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Abstract: 
            Alzheimer’s disease (AD) is a progressive neurodegenerative condition that requires precise early 
intervention. While machine learning (ML) has made significant strides in this field, current research is 
largely confined to binary classification frameworks, focusing primarily on distinguishing healthy controls 
from AD patients. There is, however, an urgent clinical necessity to move toward multi-class detection to 
capture the nuanced stages of disease progression using non-invasive clinical assessments. Furthermore, 
within the domain of neuroimaging, a critical gap exists regarding clinical reliability and model 
generalization. Current literature predominantly prioritizes high accuracy scores, often at the expense of 
ensuring that these models remain robust across heterogeneous datasets and diverse clinical environments. 
This review synthesizes the current state of ML in AD detection, advocating for a shift from simple binary 
labels to complete multi-stage analysis. By addressing the 'accuracy vs. reliability' trade-off, we emphasize 
the need for generalized systems that maintain diagnostic integrity across different populations. Ultimately, 
this work provides a framework for transitioning toward more clinically viable diagnostic tools that prioritize 
multi-class progression and cross-dataset reliability over isolated performance metrics. 
 
Keywords — Machine learning, Alzheimer disease, Cognitive assessment test, mild cognitive impairment, Datasets, 
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I.     INTRODUCTION 
A. The Global Crisis of Alzheimer’s Disease 

Alzheimer’s disease (AD) stands as a 
formidable global health challenge, representing a 
progressive neurodegenerative disorder that serves 
as the leading cause of dementia, accounting for an 
estimated 60% to 80% of all cases worldwide. The 
clinical manifestation of AD is characterized by a 
relentless decline in cognitive functions, including 
severe memory loss, disorientation, impaired 
judgment, and significant behavioral changes. 
These symptoms do not merely affect the 
individual; they place an immense psychological 
and financial burden on caregivers and strain 
global healthcare infrastructures. As the global 
population ages at an unprecedented rate, the 

epidemiological data is sobering: the number of 
individuals living with Alzheimer’s is projected to 
triple by the year 2050. This trajectory underscores 
an urgent, non-negotiable need for the 
development of effective diagnostic tools and early 
intervention strategies that can be deployed at 
scale. 

Early detection is the cornerstone of effective 
AD management. Identifying the disease in its 
prodromal or early stages specifically during the 
transition from Mild Cognitive Impairment (MCI) 
to AD enables the timely initiation of 
pharmacological treatments and non-
pharmacological lifestyle interventions. These 
early actions are critical for slowing the rate of 
cognitive decline, managing neuropsychiatric 
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symptoms, and significantly improving the quality 
of life for both patients and their families. 
Furthermore, an early diagnosis provides a 

"window of opportunity" for patients to 
participate in clinical trials for emerging disease-
modifying therapies and allows families to make 
informed decisions regarding future care and legal 
planning. 

 
Fig. 1: Comparison of a healthy brain and the structural progression 

of Alzheimer’s Disease 

B. Limitations of Traditional Diagnostic 
Modalities 

Despite the clear benefits of early 
identification, the clinical reality is that AD is often 
diagnosed far too late. The disease typically 
develops insidiously over decades, with early 
pathological changes occurring in the brain long 
before clinical symptoms become apparent. 
Traditional diagnostic frameworks rely heavily on 
comprehensive clinical evaluations, laboratory 
analyses of cerebrospinal fluid (CSF) biomarkers, 
and advanced neuroimaging techniques such as 
Magnetic Resonance Imaging (MRI) and Positron 
Emission Tomography (PET) [10, 12, 20]. While 
these imaging modalities provide high-resolution 
insights into structural atrophy and metabolic 
changes, they are fraught with practical limitations. 
Neuroimaging is inherently expensive, often 
invasive, and requires specialized equipment and 
highly trained personnel to interpret. These factors 
create a significant barrier to access, particularly in 
primary care settings, rural areas, or resource-
constrained environments. 

