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Abstract 

The main idea of this review paper is to make understandable the idea of differentiable 

manifolds using Lie groups . As recounted in this paper, the idea of groups is one that has 

evolved from some very intuitive concepts. We can do binary operations like adding or 

multiplying two elements and also binary operations like taking the square root of an element 

(in this case the result is not always in the set). In this paper, we aim to find the operations 

and actions of Lie groups on manifolds. These actions can be applied to the matrix group and 

Bi-invariant forms of Lie groups and to generalize the eigenvalues and eigen functions of 

differential operators on n . A Lie group is a group as well as differ-entiable manifold, with 

the property that the group operations are compatible with the smooth structure on which 

group manipulations, product and inverse, are distinct.This paper presents an overview of 

differentiable manifolds, focusing on their definition, prop-erties, and significance. Beginning 

with the basic definitions of smoothness and charts, we explore the construction of 

differentiable structures on topological spaces. We delve into tangent spaces, differential 

forms, and vector fields, elucidating their role in defining smooth functions and mappings 

between manifolds. Additionally, we discuss important theorems such as the inverse function 

theorem and Stokes’ theorem, showcasing their relevance in manifold theory. Finally, we 

touch upon applications in geometric model-ing, general relativity, and gauge theory, 

underscoring the manifold’s importance across disciplines. It plays an extremely important 

role in the theory of fiber bundles and also finds vast applications in physics. It represents the 

best-developed theory of continuous symmetry of mathematical objects and structures, which 

makes them indispensable tools for many parts of contemporary mathematics, as well as for 

modern theoretical phys-ics. Here we did work flat out to represent the mathematical aspects 

of Lie groups on manifolds.Differentiable manifolds, a fundamental concept in differential 

geometry, find widespread applications across various fields of mathematics, physics, and 

engineering. This abstract provides a concise overview of some notable applications of 

differentiable manifolds. 

As in theoretical physics, differentiable manifolds serve as the mathematical frame-work 

for formulating theories such as general relativity. The spacetime continuum is modeled as a 

four-dimensional differentiable manifold, where curvature encodes gravita-tional effects. This 

application has profound implications in understanding the dynamics of celestial bodies, 

black holes, and the structure of the universe. In robotics and control theory ifferentiable 

manifolds play a crucial role in modeling the configuration spaces of robotic systems. By 

representing the possible configurations of robot joints as points on a manifold, researchers 

can develop efficient algorithms for motion planning, trajectory optimization, and control 

synthesis. These applications find practical use in robotic ma-nipulation, autonomous 

vehicles, and industrial automation. In machine learning and data analysis manifold learning 

techniques aim to uncover the underlying structure of high-dimensional data by 

approximating it as a lower-dimensional manifold embedded in the ambient space. 
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Algorithms such as t-SNE (t-distributed Stochastic Neighbor Em-bedding) and Isomap 

leverage differential geometry principles to perform dimensionality reduction and visualize 

complex datasets. These methods facilitate exploratory data ana-lysis, pattern recognition, and 

feature extraction tasks in machine learning. 

 

Keywords Group, Abelian Group,Lie Groups, Smooth Mapping, tangent space, directional 

derivat-ive. 
 
 

Introduction 
In the present era, the study of the group related to the Lie group is essential for the sake of its 

comprehensive applications in several fields. 
 

Through the mathematical analysis, representations of groups on the manifold are vital due to it 

allows many group-theoretic problems in form of linear algebra problems, which is well perceived. 

However, Lie groups were studied by Marius Sophus Lie (1842-1899) for the very first time , who 

used it to solve ordinary differential equations. Lie groups and Lie algebras, together with acquainted 

Lie theory which plays an effective role in the branch of pure and applied mathematics that is utilized 

in modern physics as well as an active area of research. This is an introductory course on 

differentiable manifolds.By the literature view, we can observe that many researchers have 

endeavored to analyze and discuss the importance of operations and actions of Lie groups on 

manifolds in various fields.In the present tasks, we discussed the Group and Abelian groups also 

Subgroups with the Lie 

groups based on the smooth manifolds that assist us to understand the properties and actions 

of the Lie groups on Manifolds. We also reveal some example which shows a clear view of 

operations and actions of Lie groups on Manifolds. 
 

