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Abstract –  

In the present study, a higher order shear deformation theory is developed for static flexure analysis 

of thick isotropic beam. Cantilever beam is analyzed for the axial displacement, Transverse displacement, 

Axial bending stress and transverse shear stress. The governing differential equation and boundary 

conditions of the theory are obtained by the principle of virtual work. The numerical results have been 

computed for various length to thickness ratios of the beams and the results obtained are compared with 

those of Elementary, Timoshenko, trigonometric and other hyperbolic shear deformation theories and with 

the available solution in the literature. 

Key Words:  Higher order shear deformation theory, Isotropic beam, virtual work, Shear 
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1.INTRODUCTION 

Theories of beams and plates are essentially one and 

two-dimensional approximations of the 

corresponding two and three-dimensional theories 

of elastic bodies i.e., beams and plates. These are 

basically the reduction problems. Since the 

thickness dimension is much less than the others, it 

is possible to approximate the distribution of the 

displacements, strains and stress components in 

thickness dimension. In the displacement-based 

theories In-plane and transverse displacements are 

expanded in the thickness coordinate using Taylor 

series or power series and truncating the series at the 

required power of thickness coordinate. This power 

governs the order of displacement-based theory. In 

literature such theories are called as higher order 

shear deformation theories. In general, third order 

theories are widely used for analysis of thick beams 

and plates in order to have the quadratic shear stress 

distribution through the thickness. In TSDT, 

HPSDT and ESDT approach, series is expressed in 

terms of trigonometric, hyperbolic and exponential 

functions with thickness coordinate. In 

displacement-based theories, generally, principle of 

virtual work is employed to obtain the variationally 

consistent governing equations and boundary 

conditions. 

It is well-known that elementary theory of bending 

of beam based on Euler-Bernoulli hypothesis that 

the plane sections which are perpendicular to the 

neutral layer before bending remain plane and 

perpendicular to the neutral layer after bending, 

implying that the transverse shear and transverse 

normal strains are zero. Thus, the theory disregards 

the effects  

of the shear deformation. It is also known as 

classical beam theory. The theory is applicable to 

slender beams and should not be applied to thick or 

deep beams. When elementary theory of beam 

(ETB) is used for the analysis thick beams, 
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deflections are underestimated and natural 

frequencies and buckling loads are overestimated. 

This is the consequence of neglecting transverse 

shear deformations in ETB. 

 

The various methods of development of refined 

theories based on the reduction of the three 

dimensional problem of mechanics of elastic bodies 

are discussed by Vlasov and leontev [1], Donnell[2], 

Kil chevskiy [3], Gol denveizer [4].Rankine[5], 

Bresse[6]were the first to include both rotatory 

inertia and shear flexibility effects as refined 

dynamical effects in beam theory. This theory is, 

referred as Timoshenko beam theory as mentioned 

in the literature by Rebello,et.al.[7] and based upon 

kinematics it is known as first order shear 

deformation theory(FSDT). Stephen and Levinson 

[8] have introduced a refined theory incorporating 

shear curvature, transverse direct stress and rotatory 

inertia effect. The limitations of the elementary 

theory of bending of beams and first order shear 

deformation theory (FSDT) for beams forced the 

development of higher order shear deformation 

theories. 

 

In this paper, a higher order shear deformation 

theory is developed for static flexural analysis of 

thick isotropic beams. The theory is applied to a 

cantilever isotropic beam to analyzed the axial 

displacement, Transverse displacement, axial 

displacement, axial bending stress and transverse 

shear stress. The numerical results have been 

computed for various length to thickness ratios of 

the beams and the results obtained are compared 

with those of Elementary, Timoshenko, 

trigonometric and other hyperbolic shear 

deformation theories and with the available solution 

in the literature. 

   

 

2. Formulation of Problem 

 

Consider a thick isotropic cantilever beam of 

length L in x direction, Width b in y direction and 

depth h as shown in fig. Where x,y,z are Cartesian 

coordinate. The beam is subjected to transverse load 

intensity sin(pix/l) per unit length beam. Under this 

condition, the axial displacement, Transverse 

displacement, axial displacement, axial bending 

stress and transverse shear stress are to be 

determined.  

 

       Fig -1: Cantilever beam bending under x-z 

plane 

 

A. Assumptions made in the theoretical formulation 

1. The axial displacement (u) consists of two 

parts: 

a) Displacement given by elementary 

theory of bending. 

b) Displacement due to shear 

deformation, which is assumed to be 

hyperbolic in nature with respect to 

thickness coordinate, such that 

maximum shear stress occurs at 

neutral axis as predicted by the 

elementary theory of bending of 

beam. 

