x600, 

encoding valuable data on vegetation.

The primary training loop operates over multiple 

epochs and generates VI predictions through a 

forward pass on the training images. The MSE loss 

between these predictions and the ground truth 

labels guides the model's improvement via a 

backward pass and weight updates facilitated by the 

Adam optimizer. The training and validation losses 

are continuously monitored during the procedure, 

providing insights into the learning progress of the 

model. 

Fig. 1   Efficient model development diagram

Two key optimization strategies, pruning and 

quantization, are employed to enhance the 

efficiency and deployment potential of the model. 

The pruning strategy systematically removes 

insignificant weights from the model, reducing its 

size and mitigating the risk of overfitting. Notably, 

starting from the fourth epoch, a 40% pruning rate 

was implemented. On the other hand, quantization 

involves converting the 32

weights to 8-bit integers. This conversion 

significantly reduces the model's memory footprint 

and potentially offers computational advantages 

during deployment. 
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In addition to these optimization techniques, the 

training procedure incorporates an accurate loss 

function and effective data calibration strategies to 

further improve the EfficientVisionTransformer. 

This includes scaling the input data using a scalar 

function before training and using an inverse 

transformation function during inference to 

calibrate on the test data. This prior information 

aids in iterative model training, enabling precise VI 

predictions and facilitating the model's suitability 

for efficient real-world applications. 

 

TABLE I 

CALIBRATION SET (EPOCH = 5) 

S/N Training Calibration set 

1 1 Min = 0 (initialization set) 

Max = 1 

2 2 Min = 1 

Max = 6 

3 3 Min = 1.8 

Max = 7.10 

 

TABLE II 
PRUNING AND QUANTIZATION SCHEDULE 

Epoch Pruning Quantization 

1 0 int8 

2 None None 

3 None None 

4 40 Int8 

5 None  None 

 

IV. RESULTS AND DISCUSSION 

With its complexity of 17 million parameters, the 

model possesses the necessary intricacy to 

effectively learn complex vegetation patterns, a 

crucial factor in ensuring accurate vegetation index 

(VI) prediction. It manages to strike a practical 

balance by maintaining a relatively compact size of 

only 155 MB, making it well-suited for 

implementation on devices with limited memory 

capacity. The model's efficiency is exemplified by 

its remarkably fast CPU inference time of 606 

milliseconds, allowing for near-real-time VI 

insights. This capability opens up possibilities for 

various applications, such as precision agriculture 

and environmental monitoring. Furthermore, the 

model operates seamlessly with a memory footprint 

of 362 MB, ensuring uninterrupted performance. 

The EfficientVisionTransformer presents a 

compelling combination of accuracy and efficiency, 

presenting numerous opportunities in the field of VI 

prediction, ranging from agricultural management 

to environmental research. 

The model demonstrates exceptional accuracy, as 

demonstrated by the following metrics: 

TABLE III 
DESCRIPTIVE METRICS 

S/N Metrics Value 

1 Mean Absolute 

Error 

0.03823 

2 Mean Square 

Error 

0.00299 

3 Root Mean 

Square Error 

0.04582 

4 R-Squared 0.98556 

A. Low average errors: The model exhibits a 

Mean Absolute Error (MAE) of 0.03823 and a Root 

Mean Square Error (RMSE)  of 0.04582. These 

values indicate that the model's predictions closely 

align with the true values, with minimal variances. 

B. Strong goodness-of-fit: The high R-squared 

value of 0.98556 signifies a significant 

correspondence between the model's predictions 

and the actual data. This suggests that the model 

successfully captures the underlying patterns and 

relationships. 
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C. Adaptability across scales: The consistency 

of the MAE and RMSE values showcases the 

model's accuracy regardless of the scale used for 

error measurement. This substant

reliability of the model across various evaluation 

frameworks.

Fig. 2Scatter Plot 

The scatter plot representing predictions versus 

ground truth exhibits a generally positive linear 

correlation, suggesting that the model s

captures certain inherent data patterns. Nevertheless, 

there are notable deviations from the optimal 45

degree line, signifying potential areas for further 

improvement. Meanwhile, a histogram illustrating 

prediction errors displays a reasonably

distribution centered around zero, which is typically 

desirable. However, the small sample size poses 

challenges in corroborating this normality.

Fig. 3 Model output 

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 

         Available at www.ijsred.com

©IJSRED: All Rights are Reserved 

Adaptability across scales: The consistency 

of the MAE and RMSE values showcases the 

model's accuracy regardless of the scale used for 

error measurement. This substantiates the 

reliability of the model across various evaluation 

 

The scatter plot representing predictions versus 

ground truth exhibits a generally positive linear 

correlation, suggesting that the model successfully 

captures certain inherent data patterns. Nevertheless, 

there are notable deviations from the optimal 45-

degree line, signifying potential areas for further 

improvement. Meanwhile, a histogram illustrating 

prediction errors displays a reasonably normal 

distribution centered around zero, which is typically 

desirable. However, the small sample size poses 

challenges in corroborating this normality.

 

Fig. 4 Distribution of Prediction 

V. CONCLUSIONS 

The study presents the 

EfficientVisionTransformer (EVT) as a novel 

solution for predicting the Fractional Vegetation 

Index (FVI) in order to overcome limitations in 

current vegetation monitoring systems. By 

developing EVT, which incorpo

attention mechanisms and streamlined calculations, 

the study addresses the issues associated with 

resource-intensive and less effective approaches. 

This advancement allows EVT to achieve 

exceptional accuracy in FVI prediction while 

utilizing fewer processing resources. EVT 

efficiently processes local information and 

establishes global context by integrating patch 

embedding, Transformer encoder layers, and a 

linear decoder, resulting in accurate and rapid VI 

predictions. Future research opportun

further enhancing the EVT model to improve 

prediction accuracy and reduce processing 

requirements for widespread implementation. 

Exploring applications beyond vegetation 

monitoring, such as climate change analysis and 

urban development planning, could enhance the 

usefulness of EVT. Additionally, expanding 

datasets and developing methodologies for real

time applications would enhance the model's ability 

to generalize and be practical in supporting 

informed decisions for ecosystem health, 

sustainable land management, and environmental 
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conservation. In conclusion, the Efficient Vision 

Transformer represents a significant advancement 

in vegetation monitoring, combining precision, 

efficiency, and scalability to enable precise 

ecosystem assessments and informed decision-

making. 

ABBREVIATIONS 

CNN: Convolutional Neural Network 

CPU: Central Processing Unit 

EVT: EfficientVisionTransformer 

FVC: Fractional Vegetation Cover 

FVI: Fractional Vegetation Index 

MAE: Mean Absolute Error 

MB: Megabyte 

MSE: Mean Square Error 

NDVI: Normalized Difference Vegetation Index 

OLI: Operational Land Imager 

RGB: Red Green Blue 

RMSE: Root Mean Square Error 

SAE: Stacked AutoEncoder 

SMA: Spectral Mixture Analysis 

TM: Thematic Mapper 

VI: Vegetation Index 

ViT: Vision Transformer 
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