Furthermore, a critical observation in 
contemporary neuroimaging research is the 
"accuracy-utility gap." A vast majority of studies 
focus on achieving peak accuracy within highly 
controlled, homogeneous datasets [15, 22]. While 
these models report impressive performance 
metrics, they often fail to address clinical reliability 
and model generalization [13, 17]. A model that is 
99% accurate on a specific research dataset like 
ADNI may perform poorly when applied to a 
different clinical population with different 
scanning protocols or demographic backgrounds. 
This lack of cross-cohort generalizability remains 
a major bottleneck in transitioning machine 
learning (ML) models from "bench to bedside" 
[62]. 
C. The Role of Non-Invasive Cognitive 

Assessments 
In response to the limitations of 

neuroimaging, cognitive assessments have 
emerged as a vital, non-invasive, and cost-effective 
alternative. Standardized neuropsychological 
instruments, such as the Mini-Mental State 
Examination (MMSE), the Montreal Cognitive 
Assessment (MoCA), and the Alzheimer’s Disease 
Assessment Scale-Cognitive Subscale (ADAS-
Cog), are used globally to evaluate domains like 
memory, attention, language, and executive 
function. These tests are essential for monitoring 
disease progression and are highly scalable for 
mass screening [1]. 

However, traditional interpretation of these 
tests relies on static cutoff scores, which are often 
influenced by a patient’s educational background, 
cultural content, and language proficiency [5]. This 
subjectivity can lead to "false negatives" in highly 
educated individuals who may "compensate" for 
early cognitive deficits, or "false positives" in 
populations with lower literacy. Consequently, 
there is a growing demand for objective, data-
driven methods that can extract subtle, non-linear 
patterns from these test scores patterns that are 
often invisible to the human eye but highly 
indicative of early-stage neurodegeneration. 
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Fig.  2: Representative anal MRI brain scans from a dataset classified 
by dementia severity: Very Mild, Mild, and Moderate AD 

 
 
D. The Machine Learning Revolution and the 

"Binary Trap" 
The integration of Machine Learning (ML) 

into AD research has provided a powerful toolkit 
for addressing these challenges. ML algorithms 
ranging from Support Vector Machines (SVM) and 
Random Forests to sophisticated Deep Learning 
architecture scan process multidimensional, 
longitudinal data to identify complete biomarkers 
of decline [2, 3, 4]. By leveraging large-scale 
datasets, researchers have demonstrated that ML 
can predict AD at a significantly lower cost than 
traditional imaging methods [1, 14, 23]. 
However, a critical review of the current literature 
reveals a significant limitation: the prevalence of 
the "Binary Classification Trap." Most current ML 
studies focus on the simple distinction between 
"Healthy Control" (HC) and "Alzheimer’s 
Disease" (AD) [9, 19, 25]. While this proves that 
ML is capable of pattern recognition, it has limited 
clinical utility. In a real-world clinical setting, the 
challenge is not just identifying who has late-stage 
AD, but distinguishing between various stages of 
progression, such as stable MCI versus progressive 
MCI. There is an urgent need to shift toward multi-
class detection systems that can map the entire 
trajectory of the disease. Capturing these subtle 

physiological and cognitive transitions is essential 
for personalized medicine, yet multi-stage analysis 
remains under-explored compared to simple binary 
models. 
E. Addressing Data Heterogeneity and 

Reliability 
Beyond classification, the field faces a 

crisis of reliability. Many researchers prioritize 
accuracy as the primary metric of success, 
neglecting the fact that in medicine, a "reliable" 
model is often more valuable than an "accurate" 
but unstable one. Reliability refers to a model's 
ability to maintain its diagnostic integrity across 
heterogeneous datasets data coming from different 
scanners, different cognitive test versions, and 
diverse ethnic populations. 