This paper contains the following sections. In the first section I will try to explain the 

inside details of algebraic structure of g. In the next section I will discuss their advantages and 

disadvantages. At the end, Conclusion will be given. 

 

1. Group 
Group theory studies the algebraic structures known as groups. The concept of a group is 

central to abstract algebra: other well-known algebraic structures, such as rings, fields, and 

vector spaces. 
 

A group is a set G equipped with a binary operation: G × G → G that associates an element ab 

∈ G to every pair of elements a, b ∈ G, and having the following properties:  

· is associative, has an identity element e ∈ G, and every element in G is invertible (with 

respect to ·). More explicitly, this means that the following equations hold for all 

a, b, c ∈ G: 

 

(i)  (a · b) · c = a · (b · c)  (associativity).  

(ii) ae = ea = a  (identity). (1)
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(iii)F or every a ∈ G, there is some a
−1

 ∈ G such that −1
 = a

−1
a = e. (inverse). 

 (2)

 

Otherwise, we say two elements, g1 and g2 of a group commute with each other if their 

product is independent of the order, i.e., if g1g2 = g2g1. If all elements of a given group 

commute with one another then we say that this group is Abelian. 

 

1.0.1 Example 

The real numbers under addition or multiplication (without zero) form an Abelian group. The 

cyclic groups Zn are Abelian for any n (n is a natural number ). The symmetric group Sn is 

not Abelian for n > 2 , but it is Abelian for n = 2. Simplexes are building blocks of a 

polyhedron. 

 

1.1 Isomorphism and Homomorphism in Groups 
1.1.1 Isomorphism 
Two groups G1 and G2 are isomorphic if we can put their elements into a one-to-one cor-respondence 

which is preserved under the composition laws of the groups. The mapping 

 
 
 
 
 
 

 

Figure 1: The elements of S2 
 

 

between these two groups is called an isomorphism. 

 

1.1.2 Homomorphism 
 

If group G1 being mapped into another group G2 but not in a one-to-one manner, i.e. two or 

more elements of G1 are mapped into just one element of G2. If such mapping respects the 

product law of the groups we say they are homomorphic. The mapping is then called a 

homomorphism between G and G’. 

 
 

2. Subgroup 
 

Given a group G, a subset H of G is a subgroup of G if and only if: 

 

1. The identity element e of G also belongs to H (e ∈ H); 
 

2. For all h1, h2 ∈ H, we have h1h2 ∈ H; 
 

3. For all h ∈ H, we have h
−

1 ∈ H. 
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It is easily checked that a subset H ⊆ G is a subgroup of G if and only if H is nonempty 

and whenever h1, h2 ∈ H, then h1h
−

2
1
 ∈ H. 

 

2.1 Definition 
 

A subset H of a group G which satisfies the group postulates under the same composition law 

used for G, is said to be a subgroup of G. The identity element and the whole group G itself 

are subgroups of G. They are called improper subgroups. All other subgroups of a group G 

are called proper subgroups. If H is a subgroup of G, and K a subgroup of H, then K is a 

subgroup of G. article 

2.2 Theorem: 
 

The order of a subgroup of a finite group is a divisor of the order of the group. 

Proof: 
 

For a finite group G of order m with a proper subgroup H of order n, we can write m = kn, 

where k is the number of disjoint sets gH. The set of elements gH are called left cosets of H in 

G. They are certainly not subgroups of G since they do not contain the identity element, 

except for the set eH = H. Analogously, we could have split G into sets Hg, which are formed 

by elements of G that differ by an element of H multiplied from the left. The same results 

would be true for these sets. They are called right cosets of H in G. The set of left cosets of H 

in G is denoted by G/H and is called the left coset space. An element of G/His a set of 

elements of G, namely gH. 
 

Analogously, the set of right cosets of H in G is denoted by G/H and it is called the right 

coset space. If the subgroup H of G is an invariant subgroup, then the left and right cosets are 

the same since g1Hg
−

1H = e implies gH = Hg. In addition, the coset space G/H, for the case in 

which H is invariant, has the structure of a group and it is called the factor group or the 

quotient group. To show this, we consider the product of two elements of two different cosets. 

