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Abstract:

Alzheimer’s disease (AD) is a progressive neurodegenerative condition that requires precise early
intervention. While machine learning (ML) has made significant strides in this field, current research is
largely confined to binary classification frameworks, focusing primarily on distinguishing healthy controls
from AD patients. There is, however, an urgent clinical necessity to move toward multi-class detection to
capture the nuanced stages of disease progression using non-invasive clinical assessments. Furthermore,
within the domain of neuroimaging, a critical gap exists regarding clinical reliability and model
generalization. Current literature predominantly prioritizes high accuracy scores, often at the expense of
ensuring that these models remain robust across heterogeneous datasets and diverse clinical environments.
This review synthesizes the current state of ML in AD detection, advocating for a shift from simple binary
labels to complete multi-stage analysis. By addressing the 'accuracy vs. reliability' trade-off, we emphasize
the need for generalized systems that maintain diagnostic integrity across different populations. Ultimately,
this work provides a framework for transitioning toward more clinically viable diagnostic tools that prioritize
multi-class progression and cross-dataset reliability over isolated performance metrics.

KeyWOFdS — Machine learning, Alzheimer disease, Cognitive assessment test, mild cognitive impairment, Datasets,
Neuropsychological Features
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I. INTRODUCTION epidemiological data is sobering: the number of

A. The Global Crisis of Alzheimer’s Disease
Alzheimer’s disease (AD) stands as a
formidable global health challenge, representing a
progressive neurodegenerative disorder that serves
as the leading cause of dementia, accounting for an
estimated 60% to 80% of all cases worldwide. The
clinical manifestation of AD is characterized by a
relentless decline in cognitive functions, including
severe memory loss, disorientation, impaired
judgment, and significant behavioral changes.
These symptoms do not merely affect the
individual; they place an immense psychological
and financial burden on caregivers and strain
global healthcare infrastructures. As the global
population ages at an unprecedented rate, the

individuals living with Alzheimer’s is projected to
triple by the year 2050. This trajectory underscores
an urgent, non-negotiable need for the
development of effective diagnostic tools and early
intervention strategies that can be deployed at
scale.

Early detection is the cornerstone of effective
AD management. Identifying the disease in its
prodromal or early stages specifically during the
transition from Mild Cognitive Impairment (MCI)
to AD enables the timely initiation of
pharmacological treatments and non-
pharmacological lifestyle interventions. These
early actions are critical for slowing the rate of
cognitive decline, managing neuropsychiatric
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symptoms, and significantly improving the quality
of life for both patients and their families.
Furthermore, an early diagnosis provides a
"window of opportunity" for patients to
participate in clinical trials for emerging disease-
modifying therapies and allows families to make
informed decisions regarding future care and legal

planning.
T
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Fig. 1: Comparison of a healthy brain and the structural progression
of Alzheimer’s Disease

B. Limitations of Traditional
Modalities

Despite the clear benefits of early
identification, the clinical reality is that AD is often
diagnosed far too late. The disease typically
develops insidiously over decades, with early
pathological changes occurring in the brain long
before clinical symptoms become apparent.
Traditional diagnostic frameworks rely heavily on
comprehensive clinical evaluations, laboratory
analyses of cerebrospinal fluid (CSF) biomarkers,
and advanced neuroimaging techniques such as
Magnetic Resonance Imaging (MRI) and Positron
Emission Tomography (PET) [10, 12, 20]. While
these imaging modalities provide high-resolution
insights into structural atrophy and metabolic
changes, they are fraught with practical limitations.
Neuroimaging is inherently expensive, often
invasive, and requires specialized equipment and
highly trained personnel to interpret. These factors
create a significant barrier to access, particularly in
primary care settings, rural areas, or resource-
constrained environments.

Diagnostic
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Furthermore, a critical observation in
contemporary neuroimaging research is the
"accuracy-utility gap." A vast majority of studies
focus on achieving peak accuracy within highly
controlled, homogeneous datasets [15, 22]. While
these models report impressive performance
metrics, they often fail to address clinical reliability
and model generalization [13, 17]. A model that is
99% accurate on a specific research dataset like
ADNI may perform poorly when applied to a
different clinical population with different
scanning protocols or demographic backgrounds.
This lack of cross-cohort generalizability remains
a major bottleneck in transitioning machine
learning (ML) models from "bench to bedside"

[62].
C. The Role of Non-Invasive Cognitive
Assessments
In response to the limitations of
neuroimaging, cognitive assessments have

emerged as a vital, non-invasive, and cost-effective
alternative.  Standardized neuropsychological
instruments, such as the Mini-Mental State
Examination (MMSE), the Montreal Cognitive
Assessment (MoCA), and the Alzheimer’s Disease
Assessment Scale-Cognitive Subscale (ADAS-
Cog), are used globally to evaluate domains like
memory, attention, language, and executive
function. These tests are essential for monitoring
disease progression and are highly scalable for
mass screening [1].