The presence of data heterogeneity often 
leads to overfitting, where a model "memorizes" 
the noise of a specific dataset rather than learning 
the underlying biological signal of the disease. To 
overcome this, advanced computational paradigms 
like transfer learning must be employed [32, 66]. 
Transfer learning allows a model trained on a large, 
diverse source dataset to adapt its knowledge to a 
smaller, specific target population, thereby 
enhancing generalizability. This is the foundation 
of building a generalized clinical reliability system 
a system that clinicians can trust regardless of the 
data source. 
F. Objectives and Scope of this Review 

This systematic review aims to provide a 
comprehensive and critical overview of the current 
state of machine learning in Alzheimer’s detection, 
with a specific emphasis on cognitive assessment 
data. Unlike previous reviews that focus solely on 
accuracy, this work evaluates the literature through 
the lens of clinical viability and multi-stage 
progression. 
We examine the various types of cognitive 
assessments utilized, the diverse range of ML 
algorithms implemented from traditional 
classifiers to deep ensemble learning [24, 28, 
29]and the feature selection strategies that have 
proven most effective. Crucially, we investigate 
the datasets used, such as ADNI and NACC, and 
discuss the critical need for eternal validation and 
cross-cohort testing [51, 56, 62]. By synthesizing 
these findings, we aim to highlight the gaps where 
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binary models fail and where the net generation of 
multi-class, generalized systems must begin. 
Ultimately, this review serves as a roadmap for 
researchers and clinicians to move toward 
diagnostic tools that are not only highly accurate 
but are also robust, reliable, and capable of 
capturing the complete, multi-stage nature of 
Alzheimer’s disease. 

 
Fig.  3: Present Workflow of the machine learning pipeline, including 
PCA-based feature Extraction, transfer learning, and final classification 
(AD vs. HC) using ANN and SVM models. 

II. Review Protocol and Methodology 
This section outlines the rigorous 

systematic review protocol and methodology 
employed to evaluate the current landscape of 
machine learning (ML) in Alzheimer’s Disease 
(AD) detection. Our approach is designed to ensure 
a comprehensive, objective, and reproducible 
analysis of the existing literature. Unlike 
traditional reviews that focus predominantly on 
binary classification accuracy, this methodology is 
specifically formulated to investigate two critical 
gaps in the field: the transition toward multi-class 
detection of disease progression and the 
requirement for model generalizability and clinical 
reliability across heterogeneous data sources. 
The process began with the formulation of core 
research questions: 

 How effectively do current ML models 
move beyond binary labels to identify 
specific stages of cognitive decline (e.g., 
Stable vs. Progressive MCI)? 

 To what extent does current research 
address the "accuracy-reliability" trade-off 
when dealing with diverse, multi-site 
datasets? 

 What is the role of advanced computational 
techniques, such as transfer learning, in 
ensuring diagnostic integrity across 
different clinical environments? 

A. Search Strategy 
A comprehensive literature search was 

conducted to identify relevant studies focusing on 
the application of machine learning techniques to 
non-invasive cognitive and clinical assessment 
data. Electronic databases including ACM Digital 
Library, PubMed, ArXiv, Scopus, Web of Science, 
and IEEE Explore were systematically searched for 
articles published up to 2025. 
The search terms were carefully selected to capture 
both established methods and emerging trends in 
multi-modal and multi-stage analysis. We utilized 
a combination of keywords and Boolean operators 
(AND, OR) as follows: 

 Disease Progression: (“Alzheimer’s 
disease” OR “MCI progression” OR 
“Dementia stages”) 

 Methodological Focus: (“Machine 
learning” OR “Deep learning” OR “Multi-
class classification” OR “Transfer 
learning”) 

 What is the role of advanced computational 
techniques, such as transfer learning, in 
ensuring diagnostic integrity across 
different clinical environments? 

A. Search Strategy 
A comprehensive literature search was 

conducted to identify relevant studies focusing on 
the application of machine learning techniques to 
non-invasive cognitive and clinical assessment 
data. Electronic databases including ACM Digital 
Library, PubMed, ArXiv, Scopus, Web of Science, 
and IEEE Explore were systematically searched for 
articles published up to 2025. 
The search terms were carefully selected to capture 
both established methods and emerging trends in 
multi-modal and multi-stage analysis. We utilized 
a combination of keywords and Boolean operators 
(AND, OR) as follows: 
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 Disease Progression: (“Alzheimer’s 
disease” OR “MCI progression” OR 
“Dementia stages”) 

 Methodological Focus: (“Machine 
learning” OR “Deep learning” OR “Multi-
class classification” OR “Transfer 
learning”) 