We get 

gg
′
Hg
′′
H ≡ (gg

′
H)g

′′
H = g(g

′
Hg
′′
H). (3) 

 

where we have used the fact that H is invariant, and therefore there exists h ∈ H such that gg′ 

= g′′h. Thus, we have obtained an element of a third coset, namely gg′′H. If we had taken any 

other elements of the cosets gH and g′H, their product would produce an element of the same 

coset gg′′H. Consequently, we can introduce, in a well-defined way, the product of elements 

of the coset space G/, namely 

(gH)(g
′
H) ≡ gg

′′
H. (4)

 

The invariant subgroup H plays the role of the identity element since 

 

(gH)(H) = gH. (5)

The inverse element is g−1H since 
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(gg
−1

H)(H) = gH. (6) 
 

The associativity is guaranteed by the associativity of the composition law of the group G. 

Therefore, the coset space G/H and G/H is a group in the case where H is an invariant 

subgroup. Such a group is not necessarily a subgroup of G or H. 
 

This completes the proof of the theorem. 
 

3. Lie Group 
 

Let G be a differentiable manifold having group structre on it that the group operations. 
 

i) G×G → G , (g1,g2 )→ g1.g2 i 

i) G →G , g →g−1 
 

The elements of Lie group G are differentiable. It can be shown that G has a unique 

analytic structure with which the product and the inverse operations are written as a 

convergent power series. 
 

The unit element of a Lie group is written as e. The dimension of a Lie Group G is defined 

to be the dimension of G as a manifold. The product symbol may be omitted, and g1g2 is 

usually written as g1g2. 

 

3.1 Example of Lie groups 
 

1. Rn with addition as the group operation and with the usual differential structure is a Lie 

group. 

 
2. S1 considered as the subset of 

 
z € C :|z| = 1 of C with the usual multiplication in C as the group operation and with the 

smooth structure introduced is a Lie group. 

 
3. A most important example is G7(n,IR). This is a Lie group with the smooth struc-ture 

and with the matrix multiplication as its group operation. You should check the détruis 

of this example instead of taking for granted, as this will make you realize the 

significance of some of our earlier exercises and examples. 
 

4. The manifold O(n,IR) is a Lie group with the smooth structure we have introduced earlier. 

In a similar way we can turn U(n), SU(n) and Sl(n,IR) into smooth man-ifolds. They are all 

Lie groups with these smooth structures and with the matrix multiplication. The reader 

should try to prove this. This is a special case of Cartan’s theorem which says that any 

closed subgroup of a Lie group is a Lie (sub)group. 

. 

3.2 Theorem 
 

SL(n, R) is a Lie group. 
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Proof 
 

To prove that SL(n, R) is a Lie group, we need to show that it is a smooth manifold and that 

the group operations are smooth.Let f : GLn → R be given by f(A) = det(A). The level set 

f
−

1(1) is given by, 

{A ∈ SLn | det(A) = 1}. 
 

The Special Linear Group. The derivative of f is surjective at a point A ∈ GLn, making SL(n) 

into a Lie group. Such that 
 

lim det(I + hB) − det(I) = tr(B),  
h→0 h 

 

implying that     

lim det(A + hB) − det(A) = lim det(1 + hA
−1

B) − 1 = tr(A
−1

B), 

h h h→0 h→0    

since det(1) = 1 for any k ∈ R. We can take the matrix kI − A to obtain 

 

A · df(B) = tr(I) ·  (kI − A)
−1

, 

therefore df(A) is surjective for every A ∈ SLn. Consequently, SL(n) is a submanifold of 

GL(n). Therefore, the group multiplication and inversion are differentiable, so SL(n) is a Lie 

Group. 
 

4. Tangent Space 
The tangent space TpM at a point p in a manifold M is defined as the set of all tangent vectors 

to M at p. article amsmath 

The tangent space at a point p is denoted by Tp.article amsmath amssymb 
 

Let M be a smooth manifold, and p ∈ M. Let C∞(p) be the set of R-valued smooth 

functions defined in a neighborhood of p. Thus, if f ∈ C∞(p), then there exists a neigh-

borhood Uf (which depends on f) of p such that f is defined and C
∞

 on Uf . 

 

4.1 Definition 
 

A tangent vector v at a point p ∈ M is a mapping from C∞(p) to R enjoying the following 

properties: 
 

1. v(f) ∈ R, for all f ∈ C∞(p). 
 