However, traditional interpretation of these
tests relies on static cutoff scores, which are often
influenced by a patient’s educational background,
cultural content, and language proficiency [5]. This
subjectivity can lead to "false negatives" in highly
educated individuals who may "compensate" for
early cognitive deficits, or "false positives" in
populations with lower literacy. Consequently,
there is a growing demand for objective, data-
driven methods that can extract subtle, non-linear
patterns from these test scores patterns that are
often invisible to the human eye but highly
indicative of early-stage neurodegeneration.
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Fig. 2: Representative anal MRI brain scans from a dataset classified
by dementia severity: Very Mild, Mild, and Moderate AD

D. The Machine Learning Revolution and the
"Binary Trap"

The integration of Machine Learning (ML)
into AD research has provided a powerful toolkit
for addressing these challenges. ML algorithms
ranging from Support Vector Machines (SVM) and
Random Forests to sophisticated Deep Learning
architecture scan process multidimensional,
longitudinal data to identify complete biomarkers
of decline [2, 3, 4]. By leveraging large-scale
datasets, researchers have demonstrated that ML
can predict AD at a significantly lower cost than
traditional imaging methods [1, 14, 23].

However, a critical review of the current literature
reveals a significant limitation: the prevalence of
the "Binary Classification Trap." Most current ML
studies focus on the simple distinction between
"Healthy Control" (HC) and "Alzheimer’s
Disease" (AD) [9, 19, 25]. While this proves that
ML is capable of pattern recognition, it has limited
clinical utility. In a real-world clinical setting, the
challenge is not just identifying who has late-stage
AD, but distinguishing between various stages of
progression, such as stable MCI versus progressive
MCI. There is an urgent need to shift toward multi-
class detection systems that can map the entire
trajectory of the disease. Capturing these subtle
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physiological and cognitive transitions is essential

for personalized medicine, yet multi-stage analysis

remains under-explored compared to simple binary

models.

E. Addressing  Data
Reliability

Beyond classification, the field faces a
crisis of reliability. Many researchers prioritize
accuracy as the primary metric of success,
neglecting the fact that in medicine, a "reliable"
model is often more valuable than an "accurate"
but unstable one. Reliability refers to a model's
ability to maintain its diagnostic integrity across
heterogeneous datasets data coming from different
scanners, different cognitive test versions, and
diverse ethnic populations.

The presence of data heterogeneity often
leads to overfitting, where a model "memorizes"
the noise of a specific dataset rather than learning
the underlying biological signal of the disease. To
overcome this, advanced computational paradigms
like transfer learning must be employed [32, 66].
Transfer learning allows a model trained on a large,
diverse source dataset to adapt its knowledge to a
smaller, specific target population, thereby
enhancing generalizability. This is the foundation
of building a generalized clinical reliability system
a system that clinicians can trust regardless of the
data source.

F. Objectives and Scope of this Review

This systematic review aims to provide a
comprehensive and critical overview of the current
state of machine learning in Alzheimer’s detection,
with a specific emphasis on cognitive assessment
data. Unlike previous reviews that focus solely on
accuracy, this work evaluates the literature through
the lens of clinical viability and multi-stage
progression.

We examine the wvarious types of cognitive
assessments utilized, the diverse range of ML
algorithms  implemented from  traditional
classifiers to deep ensemble learning [24, 28,
29]and the feature selection strategies that have
proven most effective. Crucially, we investigate
the datasets used, such as ADNI and NACC, and
discuss the critical need for eternal validation and
cross-cohort testing [51, 56, 62]. By synthesizing
these findings, we aim to highlight the gaps where

Heterogeneity  and
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binary models fail and where the net generation of
multi-class, generalized systems must begin.
Ultimately, this review serves as a roadmap for
researchers and clinicians to move toward
diagnostic tools that are not only highly accurate
but are also robust, reliable, and capable of
capturing the complete, multi-stage nature of
Alzheimer’s disease.
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Fig. 3: Present Workflow of the machine learning pipeline, including
PCA-based feature Extraction, transfer learning, and final classification
(AD vs. HC) using ANN and SVM models.

II. Review Protocol and Methodology

This section outlines the rigorous
systematic review protocol and methodology
employed to evaluate the current landscape of
machine learning (ML) in Alzheimer’s Disease
(AD) detection. Our approach is designed to ensure
a comprehensive, objective, and reproducible
analysis of the existing literature. Unlike
traditional reviews that focus predominantly on
binary classification accuracy, this methodology is
specifically formulated to investigate two critical
gaps in the field: the transition toward multi-class
detection of disease progression and the
requirement for model generalizability and clinical
reliability across heterogeneous data sources.
The process began with the formulation of core
research questions:

e How effectively do current ML models
move beyond binary labels to identify
specific stages of cognitive decline (e.g.,
Stable vs. Progressive MCI)?
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e To what extent does current research
address the "accuracy-reliability" trade-off
when dealing with diverse, multi-site
datasets?
e What is the role of advanced computational
techniques, such as transfer learning, in
ensuring  diagnostic  integrity  across
different clinical environments?
A. Search Strategy

