
                              

 Page 1 

Design And Implementation Of Low Power Stochastic Computing 
For Atrial Fibrillation Data Analysis 

 
Mrs. B. Sujitha[1], M.E., K.Kathiravan2, Niranjan.B3,Mathiyazhagan.C4,Gokul Raaj.R5 

1,Assistant Professor, Electronics & Communication Engineering, Dhanalakshmi Srinivasan Engineering 
College (Autonomous), Perambalur, Tamil Nadu. 

2,3,4,5UG - Electronics & Communication Engineering, Dhanalakshmi Srinivasan Engineering College 
(Autonomous), Perambalur, Tamil Nadu. 

1 sujiece10@gmail.com, 23200748@dsengg.ac.in,33201007@dsengg.ac.in , 
 43200905@dsengg.ac.in,53200902@dsengg.ac.in, 
 

----------------------------------------************************----------------------------------

Abstract: 
          The implementation of biologically-inspired artificial neural networks such as the Restricted 
Boltzmann Machine (RBM) has aroused great interest due to their high performance in approximating 
complicated functions. A variety of applications can benefit from them, in particular machine learning 
algorithms. In the existing system, an efficient implementation of a DNN based on integral stochastic 
computing. The proposed architecture has been implemented. quasi-synchronous implementation which 
yields 33% reduction in energy consumptions is implemented. In the proposed approach, low power 
stochastic computing based block processing unit is implemented. The frame of data is processed block 
wise. These data are further tested with correlation and decorrelation function. The normal and abnormal 
classification of atrial fibrillation data is proposed. The mathew’s correlation constant (MCC) is 
formulated.” 
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I.     INTRODUCTION 

Atrial Fibrillation (AFib) is a common heart 
rhythm disorder characterized by irregular and 
often rapid heartbeats. Wearable devices, such as 
smartwatches and fitness trackers, have become 
increasingly popular tools for monitoring health 
parameters, including heart rhythm. Here's how 
wearable devices can play a role in detecting and 
managing atrial fibrillation: 

Heart Rate Monitoring: Wearable devices 
equipped with heart rate sensors continuously 
monitor the user's heart rate. AFib is often 

associated with an irregular heart rate, and 
wearables can alert users to significant deviations 
from the normal rhythm. ECG/EKG Monitoring: 
Some advanced wearables feature built-in 
electrocardiogram (ECG or EKG) sensors. Users 
can take on-demand ECG recordings, providing a 
more detailed analysis of the heart's electrical 
activity.The data generated can be shared with 
healthcare professionals for diagnosis and 
monitoring. 

 
Pulse Wave Analysis: Certain wearables use 

pulse wave analysis to detect irregularities in blood 
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flow, which may indicate AFib. This technology 
analyzes the subtle variations in the pulse wave to 
identify irregular heart rhythms. Real-time 
Notifications: Wearables can provide real-time 
notifications to users when an irregular heart 
rhythm, including AFib, is detected. These 
notifications may prompt users to seek medical 
attention or consult with their healthcare provider. 
Long-Term Monitoring:Wearables offer the 
advantage of continuous, long-term monitoring, 
providing a more comprehensive view of heart 
health. 

Trends and patterns over time can be valuable in 
identifying intermittent occurrences of AFib. 
Integration with Health Apps: Wearable devices 
often integrate with health apps on smartphones, 
allowing users to track and analyze their heart 
health data over time. This integration facilitates 
data sharing with healthcare professionals during 
medical appointments. 

Research and Population Health: Aggregated and 
anonymized data from wearables can be used in 
research studies and population health initiatives to 
gain insights into the prevalence and patterns of 
AFib. User Education and Engagement: Wearables 
can play a role in educating users about AFib, its 
symptoms, and the importance of seeking medical 
advice. They can encourage users to adopt heart-
healthy habits and lifestyles. 

It's important to note that while wearables can be 
valuable tools for AFib detection and monitoring, 
they are not a replacement for professional medical 
advice and diagnosis. Users should consult with 
healthcare professionals for a comprehensive 
evaluation and interpretation of their heart health 
data. Additionally, regulatory bodies may require 
validation of the accuracy and reliability of the 
AFib detection features in wearable devices. 