 Reliability Focus: (“Clinical reliability” 
OR “Model generalization” OR 
“Heterogeneous datasets” OR “Cross-
cohort validation”) 

 Assessment Tools: (“Cognitive test 
scores” OR “Neuropsychological 
assessment” OR “MMSE” OR “MoCA” 
OR “ADAS-Cog”) 
Additional studies were identified by 

manually screening the reference lists of high-
impact reviews and seminal papers to ensure a 
robust bibliography [4, 9]. The records identified 
as of 01/08/2025 across key search engines are 
detailed in Table 1. 
Table 1: Number of records found for each query in journal search engines 

as on from 2020-2025. 

Search 
Engine 

Keywords 
Number of 

Records 
Found 

Google 
Scholar 

Alzheimer's disease assessment 
data 
Early Detection of MCI to AD 
Conversion Using Machine 
Learning  
Early Detection of Alzheimer’s  

19000 
17700 
 
16900 

Pubmed 

Alzheimer's disease assessment 
data 
Early Detection of MCI to AD 
Conversion Using Machine 
Learning  
Early Detection of Alzheimer’s  

8000 
750 
 
7014 

IEEE plore 

Alzheimer's disease assessment 
data 
Early Detection of MCI to AD 
Conversion Using Machine 
Learning  
Early Detection of Alzheimer’s  

401 
190 
 
1408 

Ariv 

Alzheimer's disease assessment 
data 
Early Detection of MCI to AD 
Conversion Using Machine 
Learning  
Early Detection of Alzheimer’s  

5500 
5610 
 
5890 

ACM 

Alzheimer's disease assessment 
data 
Early Detection of MCI to AD 
Conversion Using Machine 
Learning  
Early Detection of Alzheimer’s  

3500 
2610 
 
5100 

B. Study selection 
To maintain a high standard of clinical relevance, 
specific inclusion and exclusion criteria were 
established. These criteria prioritize studies that 
address the complexities of real-world clinical data 
rather than those reporting high accuracy on 
isolated, simplified datasets. 
1) Inclusion Criteria Studies were included in this 

review if they met the following: 
 Original research articles published in 

peer-reviewed journals or reputable 
international conference proceedings. 

 Studies investigating ML/Deep Learning 
algorithms for the detection, classification, 
or stage-prediction of Alzheimer’s disease. 

 Utilization of cognitive assessment data 
(e.g., MMSE, MoCA, ADAS-Cog) as a 
primary feature set. 

 Research addressing multi-class 
classification (e.g., distinguishing 
between CN, Early MCI, Late MCI, and 
AD). 

 Research evaluating model 
generalizability, including the use of 
transfer learning or validation across 
heterogeneous datasets (e.g., testing a 
model trained on ADNI with OASIS data). 

2)  Exclusion Criteria Studies were excluded if 
they met the following: 
 Studies not focused on Alzheimer’s 

disease or those omitting cognitive/clinical 
assessment data in favor of purely 
biological markers. 

 Studies using only neuroimaging 
(MRI/PET) or genetic data without a 
comparative or integrative cognitive 
assessment component. 

 Reviews, editorials, letters, or non-peer-
reviewed white papers. 

 Studies focused strictly on binary (Healthy 
vs. AD) classification that failed to 
address the nuances of disease progression 
or early-stage impairment. 

 Studies reporting performance metrics 
based on a single, homogeneous dataset 
without addressing potential overfitting or 
lack of clinical reliability. 
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III. Results and Discussion 
This section presents a detailed analysis of 

the study selection process and a critical discussion 
of the current literature's focus. The primary 
objective was to filter the vast body of Alzheimer’s 
research to find studies that provide high-quality, 
clinically applicable machine learning 
frameworks. 
Study Selection Process A comprehensive and 
systematic search was executed across major 
electronic databases, including Google Scholar, 
PubMed, IEEE Explore, ArXiv, and ACM. By 
employing a broad search strategy targeting 
"Alzheimer’s disease assessment data" and 
"Machine Learning-based Early Detection," an 
initial pool of 98,282 records was identified. 
The selection process followed a rigorous 
refinement pipeline to ensure only the most 
relevant and robust studies were included: 
 Duplicate Removal: After aggregating 

results from all databases, 2,215 duplicate 
records were identified and removed, leaving 
96,067 unique articles. 