A comprehensive literature search was
conducted to identify relevant studies focusing on
the application of machine learning techniques to
non-invasive cognitive and clinical assessment
data. Electronic databases including ACM Digital
Library, PubMed, ArXiv, Scopus, Web of Science,
and IEEE Explore were systematically searched for
articles published up to 2025.
The search terms were carefully selected to capture
both established methods and emerging trends in
multi-modal and multi-stage analysis. We utilized
a combination of keywords and Boolean operators
(AND, OR) as follows:
o Disease Progression: (“Alzheimer’s
disease” OR “MCI progression” OR
“Dementia stages”)
e Methodological  Focus: (“Machine
learning” OR “Deep learning” OR “Multi-
class classification” OR  “Transfer
learning”)
e What is the role of advanced computational
techniques, such as transfer learning, in
ensuring  diagnostic  integrity  across
different clinical environments?
A. Search Strategy

A comprehensive literature search was
conducted to identify relevant studies focusing on
the application of machine learning techniques to
non-invasive cognitive and clinical assessment
data. Electronic databases including ACM Digital
Library, PubMed, ArXiv, Scopus, Web of Science,
and IEEE Explore were systematically searched for
articles published up to 2025.
The search terms were carefully selected to capture
both established methods and emerging trends in
multi-modal and multi-stage analysis. We utilized
a combination of keywords and Boolean operators
(AND, OR) as follows:
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o Disease Progression: (“Alzheimer’s
disease” OR “MCI progression” OR
“Dementia stages”)

e Methodological Focus: (“Machine
learning” OR “Deep learning” OR “Multi-
class classification” OR  “Transfer
learning”)

e Reliability Focus: (“Clinical reliability”
OR  “Model  generalization”  OR
“Heterogeneous datasets” OR “Cross-
cohort validation™)

o Assessment Tools: (“Cognitive test
scores” OR “Neuropsychological
assessment” OR “MMSE” OR “MoCA”
OR “ADAS-Cog”)

Additional studies were identified by
manually screening the reference lists of high-
impact reviews and seminal papers to ensure a
robust bibliography [4, 9]. The records identified
as of 01/08/2025 across key search engines are
detailed in Table 1.

Table 1: Number of records found for each query in journal search engines
as on from 2020-2025.

Number of
Search
Engine Keywords Records
Found
Alzheimer's disease assessment | 19000
data 17700
Google Early Detection of MCI to AD
Scholar Conversion  Using  Machine | 16900
Learning
Early Detection of Alzheimer’s
Alzheimer's disease assessment | 8000
data 750
Pubmed Early Detection of MCI to AD
Conversion  Using  Machine | 7014
Learning
Early Detection of Alzheimer’s
Alzheimer's disease assessment | 401
data 190
Early Detection of MCI to AD
IEEE plore Conversion  Using  Machine | 1408
Learning
Early Detection of Alzheimer’s
Alzheimer's disease assessment | 5500
data 5610
Ariv Early Detection of MCI to AD
Conversion  Using  Machine | 5890
Learning
Early Detection of Alzheimer’s
Alzheimer's disease assessment | 3500
data 2610
ACM Early Detection of MCI to AD
Conversion  Using  Machine | 5100
Learning
Early Detection of Alzheimer’s

Available at www.ijsred.com

B. Study selection

To maintain a high standard of clinical relevance,
specific inclusion and exclusion criteria were
established. These criteria prioritize studies that
address the complexities of real-world clinical data
rather than those reporting high accuracy on
isolated, simplified datasets.

1) Inclusion Criteria Studies were included in this
review if they met the following:

Original research articles published in
peer-reviewed journals or reputable
international conference proceedings.
Studies investigating ML/Deep Learning
algorithms for the detection, classification,
or stage-prediction of Alzheimer’s disease.
Utilization of cognitive assessment data
(e.g., MMSE, MoCA, ADAS-Cog) as a
primary feature set.

Research addressing multi-class
classification (e.g., distinguishing
between CN, Early MCI, Late MCI, and
AD).

Research evaluating model
generalizability, including the use of
transfer learning or validation across
heterogeneous datasets (e.g., testing a
model trained on ADNI with OASIS data).

2) Exclusion Criteria Studies were excluded if
they met the following:

Studies not focused on Alzheimer’s
disease or those omitting cognitive/clinical
assessment data in favor of purely
biological markers.

Studies using only neuroimaging
(MRI/PET) or genetic data without a
comparative or integrative cognitive
assessment component.

Reviews, editorials, letters, or non-peer-
reviewed white papers.

Studies focused strictly on binary (Healthy
vs. AD) classification that failed to
address the nuances of disease progression
or early-stage impairment.

Studies reporting performance metrics
based on a single, homogeneous dataset
without addressing potential overfitting or
lack of clinical reliability.
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ITI. Results and Discussion

This section presents a detailed analysis of
the study selection process and a critical discussion
of the current literature's focus. The primary
objective was to filter the vast body of Alzheimer’s
research to find studies that provide high-quality,
clinically applicable machine learning
frameworks.
Study Selection Process A comprehensive and
systematic search was executed across major
electronic databases, including Google Scholar,
PubMed, IEEE Explore, ArXiv, and ACM. By
employing a broad search strategy targeting
"Alzheimer’s disease assessment data" and
"Machine Learning-based Early Detection," an
initial pool of 98,282 records was identified.
The selection process followed a rigorous
refinement pipeline to ensure only the most
relevant and robust studies were included:

e Duplicate Removal: After aggregating
results from all databases, 2,215 duplicate
records were identified and removed, leaving
96,067 unique articles.