 

II.     RELATED WORKS 

In the field of energy-efficient Deep Neural 
Network (DNN) implementations, ongoing research 
continues to explore various approaches and 
methodologies. Some recent related works include: 

 
Hardware Accelerators for DNNs:  

Researchers are developing specialized hardware 
accelerators tailored for DNN computations. These 
accelerators aim to optimize performance while 
minimizing energy consumption, leveraging 
techniques such as parallel processing, reduced 
precision arithmetic, and specialized architectures 
like systolic arrays or tensor processing units. 

Spiking Neural Networks (SNNs): SNNs 
represent another avenue for energy-efficient neural 
network implementations. Inspired by biological 
neurons, SNNs use sparse, event-based computation, 
enabling significant energy savings compared to 
traditional DNNs. Recent research focuses on 
optimizing SNN architectures, training algorithms, 
and hardware implementations for various 
applications. 

Quantum Computing: Quantum computing holds 
promise for revolutionizing machine learning and 
DNNs. Quantum neural networks (QNNs) leverage 
quantum properties like superposition and 
entanglement to perform computations more 
efficiently than classical computers. Recent works 
explore quantum algorithms, architectures, and 
hardware implementations tailored for DNN tasks. 

Neuromorphic Computing: Neuromorphic 
computing architectures mimic the structure and 
function of the human brain, offering potential 
energy efficiency benefits for DNNs. Recent 
research investigates neuromorphic hardware 
designs, synaptic plasticity mechanisms, and spike-
based learning algorithms to achieve energy-
efficient and scalable neural network 
implementations. 

Software Optimization Techniques: In addition to 
hardware innovations, researchers are exploring 
software optimization techniques to improve energy 
efficiency in DNNs.  

This includes techniques such as model 
compression, pruning, quantization, and algorithmic 
optimizations, which reduce computational 
complexity and memory requirements without 
sacrificing accuracy. 

These recent related works collectively contribute 
to advancing the state-of-the-art in energy-efficient 
DNN implementations, offering diverse approaches 
and solutions to address the pressing need for 
sustainable and scalable computing technologies. 
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III. OUR OBSERVATIONS ON THE 

EXISTING SYSTEM 

In the existing system, an efficient 
implementation of a DNN based on integral 
stochastic computing. The proposed architecture 
has been implemented. quasi-synchronous 
implementation which yields 33% reduction in 
energy consumptions is implemented. 

The implemented system presents an innovative 
approach to Deep Neural Network (DNN) 
implementation, leveraging integral stochastic 
computing principles. This method, which 
represents numbers in binary format using 
probabilities, promises advantages such as reduced 
hardware complexity and potentially lower power 
consumption. The architecture proposed for this 
system has been successfully put into practice, 
marking a significant step forward in the 
application of stochastic computing to DNNs. 
Notably, the implementation adopts a quasi-
synchronous approach, optimizing the coordination 
of operations to suit the stochastic computing 
paradigm. This adaptation contributes to a 
remarkable achievement: a 33% reduction in energy 
consumption compared to existing systems. Such a 
substantial improvement in energy efficiency holds 
great promise for various applications reliant on 
DNNs, from mobile devices to data centers. By 
addressing the pressing need for energy-efficient 
computing solutions, this advancement could pave 
the way for more sustainable and cost-effective 
technologies.  

In summary, the integration of integral stochastic 
computing into DNN architectures, coupled with 
quasi-synchronous implementation, marks a 
significant milestone in the pursuit of energy-
efficient computing paradigms. 

Disadvantages 
Complex architecture with quasi-generator 
Correlation score need to be improved.  
 

IV. THE PROPOSED SYSTEM 

The proposed methodology introduces a novel 
approach to processing data efficiently, utilizing a 
low-power stochastic computing-based block 
processing unit. By breaking down data into 
manageable blocks, the system optimizes 

computational resources, making it particularly 
adept at handling large datasets. This approach is 
especially relevant in applications such as the 
classification of atrial fibrillation data, where 
distinguishing between normal and abnormal 
patterns is crucial. 