2. The axial displacement (u) is such that the 

resultant of In-plane stress (σx) acting over 

the cross-section should result in only 

bending moment and should not in force in 

x direction. 

3. The transverse displacement (w) in z 

direction is assumed to be function of x 

coordinate. 

4. The displacements are small as compared to 

beam thickness. 

5. The body forces are ignored in the analysis. 

(The body forces can be effectively taken 

into account by adding them to the external 

forces.) 

6. One dimensional constitutive laws are used. 

         7. The beam is subjected to lateral load only. 

 

B. The Displacement field- 

 

Based on the above mentioned assumptions, the 

displacement field of the present beam theory can be 

expressed as follows. 
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=

Where, 

u = Axial displacement in x direction which is 

function of x and z. 

w = Transverse displacement in z direction which is 

function of x. 

  = Rotation of cross section of beam at neutral 

axis which is function of x. 

 

Normal Strain:  
2 2 3

2
                          (3)
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Shear strain 
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Stresses: 
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Where E and G after elastic constant of the beam 

material. 

 

C. Governing differential equation 

 

Governing differential equations and boundary 

conditions are obtained from Principle of virtual 

work. Using equations for stresses, strains and 

principle of virtual work, variationally consistent 

differential equations for beam under consideration 

are obtained. The principle of virtual work when 

applied to beam leads to: 

 

( )
/2

0 /2

0

. .

          (7)
0

x x xz xzx L z h

x L

x z h

x

dxdz

b
q wdx

   



= =

=

= =−

=

 + −

− =
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

Where δ = variational operator 

Employing Green's theorem in equation (3.8) 

successively we obtain the coupled Euler 

Lagrange’s equations which are the governing 

differential equations and associated boundary 

conditions of the beam. The governing differential 

equations obtained are as follows. 
4 3

04 3
( )          (8)

w
EI A q x

x x

  
− = 

    
 

3 2

0 0 03 2
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w
EI A B GAC

x x




  
− + = 
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Where A0, B0 and C0 are the stiffness coefficients in 

governing equations. The associated consistent 

natural boundary conditions obtained are of 

following form along the edges x = 0 and x = L. 

 

( )
3 2

03 2
0                            10x

w
V EI A

x x

  
= − = 

    
Where w is prescribed 

2

02
0                           (11)x

w
M EI A

x x

  
= − = 

    

Where

dw

dx  is prescribed. 

( )
2

0 02
0                        12x

w
M EI A B

x x

  
= − = 

    

Where  is Prescribed. 

D. The General solution of Governing equilibrium 

equations of beam:  

The general solution for transverse displacement 

w(x) and  (x) can be obtained from Eqn. (8) and 

(9) by discarding the terms containing time (t) 

derivatives. Integrating and rearranging the Eqn. (9), 

we obtained the following equation, 

( )
( )

3 2

03 2
                          13

Q xw
A

x x D

 
= +

   

where, Q(x) is generalised shear force for beam and 

it is given by 

( ) ( )
0

1                            14

x

Q x qdx k= +
 

And by rearranging second governing Eqn. (9) the 

following equation is obtained. 

( )
3 2

0
03 2

0

                          15
Bw

B
x A x

 
= −

 
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Now a single equation in terms of  is obtained, by 

putting the Eqn. (6) in second governing Eqn. (15) 

( )
( )

( )
2

2
                   16
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The equation of transverse displacement w(x) is 

obtained by substituting the expression of  (x) in 

Eqn. (15) and integrating it thrice with respect to x. 

The general solution for w(x) is obtained as follows: 
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where k1, k2, k3, k4, k5 and k6 are the constants of 

integration and can be obtained by  imposing natural 

(forced) and kinematic boundary conditions of 

beams.

  

3. Illustrative Example 

In order to prove the efficiency of the present 

theory, the following numerical examples are 

considered. The following material properties for 

beam are used. Material properties: 

1. Modulus of Elasticity E = 210 GPa 

2. Poisson’s ratio µ = 0.30 

3. Density = 7800 kg/m3 

 

A. Cantilever beam with sine load 

( ) 0

sin
q =q                

x
x

L



 
The beam has its origin on left hand side fixed 

support at x = 0 and free at x = L. The beam is 

subjected to varying load, q(x) on surface z = +h/2 

acting in downward z direction with minimum 

intensity of load 
sin x

L



 

Boundary conditions associated with this problem 

are as follows: 