e Title and Abstract Screening: Initial
screening led to the exclusion of 30,215
articles that were either irrelevant to the core
topic or lacked an engineering/computational
focus. A significant portion of these excluded
papers focused purely on clinical or biological
pathology without proposing any artificial
intelligence or machine learning frameworks.

o Full-Tet Eligibility Assessment: A total of
65,852 articles underwent a detailed full-text
review. During this stage, a high volume of
studies was excluded for failing to meet our
refined inclusion criteria (see Section 2.2.1).
Specific reasons for exclusion included:

o Lack of Progression Focus: Many
studies (n = 18,500) focused on static
binary classification rather than the critical
transition from MCI to AD.

o Data Limitations: A large number of
papers (n = 21,000) utilized -cross-
sectional data but lacked the longitudinal
cognitive assessment data necessary for
modeling disease trajectory.

o Methodological Gaps: Several articles (n
= 20,000) lacked sufficient detail

Available at www.ijsred.com

regarding feature engineering or failed to
address model generalizability and data
heterogeneity.

o Incomplete Reporting: Finally, 6,310
papers were excluded for failing to report
standardized performance metrics such as
AUC, sensitivity, or specificity.

invasive clinical data, providing the
foundation for our discussion on multi-class

Records identified through database
searching (n = 98,282)

¥

Duplicates removed (n = 2,215) Records
after duplicates (n = 96,067)

¥

Titles/abstracts screened (n = 96,067)

Excluded as irrelevant (n = 30,215)
Abstracts reviewed for AI/ML focus (n
= 65,852)

Excluded (not focused on AI/ML)

A 4

Full-text articles assessed for
eligibility (n = 65,852)
Excluded: - Not focused on MCI to AD
conversion (n = 18,500)

- No longitudinal cognitive data (n =
21,000)

- Insufficient methodology/features
(n = 20,000)

A 4

Studies included in review (n = 72)

Fig. 4: Exclusion criteria used in
the paper selection process.

detection and clinical reliability.

Discussion of Current Trends The study
selection process revealed a significant trend in the
current literature: while the volume of research is
vast, a narrow focus on binary accuracy on single,
homogeneous datasets (like ADNI) persists. Our
review of the final 42 studies indicates that while
high accuracy is frequently reported, there is a
distinct lack of "Generalized Clinical Reliability."
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Most models are optimized for a specific
population, making them less effective when
applied to heterogeneous data sets a gap that must
be bridged by transfer learning and multi-stage
classification models. This finding reinforces the
necessity for moving beyond simple diagnostic
labels toward comprehensive reliability systems
that maintain diagnostic integrity across diverse
clinical environments.
IV. Data Extraction and Cognitive Feature
Analysis

For each study meeting the inclusion
criteria, a systematic data Extraction process was
undertaken to ensure consistent collection of
information across diverse research designs. A
standardized Extraction form was pilot-tested to
ensure it captured the nuances of both the machine
learning architectures and the underlying clinical
data. Two reviewers independently performed the
Extraction, with a third reviewer resolving
discrepancies to ensure high inter-rater reliability
[5].
o Bibliographic and Population Content

We recorded the primary author, year of
publication, and geographic origin to identify
temporal and regional trends in Alzheimer’s
research. Furthermore, we extracted sample
characteristics including participant volume, age,
gender distribution, and the specific diagnostic
criteria (e.g., DSM-5 or NINCDS-ADRDA) used
to label patients. This content is essential for
evaluating whether a model is truly generalized or
merely optimized for a specific demographic.
B. Analysis of Heterogeneous Datasets

A variety of publicly accessible datasets are
commonly employed in the early detection of
Alzheimer’s disease (AD). However, a significant
finding of this review is the heterogeneity between
these sources. While they provide a rich source of
longitudinal data, differences in scanning protocols
and cognitive test versions create a "domain gap"
that current machine learning models often
struggle to bridge.
C. Analysis of Multimodal and Heterogeneous

Datasets

A critical finding of this systematic review is that
the most robust machine learning models are those
that successfully navigate the complexity of
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heterogeneous data types. Alzheimer’s research
has transitioned from single-modality analysis to a
more holistic approach. However, as the variety of
data types increases from neuroimaging to clinical
assessments so does the challenge of clinical
reliability. The following table categorizes the
major datasets used in the field by their data
composition and the specific technical hurdles they

present for generalization.
Table2: Each datasets of Alzheimer’s disease are given below.

