

AUTO-MATIC LEAF DISEASE DETECTION

Mr.S.C.Prabanand¹,Dr.M.S.Thanabal²,R.Shanmugapriya³,M.Vaishnavi⁴

¹Assistant Professor, Dept. Computer Science and Engineering, Nadar Sarawathi College of Engineering & Technology, Theni, TamilNadu, India

²Professor, Dept. Computer Science and Engineering, PSNA College of Engineering & Technology, Dindigul, TamilNadu, India

^{3,4}Student, Dept. Computer Science and Engineering, Nadar Sarawathi College of Engineering & Technology, Theni, TamilNadu, India.

Abstract: The semi-automatic leaf disease detection was find the particular trained images only and that could be find the particular disease. We will collect all the types of plants with the disease of plants using machine learning concept. Then we will include the soil types for plantation to the youngest formers. Our project automatic plant disease identifier not only for the plant's disease, but we console or figure out the plants like trees, herbs, shrubs etc. It also describes the description of scientific name of the plant and solution to the plant's disease. If the plants or leaf gets some disease, we will detect which disease will affect the plant or leaf then we will provide the symptoms and curing methods for maintenance. Definitely it will have used for the former that's why we will include the plant's plantation, types of soil and disease of the plant in this application.

Keywords: Leaf disease, Machine learning, k-means algorithm, androidapp

I. INTRODUCTION

The presence of a biotic and organic phenomenon factors reduces the performance of crop, despite the assembly improvement measures used. Any adverse symptom, caused by any issue, would have an effect on crop production, however will simply be discovered and controlled by gazing multiple components of a plant properly. The leaf, the foremost sensitive part of a plant, is thought to possess symptoms of unwellness prior to different components. In recent years, researchers have placed a great deal of effort into automating the unwellness detection method instead of adopting a tedious manual technique. Infection could have an effect on any part of plants however this study is concentrating exclusively on the leaves as they're famous to indicate symptoms at the earliest. Leaves infected with microorganism and plant life thought of throughout experiments. Fig 2. shows some pictures of every unwellness kind from Plant Village dataset in conjunction with traditional leaves. A correct understanding of prime unwellness symptoms would facilitate in planning associated degree economical detection system. A decent understanding of the

most symptomsoftheunhealthinesswouldfacilitateinplanningagooddetectionsystem.

Since, malady detection in plants plays a very important role within the agriculture field, as having a malady in plants area unit quite natural. If correct care isn't taken during this space then it will cause serious effects on plants and because of that individual product quality, amount or productivity is additionally affected. Plant diseases cause a periodic irruption of diseases that ends up in large-scaled death. These issues have to be solved at the initial stage, to avoid wasting life and cash of individuals. Automatic detection of plant diseases is a very important analysis topic because it could prove advantages in observation massive fields of crops, and at a really early stage itself it detects the symptoms of diseases means that once they seem on plant leaves. Farm landowners and plant caretakers (say, during a exceedingly in a very } nursery) might be benefited plenty with an early malady detection, so as to forestall the more serious to return to their plants and let the human apprehend what must be done beforehand for an equivalent to figure consequently, so as to forestall the more serious return to him too.

This enables machine vision that's to produce image-based automatic review, method management. Relatively, visual identification is labor intensive less correct and might be done solely in tiny areas. The project involves the utilization of self-designed image processing algorithms and techniques designed in Python to section the unwellness from the leaf whereas mistreatment the ideas of machine learning to reason the plant leaves as healthy or infected. By this technique, the plant diseases is known at the initial stage itself and therefore the tormentor and infection management tools is accustomed to solve the tormentor issues whereas minimizing risks to individuals and therefore the atmosphere.

Machine learning may be a technique of knowledge analysis that automates analytical model building. It's a branch of computing supported the thought that systems will learn from information, establish patterns and build choices with stripped-down human intervention. Machine learning is very important attributable to its wide selection of applications and its unimaginable ability to adapt and supply solutions to complicated issues expeditiously, effectively and quickly. Its goal is to create new and/or leverage existing algorithms to find out from information, so as to create generalizable models that provide correct predictions, or to seek out patterns, significantly with new and unseen similar information. That's why we have a tendency to take this domain.

This literature having 2 components, 1st half we are going to discuss the relevant literature on automatic unwellness detection exploiting symptoms leaves. The planned methodology and also the overall system description are provided in Section. Comparative analysis of the planned system with different existing works is provided. Many observations are mentioned giving conclusions and providing directions for the longer term work includes. Another half helps to the nursery, home husbandry and agriculture field.