2. v(af + bg) = av(f) + bv(g) for a, b ∈ R and f, g ∈ C∞(p). This equality is on R. 
 

3. v(f g) = f(p)v(g) + v(f)g(p). 
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Thus a tangent vector is a “linear functional” on C∞(p) (by 1) and 2)) and it satisfies a Leibnitz 

type rule 3). Now the question is whether there exists any nonzero tangent vector at p. (0 defined 

by 0(f) = 0 is trivially a tangent vector!) Let us denote by TpM the set of all tangent vectors at p to 

M. We wish to show that TpM has nontrivial elements. 
 

Let (U, φ) be a coordinate chart. We say it is centered at p if φ(p) = 0. (There always exist 

such charts.) Let xi be the corresponding coordinate functions on U. Then for any 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Illustration of tangent space ,tangent vector and geodesics. 

f ∈ C∞(p), we define 
∂f 

v(f) := ∂xi (p). 
  

Then it is easy to check that v ∈ TpM. They are nontrivial since if we take f = xi, then v(x
i
) − 

v(x
j
 ) = ∂xi

 (0) = δ
i
 . 

 

∂xk 
k 

More generally, let γ : (−ε, ε) → M be any smooth curve through p. Then we define γ
′
(0)  

by setting for any f ∈ C∞(p) 

(γ
′
(0))(f) := 

d 
(f ◦ γ). 

  

dt 
   t=0 

 

We claim that γ′(0) is a tangent vector at p. 
 

γ 
′
(0)(f + tg) = γ

′
(0)(f) + γ

′
(0)(tg) 

 

= (γ
′
(0))(f) + (γ

′
(0))(g) 

   d d  

=  

  

t=0(f ◦ γ)  + 

  

(g ◦ γ) dt 
dt

 t=0 

 d    

= 

 

t=0((f + tg) ◦ γ) 

   

dt    

= γ
′
(0)(f) + γ

′
(0)(g).    

 

Now why is this more general than the earlier example? For, the tangent vector vi|p is γ
′
(0) 

of the i-th coordinate curve γ : t (0, ..., 0, t, 0, ..., 0). (Exerc 
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It is very easy to see that the set TpM of tangent vectors at p to M form a vector space 

over R in an obvious way. For a ∈ R and v1, v2 ∈ TpM, we set av(f) := a · v(f) and (vγ
′
(θ) and 

(v1 + v2)(f) := v1(f) + v2(f). 
 

4.2 Example 
 

. Consider the sphere 
 

S
2
 = x

2
 + y

2
 + z

2
 = 1 

 

in R
3
.  

We want to find the plane passing through the north pole N(0,0,1) that is “closest” to the sphere. 
 

The classics would refer to such a plane as an osculator plane. 
 

The natural candidate for this osculator plane would be a plane given by a linear 

equation that best approximates the defining equation 

x
2
 + y

2
 + z

2
 = 1 

in a neighborhood of the North pole. The linear approximation of 
 

x
2
 + y

2
 + z

2 

 

near N seems like the best candidate. We have 
 

x
2
 + y

2
 + z

2
 − 1 = 2(z − 1) + O(2) 

 

Hence, the osculator plane is z = 1, 
 

Geometrically, it is the horizontal affine plane through the North pole. The linear 

subspacez = 0 ⊂ R3 is called the tangent space to S2atN. 

 

Conclusion 
Linear algebraic groups and Lie groups are two branches of group theory that have ex-

perienced advances and have become subject areas in their own right. From this paper, 

we have seen that Lie group embodies three different forms of mathematical structure. 

Firstly, it has a group structure. Secondly, the elements of this group also form a “topo-

logical space” so that it may be described as being a special case of “topological group”. 

Finally, the elements also constitute an “analytic manifold”. More generally Lie groups 

are differentiable manifolds which have very important consequences on Manifolds 

which are locally Euclidean spaces. We have summarized that by using differentiable 

structure, we can approximate the neighbourhood of any point of a Lie group by a 

Euclidean space which is the tangent space to the Lie group at that particular point. This 

approximation is some sort of local linearization of the Lie group.Thus we see that Lie 

groups provides us tools to generalised the abstract concepts in mathematical way. 
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