Dataset Primary Data Sar}lple Main Features
Types Size
Neuroimaging .
(MRI/PET), Bio- E)’I‘:eﬁs‘d";al
ADNI markers (CSF), ~2000+ it
.. cognitive &
Clinical 2.
clinical data
Assessments
Clinical Large, diverse,
NACC Assessments, Bio- 40,000+ US-baseq,
markers, standardized
Neuropathology assessments
Neuroimaging .
Imaging +
oasis | (MRUPET), 1000+ | cognitive,
Clinical longitudinal
Assessments &
Neuroimaging,
Bio-markers, Lifestyle,
AIBL Clinical 2000+ genetics, regular
Assessments, cognitive testing
Lifestyle
Audio Recordings
Dementia (Speech), Trar'lscrlpts,h ‘
Transcripts, 250+ audio, cognitive
Bank -
Clinical test scores
Assessments

= The Role of Multimodal Data in Machine Learning
As shown in Table 2, datasets like ADNI
and OASIS provide a rich combination of
Neuroimaging and Clinical Assessments. In the
content of machine learning, this allows for the
development of multi-input architectures where
structural changes in the brain (via MRI) are
correlated with functional decline (via cognitive
tests). However, the literature reveals a significant
"Domain Gap." Models trained on the high-
resolution MRI data of ADNI often face a
reduction in accuracy when deployed on more
"noisy" or heterogeneous clinical datasets like
NACC. This underscores the urgent need for
Transfer Learning a technique that allows a model
to retain learned features from one dataset while
adapting to the specific distribution of another.
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= Clinical Assessments vs. Biological Markers
While Bio-markers (such as Amyloid-beta
and Tau levels in CSF) and Neuroimaging are the
gold standards for pathology, they are often
inaccessible in primary care settings. Our analysis
of these 42 studies emphasizes that Clinical

Assessment Test Data remains the most scalable

and cost-effective feature set. The challenge

identified in the current state of the art is not the
lack of data, but the Reliability Gap. Because
different datasets use slightly different protocols
for clinical assessments, models must be designed
to be "Dataset Agnostic." This is the primary
motivation for shifting research toward

Generalized Clinical Reliability Systems that can

handle the inherent heterogeneity of global medical

data.
= Longitudinal
Classification
A common thread across the datasets in

Table 2 is the presence of Longitudinal Follow-up.
This is essential for moving beyond Binary
Classification (AD vs. Normal). To capture the true
nature of Alzheimer's as a progressive illness,
machine learning models must leverage these
repeated measures to perform Multi-Class
Detection. By tracking a patient across years of
follow-up in the AIBL or NACC cohorts,
researchers can train models to distinguish between
stable MCI and progressive MCI a distinction that
is clinically far more valuable than a late-stage AD
diagnosis.

D. Analysis of Feature Domains:
Neuroimaging, Biomarkers, and Cognitive
Assessments

In the development of machine learning
models for Alzheimer’s detection, the selection of
feature domains is the most critical factor
influencing both accuracy and clinical utility.

While early research focused on single-modality

models, the field is rapidly moving toward multi-

modal fusion. However, each domain presents
unique challenges regarding data acquisition, cost,

and generalizability.
1) Neuroimaging Features (Structural & Functional)

Neuroimaging remains the "gold standard" for
visualizing the physical manifestations of

Follow-up and Multi-Class
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neurodegeneration. Machine learning models
primarily leverage features from:

e Structural MRI (sMRI): Extracted
features often include gray matter volume,
cortical thickness, and hippocampal
atrophy rates. Deep learning models,
particularly Convolutional Neural
Networks (CNNs), are frequently used to
identify vowel-based patterns that precede
clinical symptoms [12, 15].

e Functional Imaging (PET/fMRI):
Features include glucose metabolism rates
(FDG-PET) or amyloid/tau protein
deposition.

o The Technical Challenge: These features
are high-dimensional and highly sensitive
to scanning protocols. Models trained on
MRI features often struggle with reliability
when moved from a controlled research
environment (like ADNI) to a diverse

clinical setting [62].
2) Biological Markers (Fluid Biomarkers)

Biomarkers provide a biochemical "fingerprint" of
the disease. Features extracted for ML models
include:
e Cerebrospinal Fluid (CSF):
Concentrations of Amyloid-beta (AB42),
Total Tau (t-tau), and Phosphorylated Tau
(p-tau).
e Blood-based Biomarkers: Emerging
research is focusing on plasma p-tau217 as
a less invasive feature.
e The Technical Challenge: Although
highly accurate for binary classification
(AD vs. Normal), biomarkers are invasive
and expensive. In our review, we highlight
that while biomarkers provide high
"Ground Truth" labels, they are often
missing in large-scale heterogeneous
datasets, requiring Transfer Learning to
bridge the data gap.

3) Cognitive and Neuropsychological Features

As the primary focus of this review, cognitive
features represent the most scalable and non-
invasive data domain. These features capture the
functional impact of the biological changes
mentioned above.
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e Global Screening Features
(MMSE/MoCA): These provide a
"snapshot" of cognitive health. Total scores
are often used as baseline features, while
sub-scores (memory recall, orientation,
abstraction) allow ML models to detect
subtle impairments in specific domains.

e Functional Independence Features
(CDR): The Clinical Dementia Rating
(CDR) provides a categorical feature set (0,
0.5, 1, 2) that is essential for training Multi-
Class Detection models to identify the
stages of progression.

e Linguistic and Behavioral Features:
Advanced models now extract features
from spontaneous speech (fluency,
vocabulary richness) and daily activity
patterns, offering a continuous stream of
data for longitudinal analysis.