II. METHODOLOGY

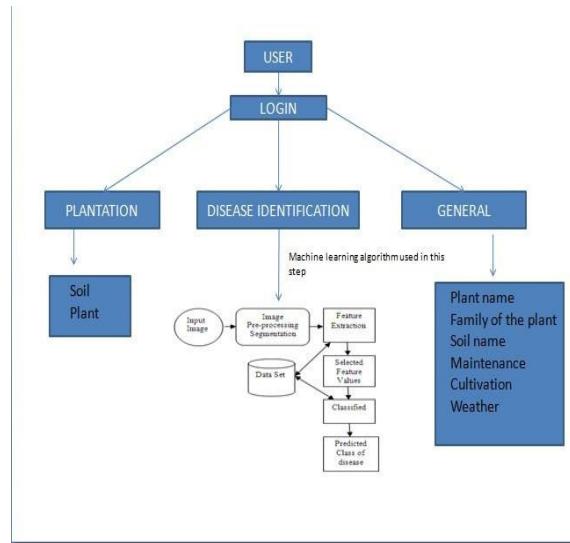


Fig.1 Architectural diagram for Automatic Leaf Disease Detection

III. EXISTING SYSTEM

A rule-based mostly semi-automatic system exploitation idea of k-means is intended and then forced to tell apart healthy leaves from morbid leaves. Additionally, a morbid leaf is classified into one in every of the 3 classes (downy mildew, frogeye, and leaf blight). Experiments area unit performed by separately utilizing color options, texture options, and their combinations to coach 3 models supported support vector machine classifier. Results are a unit generated exploitation thousands of pictures collected from PlantVillage dataset. Acceptable average accuracy values are a unit reportable for all the considered combos that also are found to be higher than existing ones.

CIELUV color zone used for identifying and segmenting leaves affected by the disease. Disease identification and management are important in raising the standard and quantity of agricultural production. Image processing technologies can be applied. During this technique we will apply the Segmentation for malady affected leaves. This paper proposes a malady detection and classification techniques with the help of machine learning algorithm and image process tools.

Initially we will capture the image of diseased leaf then we will use image processing technique in this app for identification. Finally we segment the leaves parts using by classifier.

Plant diseases within the field of agriculture will cause vital loss to the farmer. This ends up in decline within the quality and amount of the crop. Hence, it's important to spot and acknowledge the sort of disease so as to assist the farmer. This data will facilitate the farmer to require applicable call regarding increase in crop not compromising the standard. Manual strategies that are presently being

employed to sight plant diseases as aforementioned to be time overwhelming, since it needs professional recommendation and need huge manual effort. So as to beat these issues new technologies are being developed, that uses laptop vision and image processing techniques to sight varied diseases in plant. Results have shown that these strategies will manufacture quick, correct sickness detection and have smart economic importance. This projected work presents automatic system for classification of 3 vital plant diseases, particularly microorganism Blight, Leaf spot and Leaf Rust. This method uses K-means agglomeration for segmentation and Support Vector Machine (SVM) classifier for classification.

IV. PROPOSED SYSTEM

We will collect the all types of plants with their disease. We will use machine learning concept for detect the disease of the plants. Then we will include the soil types for plantation to the youngest formers for gardening. Definitely it will be used for the former that's why we will include the plant's disease, plantation, soil types in this app.

The process flow of the projected system within the preprocessing. Module of background delimitation and color area conversion of testing pictures. Within the segmentation method the Leaf, gets labels for every identifies clusters in colors and Textures options are extracted in healthy and unhealthy Leaves. The segmentation of every leaf gets cluster with most grey level price on the section of leaf infection on the PC severity illness.

The leaf is extract color and texture choices for each identified cluster on the quantity of elements on leaf will be healthy and unhealthy. The first stage classifier learns the features of leaf between a healthy or no healthy images samples with sophisticated background. Second stage classifiers learn the images sample of infected leaf classified to form the features of infected clusters into one or three health problem categories.

Image preprocessing and segmentation

In digital image process and laptop vision, image segmentation is that the method of partitioning digital pictures into multiple segments (set of pixels conjointly called image objects). Image segmentation is often accustomed to find objects and bounds (lines, curves, etc.) During this project image preprocessing for operation on leaf pictures at the lower level of abstraction. It's a crucial of the leaf image information that suppress unsought distortion or enhances some leaf image options for more process. In image process has some steps that are as follows scan the photographs, size the photographs, and take away the noise and segmentation.

In segmentation procedure partition the leaf image into the constituent parts. In general the autonomous segmentation is one of the most difficult tasks in image processing. Input image extract from the dataset. The classify disease using classifier technique k-means algorithm. The digital image enhanced by filter. It means read the images and resize that. Then

filtered from the background is called remove noise on the image. Then filtered the RGB colors into the colorspace parameter. Color perception using hue saturation values. Further image is segmented to

analyses. Segmentation method has been done on leaf images

Fig2. Diseased leaf

K-means algorithm

In K-means, we've clusters and every cluster has its own center of mass. Add of sq. of distinction between center of mass and also the knowledge points inside a cluster constitutes inside add of sq. worth for that cluster. Also, once the add of sq. values for all the clusters is superimposed, it becomes total inside add of sq. worth for the cluster resolution. k suggests that algorithmic rule that is employed to search out the kinds of sickness from the dataset. A renowned k-means agglomeration algorithmic rule is employed to separate infected and healthy leaf regions. The repetitive k-means lands a gentle every constituent to nearest clusters thus one decreases the addition of distances and calculate cluster centroids.