 
Key to the evaluation process is the use of 

correlation and decorrelation functions, which help 
identify distinctive features within the data. By 
applying these functions, the system can 
differentiate between normal and abnormal cardiac 
rhythms, facilitating accurate classification. 

 
To assess the classification performance 

rigorously, the Mathew’s correlation constant 
(MCC) is formulated as a metric. The MCC 
provides a comprehensive measure of classification 
accuracy, accounting for true positives, true 
negatives, false positives, and false negatives. This 
ensures a robust evaluation of the classification 
process, validating its reliability and effectiveness 
in real-world scenarios. 

 
Through the integration of low-power stochastic 

computing techniques, block processing, and 
rigorous evaluation using MCC, the proposed 
methodology offers a powerful framework for 
efficient and accurate classification of complex data, 
such as that associated with atrial fibrillation. 

 

 
 
Fig. 1.* The proposed system 
 
MODULE 1: PRE-PROCESS 
The module consists of read file protocol code 

developed using VHDL. The synthesizable module 
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read the test data from MIT-BIH dataset stored in 
the local server.  

The data set is collected from different patients 
impacted by atrial fibrillation and normal data. the 
data are collected and stored into a temporary 
register.  

Further synchronized the peak values with 
respect to global clock of the VLSI system. 

MODULE 2: TEXT MAPPING & SIGNAL 
ANALYSIS 

The dataset consists of various levels of ECG 
patterns contains the peaks of P,Q,R,S,T values. 
The text mapping is nothing but the disease name 
labelling LUT to display as the notification. Signal 
analysis module is the Stochastic computations or 
otherwise called as neuromorphic computing. 
Stochastic computing is a computation paradigm 
where signals are represented as probabilities rather 
than binary values (0s and 1s). It finds applications 
in various fields due to its unique properties and 
advantages. 

 
 
 
Flow of neural core computing process 

 
Stochastic computing can be utilized in analyzing 

heart rate variability from ECG signals. HRV 
analysis provides valuable insights into autonomic 
nervous system activity and cardiovascular health. 
Stochastic computing algorithms can efficiently 
compute HRV parameters and assess the variability 
of heart rate patterns over time. 

MODULE 3 : INTEGRATION & 
PERFORMANCE MEASURE 

The process involves integrating submodules into 
the main module by utilizing port mapping. This 
allows for the seamless connection and 
communication between different components of 
the system. Once integrated, the system analyzes 
input heart rate data patterns and compares them to 
identify correlations with various cardiac conditions 
such as atrial fibrillation, cardiac arrest, arrhythmia, 
and normal heart rhythms. To facilitate this analysis, 
stochastic computation-based neural computations 

are employed to detect abnormalities present in the 
ECG data. These computations leverage the 
probabilistic nature of stochastic computing to 
efficiently process and interpret the complex signals 
inherent in ECG data. 

 
Fig.2. Flow Diagram 
 
 

V. CONCLUSIONS 

In conclusion, The project's advancements hold 
promise across various domains. In healthcare, the 
improved accuracy in classifying atrial fibrillation 
data can revolutionize diagnosis, aiding in timely 
treatments and better patient outcomes.  

Moreover, these techniques are adaptable to other 
biomedical signals like EEG and ECG, expanding 
their impact in medical diagnostics. Beyond 
healthcare, the emphasis on low-power computing 
benefits IoT and wearable devices, enabling 
continuous monitoring of vital signs for early 
detection of health issues.  

Additionally, the correlation and decorrelation 
functions employed in the project find applications 
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in data analytics, speech recognition, and image 
processing, enhancing pattern recognition 
capabilities across industries.  

Furthermore, the project's focus on implementing 
biologically-inspired neural networks contributes to 
advancements in machine learning algorithms, 
benefiting fields requiring complex function 
approximation.  

Overall, these innovations not only promise more 
accurate medical diagnostics but also drive progress 
in energy-efficient computing and machine learning, 
impacting various sectors and paving the way for 
future advancements in technology and healthcare. 
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