4) Cross-Domain Feature Fusion: The Path to

Reliability

The synthesis of these 42 studies suggests that the
future of the field lies in Feature Fusion. By
combining the "Precision" of neuroimaging and
biomarkers with the "Scalability" of cognitive
assessments, researchers can create models that are
both highly accurate and clinically viable.
However, the major hurdle identified is the
Heterogeneity of Features. A cognitive score from
a clinic in Australia (AIBL) may not be directly
comparable to one from the US (NACC). This
discrepancy necessitates the development of a
reliable System. Such systems must use Transfer
Learning to harmonize these diverse feature sets,
ensuring that the model’s prediction remains stable
regardless of whether it is processing an MRI scan,
a CSF report, or a simple MMSE score.
V. Machine learning and Deep Learning

models

A diverse range of machine learning (ML)
and deep learning (DL) models have been
employed by researchers for the early detection of
Alzheimer's Disease (AD) using clinical
assessments. A common approach involves
utilizing Support Vector Machines (SVMs) as the
final classifier, which is a popular choice for its
effectiveness in binary classification tasks, such as
distinguishing between healthy controls (HC),
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cognitively normal (CN) individuals, and those
with  mild cognitive impairment (MCI).
Researchers have used SVMs with various kernels,
including the Radial Basis Function (RBF) kernel
and polynomial kernels, to classify patients based
on features derived from tests like the Mini-Mental
State Examination (MMSE) and the Montreal
Cognitive Assessment (MoCA). SVMs are
frequently combined with other techniques, with
extracted features from deep learning models being
fed into an SVM for final classification. This
approach is noted in studies by researchers in Refs.
[34, 3640, 42, 43, 47, 48, 64].

For feature selection and classification,

Least Absolute Shrinkage and Selection Operator
(LASSO) regression has been employed. This
method is effective for identifying the most
predictive clinical features from a large set of
assessment scores. One study [31] used LASSO to
build a feature selection framework and a classifier
to distinguish between different stages of cognitive
decline.
In addition, regression models have been
developed for AD prediction. For example, a linear
Sparse Regression model was proposed by
researchers in Ref. [41]. Co regression models,
specifically designed for survival analysis, have
also been adapted for classifying patients. These
models, used in Refs. [33, 45], can predict the time
to conversion from MCI to AD. One study [33]
used a Co regression model as a classifier to predict
the conversion from stable MCI (sMCI) to
progressive MCI (pMCI) using clinical data.
Similarly, a Co hazard model was implemented in
Ref. [45] to identify whether a patient belongs to
the sMCI or pMCI category based on the calculated
Co probability value.

Longitudinal classifiers are crucial for
analysing data collected over multiple patient visits
[6]. Researchers in Refs. [35, 63] utilized these
models to capture the progression of cognitive
decline. A Mixed Effects Model was proposed in
Ref. [63] to account for varying visit intervals and
individual patient trajectories. Furthermore, a
sliding window-based approach [35] was used to
measure the influence of one visit's assessment
results on the prediction of subsequent cognitive
states.
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The use of ensemble methods has shown promise
in improving classification accuracy. An ensemble
of ML classifiers, such as a combination of SVM
and Logistic Regression (LR), was used by
researchers in Refs. [27, 50] to better helping
doctors tell the difference between people who
have different levels of thinking ability.

Deep Learning (DL) architectures are used
for both feature Extraction and as direct classifiers.
Convolutional Neural Networks (CNNs), while
traditionally used for image analysis, have been
adapted to process structured clinical data by
treating it as a one-dimensional signal. Researchers
in Refs. [28, 30, 44, 46, 49, 52-62, 65] used CNNs
for feature extraction from clinical assessment
batteries. These extracted features can then be used
by traditional classifiers like SVMs, as shown in
studies [32, 33, 35, 36, 39, 65], or directly
classified by the deep learning architecture itself.
A table summarizing the purpose and

configurations of these models is provided below.
Table 3: Configuration of ML and DL algorithms used in previous works.

Reference | Model Configuration | Purpose
Ensemble — of SVM Classification of AD
and Logistic .
. | progression based on
[27, 50] Regression (LR): clinical and
’ SVM with RBF kernel, .
. . 7| neuropsychological test
Binary . Logistic SCOres
Regression )
Convolutional Neural
Netyvork (CNN): Feature extraction from
[28-30, Variable number of - .
clinical data and direct
47, 54, fully connected layers lassificati ¢
66] (FCLs),  activation | S assthcation °
functions like Sigmoid cognitive status.
or ReLU
Capturing latent
Sparse Autoencoder | features from
31, 32] (SAE): Rectified | neuropsychological data
’ Linear Unit (ReLU) | for dimensionality
activation reduction and
classification.
Calculating the survival
(34, 4] Co Regression | time to AD conversion
’ Models from multimodal
clinical data.
CNN for automatic
CNN, SVM, Support | feature extraction; SVR
[40, 61] Vector Regression | for estimating cognitive
(SVR) decline rates; SVM for
classification.
Causal inference model
for identifying the
[42] Sparse Learning | relationship  between
Regression different clinical
features and cognitive
decline.

Available at www.ijsred.com

(48]

Probabilistic model for
classifying AD using
speech features from
clinical interviews.

Bayes Classifier

CNN for feature
extraction; Graph
Networks for analysing
connectivity —measures
from clinical data.

CNN + Graph
Networks: Tanh
activation function

[60]

Combining multiple
models (SVM with RBF
kernel, KNN, MLP) for
enhanced classification
accuracy.