At free end: x=L 
2 3 2

2 3 2 2
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w w

x x x x

    

     
At fixed end: x=0 
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w

w
x
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=
  

General Expressions obtained for w(x) and Q(x) are 

as follows. 
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4. Numerical Result 

 The numerical results for axial displacements, 

transverse displacements, bending stress and 

transverse shear stress are presented in following 

non dimensional form and the values are presented 

in table 1 and table 2. 
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zx zx
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q
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Table 1: Non-Dimensional Axial Displacement (u ) 

at (x = L, z = h/2), Transverse Deflection ( w ) at (x = 

L, z = 0.0), Axial Stress ( x ) at (x = 0:0, z = h/2), 

Maximum Transverse Shear Stresses (
CR

zx ) and (
EE

zx ) at (x = 0:01L, z = h/2) of Cantilever Beam 

Subjected to Varying Load for Aspect Ratio 4.  

Source Model w  u  x
 

CR

zx

 

EE

zx

 

Present HSDT 8.76 34.31 36.55 0.22 6.49 

Ghugal HPSDT 8.75 34.17 36.85 0.24 7.03 

Dahake TSDT 8.74 34.30 36.24 0.18 5.82 

Timoshen

ko 

FSDT 11.33 36.34 30.55 0.93 0.29 

Bernoulli-

Euler 

 

 

ETB 8.86 
36.32 

 

30.55 

 

- 0.29 

 

Table 1: Non-Dimensional Axial Displacement (u ) 

at (x = L, z = h/2), Transverse Deflection ( w ) at (x = 

L, z = 0.0), Axial Stress ( x ) at (x = 0:0, z = h/2), 

Maximum Transverse Shear Stresses (
CR

zx ) and (
EE

zx ) at (x = 0:01L, z = h/2) of Cantilever Beam 

Subjected to Varying Load for Aspect Ratio 10.  

Source Model w  u  x
 

CR

zx
 

EE

zx
 

Present HSDT 7.485 562.827 205.8

616 

 

0.686 

 

 

5.950 

 Ghugal HPSDT 7.481 562.491 206.7

878 

 

0.729 

 

 

6.74 

 
Dahake TSDT 7.485 562.807 

205.2

157 

 

0.557 

 

 

5.782 

 

Timosh

enko 
FSDT 11.56

4 
567.911 190.9

859 

 

14.546 

 

 

0.93159 

 
 

0.74 

 
Bernoul

li-Euler 
ETB 8.862 

 

567.911 190.9

859 

 

14.5462 

 

3.07662

9 

 

2.90874 

 0.93159 

 
 

0.748 

 

 

 

 

Fig -2: Variation of transverse displacements w  
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Fig -3: Variation of Maximum Axial displacement 

u for AS 04 

 

 

 

 

 

 

 

Fig -4: Variation of Maximum Axial displacement 

u for AS 10 

 

 

 

 

Fig -5: Variation of maximum axial stress x
for  

AS 04  

 

 

 

 

 

 

Fig -6: Variation of maximum axial stress x for  

AS 10 
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Fig -7: Variation of transverse shear stress 
CR

zx for 

AS 04 

 

 

 

 

 

Fig -8: Variation of transverse shear stress 
CR

zx for 

AS 10 

 

 

 

Fig -9:  Variation of transverse shear stress
EE

zx  for 

AS 04 

 

 

 

 

 

Fig -10: Variation of transverse shear stress
EE

zx  for 

AS 10 
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3. CONCLUSIONS 

 

From the static flexural analysis of Cantilever beam 

following conclusion are drawn:  

1. The result of maximum transverse displacement 
w obtained by present theory is in excellent 

agreement with those of other equivalent refined 

and hyperbolic theories. The variation of AS 4 and 

AS 10 are present as shown in fig.-2. 

2. From Fig. 3 and Fig. 4, it can be observed that, 

the result of axial displacement u for beam 

subjected to uniform load varies linearly through 

the thickness of beam for AS 04 and AS 10 

respectively. 

3. The maximum Non-dimensional axial stresses 

x
 for AS 04 and AS 10 varies linearly through the 

thickness of beam as shown in Figure 5 and Figure 

6 respectively.  

4. The transverse shear stresses 
EE

zx  and 
CR

zx  are 

obtained directly by constitutive relation. Fig. 7, 8, 

9 and fig.10.  shows the through thickness variation 

of transverse shear stress for thick beam for AS04 

and 10. From this fig it can be observed that, the 

transverse shear stress satisfies the zero condition at 

top and at bottom surface of the beam.  
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