Feature extraction

It is a process of dimensionally reduction by which an initial raw data is reduced to more manageable

groups for processing characteristics of the large dataset is larger number of variables. The literature of plant's disease identifier conveys that colored and texture plays an important role in a disease classification. Combination is explored in this study to design a valuable system and to validate its performance.

Classifier

Classifier is a routine process platform to define certain features of leaf image. The first stage classifier learns different features between healthy and unhealthy leaf image samples. Classifier in second stage learns from diseased cluster to classify a leaf image sample into one of the diseased category. The classifier starts with two same initial modules. It will check the symptoms of the leaf. Among all segmented cluster, if one of the image is not matched with symptoms, then the process will stop and give healthy leaf. In case the condition holds false, the classifier depending upon the first and second stage.

The output of the selected image classifier gives disease affected the leaf. In this classification using k-means algorithm which is used to find the types of disease from the dataset.

IV. TECHNOLOGY USED

For user interface, Android studio application development software will be used. XML will be used for designing the Graphical User Interface (GUI). Java will be used for connecting various components of user interface to database system. MySQL is used as a database at the web server and PHP is used to fetch data from the database. Application will communicate with the PHP page with necessary parameters and PHP will contact MySQL database and will fetch the result and return the results to application requesting it. A single laptop was used for the whole method of coaching and testing the disease detection model delineated during this paper. Coaching of the CNN was performed in Graphics Processing Unit (GPU) mode. Each coaching iteration took more or less eight hours on this machine where basic characteristics are a unit given.

IV. REQUIREMENTSSPECIFICATION

A. Functional Requirements

i. User authentication:

System can access authenticate users Input: include username and password will be phone number

Process: username and password will check against the database

Output: valid user will access the homepage

ii. Admin authentication:

Admin modules can be accessed by only valid user administrator.

Input: include username and mobile number

Process: maintain the database and intermediate of user and the system. It will give the solution to the user

Output: validation

iii. Disease:

It will help to find the disease of plants. It is main category of the project.

Input: image of diseased leaf.

Process: image processing using k-means algorithm

Output: it will provide healthy leaf for not and provide curing details

iv. Plantation:

It provides the details about how to maintain the plant.

Input: take the input as a plant name

Process: to select soil name or plant name. If we select soil name, then will get information about the soil and will provide which plant are growing in that soil and their plantation maintenance method. If we select plant name, then we will provide the apt soil, plantation method, maintenance details, then what kind of disease will be affect the plant and provide curing method.

Output: soil – plant name, family of the plant, plantation details, maintenance methods. Plant – plant soil, family of the plant, plantation, and disease will affect, curing method.

v. **General:**

This module helps to new persons who are interested in agriculture field

Input: plant name

Process: find all details of the plant from the database.

Output: plant name, family of the plant, soil, weather, cultivation, maintenance.

B) Non-Functional Requirements

i) Performance of the system

Response time is incredibly smart for given piece of labor. The system can support multi user setting.

ii) Reliability of the system

The system is extremely reliable and it generates all the updates info in correct order. Information validation and verification is finished at each stage of activity. System recovery will be speed.

C) Behavioral Attributes

- 1) **Security** - The system is developed in Java and extends security measures of internet browsers.
- 2) **Availability** - The system are going to be out there 24X7.
- 3) **Maintainability** - The system are going to be able to meet new needs (additions/deletions).
- 4) **Portability** - This application is going to be transportable on any system and might be opened in any browser.

V. CONCLUSION

It is vital to discover whether or not a leaf is healthy or morbid. Once detected, the malady must be known.

The projected system utilizes SVM classifier, though it's versatile to figure with totally different classifiers in addition.

ion. supported many combos of color and textureoptions,classificationisperformedmistreatmentthe projected rules. The projected technique is found to behiger on several criteria as compared to existing studies.Moreover, the projected system is intended and testedemploying a sufficiently massive dataset collected fromPlantVillagethatcontainspictureswithcomplicated backgrounds.The most averageclassificationaccuracyreportable is ninetieth.However, the systemis trainedmistreatmentleafpictureswiththecomlicated.

VI. REFERENCES

- 1) <https://www.engpaper.com/plant-disease-identification.htm>
- 2) <http://www.iarjset.com/upload/2016/february-16/IARJSET%2011.pdf>
- 3) <https://www.engpaper.com/cse/machine-learning-detection-of-plant-disease.html>
- 4) ‘Nitrogène fixation’, available at <https://en.wikipedia.org/wiki/>
- 5) ‘Diagnosing plant problems: plant diseases anddisorders’, available at<https://firstdetector.org/static/pdf/>
- 6) NPDN Diagnosing Plant Problems Plant Disease for review2.pdf,accessedFebruary2017
- 7) ‘Signsand symptomsof plantdisease: Isitfungal, viralorbacterial?’,available at<http://msue.anr.msu.edu/news/>
- 8) signs_and_symptoms_of_plant_disease_is_it_fungal_viral_or_bacterial