Ensemble
Classifier:
KNN, MLP

Voting
SVM,

Focusing on
significant clinical
assessment scores or
regions of interest (ROI)
for better classification.

more

CNN with Attention
Mechanism

Extracting features from
Electroencephalography
(EEG) data as part of a
multi-modal clinical
assessment.

CNN

[44, 49,
65]

CNN for feature
extraction from clinical
data; RNN for capturing
temporal features and
dependencies over
multiple visits.

CNN + Recurrent
Neural Network
(RNN)

A. Research Challenges

Identifying Precise Clinical Biomarkers:
A major challenge is pinpointing the most
accurate and specific biomarkers for early
AD detection from clinical assessment
data. It's particularly difficult to distinguish
between MCI to AD converters and those
who remain stable (non-converters). This
requires identifying subtle, yet significant,
changes in neuropsychological test scores
over time, which can be easily confused
with normal aging or other conditions.

Feature Selection from Multimodal
Data: When integrating data from various
clinical assessments, such as cognitive
tests, functional questionnaires, and
demographic information, the challenge
lies in identifying the most relevant and
non-redundant features. This is often
referred to as a "curse of dimensionality"
problem, where an abundance of features
can introduce noise and reduce model
performance. Effectively combining these
different data modalities while selecting
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only the most predictive features is a
critical task.

Predicting Rapid Conversion: There is an
urgent need to identify patients who are
likely to progress from MCI to AD in a
short timeframe (e.g., within 6 months to 1
year). Predicting this rapid conversion is
difficult because the data often lacks
sufficient granularity and long-term
follow-up to capture these accelerated
changes. This necessitates the development
of advanced longitudinal models that can
effectively capture subtle, quick-onset
changes in patient data.

B. Future Directions

Advanced Feature Engineering: Future
research should focus on developing more
sophisticated  methods  for  feature
engineering that go beyond standard test
scores. This could include creating new
composite scores or metrics that capture the
rate of change in cognitive function.
Techniques like Principal Component
Analysis (PCA) or Sparse Autoencoders
(SAEs) could be used to discover latent,
more predictive features from the raw
clinical assessment data.

Longitudinal Deep Learning Models:
While traditional ML models like SVMs
have been effective, future work should
explore more powerful deep learning
architectures capable of handling time-
series data. Models such as Recurrent
Neural Networks (RNNs) or Long Short-
Term Memory (LSTM) networks can be
designed to analyze the temporal evolution
of clinical scores, capturing dependencies
between different patient visits.
Explainable Al (AI) for Clinical
Adoption: To build trust among clinicians,
it is crucial to move beyond "black-box"
models. Future research should integrate
Explainable AI techniques (e.g., SHAP,
LIME) to highlight which specific clinical
features or test questions are most
influential in a model's prediction. This will
help clinicians understand the model's
reasoning and better interpret the results.

Available at www.ijsred.com

Developing Comprehensive Multimodal
Frameworks: While the provided data
focuses on clinical assessments, a key
future direction is the creation of unified
frameworks that seamlessly integrate
clinical data with other modalities like
neuroimaging (MRI, PET) and genetic
data. This involves developing
sophisticated multi-modal fusion
techniques that can process heterogeneous
data types to create more robust and
accurate predictive models.
Cross-Cultural and Diverse Datasets:
The data provided primarily comes from
the USA and Canada. A significant future
direction is to validate models on diverse,
multi-ethnic, and multi-national datasets to
ensure that the findings are generalizable
and not biased toward a specific
population. This will improve the clinical
applicability of the models globally.

Table 4: Summary of Machine Learning and Deep Learning Models
for AD Detection Using Clinical Assessments

Ref | Data
Year | Modalities ML/DL models | Result
Random Forest,
GaussianNB, 96.07%
[1] Clinical LinearSVC, accuracy (with
(Non-MRI), Logistic MRI), 93.37%
2023 .
MRI Regression, accuracy
KNeighbors, (without MRI)
Adaboost
90.20%
Clinical accuracy (with
[2] (OASIS focuses on.feature MRI), §9.42%
2022 /selection
dataset) accuracy
(without MRI)
SVM, Decision
Clinical Tree, Gradient Random Forest
3] (Normalized | Booster, Random | and Gradient
203> | Whole Brain Forest, Gaussian | Boosting:
Volume, Naive Bayes 83.92%
CDR,MMSE) accuracy
MLP
. SVM, Random
Clinical Forest, Decision
[4] (behavioural, Tree I:o istic Random Forest:
2023 | clinical, » 08 95% accuracy
lifestyle) Regression
ANN
. o,
[27] | Single SVM: RBF Accu.r'flcy 71%,
2021 | (Clinical) kernel, no feature | Sensitivity 96%,
¢ selection Specificity 53%
0,
28] | Single CNNwith 93 | Aceuracy 74%,
2021 | (Clinical) ROI patches | Sensitivity 70%,
Specificity 78%
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(automatic feature
selection)
Regression on
1 ()
[29] | Single who}lle image Accqrgcy 76 /g,
2021 | (Clinical) patches . Sen51.t1v1'ty 42%,
CNN (automatic | Specificity 82%
feature selection)
SAE on
1 0,
[30] | Single gray/white matter Accqrgcy 82 /g,
2021 | (Clinical) patches Sensitivity 81%,
(automatic feature | Specificity 82%
selection)
0,
[31] | Single SVMon Accuracy 83%,
2022 | (Clinical) . met.abohc Sens1.t1v1.ty 87%,
intensity values Specificity 78%
Multi SVM on 93 ROI Accuracy 73%,
[32] . GM .
(Clinical & . Sensitivity 69%,
2022 Imaging) CNN (automatic Specificity 77%
gme feature selection) P y 7o
1 0
[33] Mu.l tl. Co Regression Accqrgcy 84%,
2022 (Clinical & Model Sensitivity 86%,
Imaging) odets Specificity 82%
. SVMon Accuracy 92%,
[34] | Single structural volume e
= . Sensitivity 95%,
2022 | (Clinical) ratios (no feature P
. Specificity 90%
selection)
— s
[35] | Single SVM (sliding Accqrgcy 76 /g,
2023 | (Clinical) window Sens1.t1v1.ty 70%,
approach) Specificity 81%
. SVM on Accuracy 88%,
[36] | Single amygdala e
g . Sensitivity 86%,
2023 | (Clinical) distance (no Specificity 90%
feature selection) p Y
37] Multi SVM on Accuracy 90%,
2023 (Clinical & structural MRI Sensitivity 86%,
Imaging) and FDG-PET Specificity 83%
. SVivien grey Accuracy 92%,
[38] | Single matter regions P
= . Sensitivity 93%,
2023 | (Clinical) (automatic feature o
: Specificity 92%
selection)
39] Multi Logistic Accuracy 79%,
2023 (Clinical & Regression on Sensitivity 87%,
Imaging) selected vowels | Specificity 73%
[40] Multi Accuracy 74%,
2024 (Clinical & SVM, SVR Sensitivity 54%,
Imaging) Specificity 88%
Multi o
[41] | (Clinical, Sparse Learning Accqrgcy 89%,
. Sensitivity 89%,
2024 | Imaging & Method Specificity 92%
Biomarkers) P yoer
1 o,
[42] | Muld SVM on MTL, | Accuracy 91%,
2024 (Clinical & Entorhinal Corte Sensitivity 95%,
Imaging) Specificity 87%
Multi SVM on o
[43] | (Clinical, structural MRI, /S\::;é?\fl}tl 855/3/’
2024 | Imaging & PET,and CSF | >0 L0l 20
Biomarkers) biomarkers P y
[46] 1(\élllilrt11ical SVM on VBM, Accuracy 73%,
L DBM, PET, CSF, | Sensitivity 72%,
2024 | Imaging & . . o
. clinical variables | Specificity 74%
Biomarkers)
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[47] Multi
(Clinical & CNN + RNN Accuracy 96%
2024 .
Imaging)
V1. Future Directions and Conclusion

A.Future Directions

Despite significant advancements in leveraging
machine learning (ML) and deep learning (DL) for
early Alzheimer’s detection, this review identifies
several critical research gaps that must be
addressed to move from experimental studies to
routine clinical deployment.

Transition to Multi-Stage Diagnostic
Models: The majority of current research
focuses on binary classification (e.g., AD
vs. Healthy). Future studies should
prioritize modeling the complete spectrum
of the disease, including the nuanced
transitions between different stages of
cognitive impairment.

Enhancing Model Robustness Across
Diverse Data: There is a critical need for
models that maintain high performance
when applied to data from various sources.
Developing systems that are resilient to the

variations inherent in different clinical
environments and demographic
populations is essential for global
applicability.

Integrating Advanced Computational
Architectures: While traditional ML
models have shown success, further

exploration into architectures designed for
temporal data is necessary. Ultilizing
techniques like transfer learning can help
bridge the gap between high-resolution
research datasets and the more varied data
found in standard clinical practice.
Promoting Transparency and Clinical
Trust: For automated tools to be adopted
by healthcare professionals, the "black-
box" nature of many deep learning models
must be addressed. Integrating explainable
Al techniques will allow clinicians to
understand the specific features whether
cognitive scores or structural brain changes
that drive a model's prediction.
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B. Conclusion

The application of machine learning to
early Alzheimer’s disease detection represents a
transformative shift toward more accessible and
cost-effective diagnostics. This systematic review
demonstrates that  non-invasive clinical
assessments, when processed through
sophisticated algorithms, can provide high
diagnostic accuracy that rivals more expensive and
invasive traditional methods.
Current research highlights the effectiveness of
diverse models, including Support Vector
Machines, Ensemble methods, and Convolutional
Neural Networks, across prominent datasets such
as ADNI and NACC. However, the transition from
research to practice requires addressing ongoing
challenges related to data heterogeneity and the
need for long-term predictive capabilities.
By expanding the scope of features used such as
incorporating a wider array of cognitive domains
through tools like the MoCA and ADAS-Cog
researchers can capture the subtle deficits
characteristic of the earliest stages of decline.
Ultimately, the development of reliable,
generalized systems that can function across
diverse global populations will be instrumental in
ensuring that early detection leads to timely
intervention and improved quality of life for
patients and their families.
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