 Title and Abstract Screening: Initial 
screening led to the exclusion of 30,215 
articles that were either irrelevant to the core 
topic or lacked an engineering/computational 
focus. A significant portion of these excluded 
papers focused purely on clinical or biological 
pathology without proposing any artificial 
intelligence or machine learning frameworks. 

 Full-Tet Eligibility Assessment: A total of 
65,852 articles underwent a detailed full-text 
review. During this stage, a high volume of 
studies was excluded for failing to meet our 
refined inclusion criteria (see Section 2.2.1). 
Specific reasons for exclusion included: 
o Lack of Progression Focus: Many 

studies (n = 18,500) focused on static 
binary classification rather than the critical 
transition from MCI to AD. 

o Data Limitations: A large number of 
papers (n = 21,000) utilized cross-
sectional data but lacked the longitudinal 
cognitive assessment data necessary for 
modeling disease trajectory. 

o Methodological Gaps: Several articles (n 
= 20,000) lacked sufficient detail 

regarding feature engineering or failed to 
address model generalizability and data 
heterogeneity. 

o Incomplete Reporting: Finally, 6,310 
papers were excluded for failing to report 
standardized performance metrics such as 
AUC, sensitivity, or specificity. 

 
 

invasive clinical data, providing the 
foundation for our discussion on multi-class 

detection and clinical reliability. 
Discussion of Current Trends The study 
selection process revealed a significant trend in the 
current literature: while the volume of research is 
vast, a narrow focus on binary accuracy on single, 
homogeneous datasets (like ADNI) persists. Our 
review of the final 42 studies indicates that while 
high accuracy is frequently reported, there is a 
distinct lack of "Generalized Clinical Reliability." 

Records identified through database 
searching (n = 98,282) 

 

Duplicates removed (n = 2,215) Records 
after duplicates (n = 96,067) 

 

Titles/abstracts screened (n = 96,067) 
Excluded as irrelevant (n = 30,215) 

Abstracts reviewed for AI/ML focus (n 
= 65,852) 

Excluded (not focused on AI/ML) 

Full-text articles assessed for 
eligibility (n = 65,852) 
Excluded: - Not focused on MCI to AD 
conversion (n = 18,500) 
 - No longitudinal cognitive data (n = 
21,000) 
 - Insufficient methodology/features 
(n = 20,000) 

Studies included in review (n = 72) 
 

Fig. 4: Exclusion criteria used in 
the paper selection process. 
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Most models are optimized for a specific 
population, making them less effective when 
applied to heterogeneous data sets a gap that must 
be bridged by transfer learning and multi-stage 
classification models. This finding reinforces the 
necessity for moving beyond simple diagnostic 
labels toward comprehensive reliability systems 
that maintain diagnostic integrity across diverse 
clinical environments. 
IV. Data Extraction and Cognitive Feature 

Analysis 
For each study meeting the inclusion 

criteria, a systematic data Extraction process was 
undertaken to ensure consistent collection of 
information across diverse research designs. A 
standardized Extraction form was pilot-tested to 
ensure it captured the nuances of both the machine 
learning architectures and the underlying clinical 
data. Two reviewers independently performed the 
Extraction, with a third reviewer resolving 
discrepancies to ensure high inter-rater reliability 
[5]. 
o Bibliographic and Population Content 

We recorded the primary author, year of 
publication, and geographic origin to identify 
temporal and regional trends in Alzheimer’s 
research. Furthermore, we extracted sample 
characteristics including participant volume, age, 
gender distribution, and the specific diagnostic 
criteria (e.g., DSM-5 or NINCDS-ADRDA) used 
to label patients. This content is essential for 
evaluating whether a model is truly generalized or 
merely optimized for a specific demographic. 
B.  Analysis of Heterogeneous Datasets 

A variety of publicly accessible datasets are 
commonly employed in the early detection of 
Alzheimer’s disease (AD). However, a significant 
finding of this review is the heterogeneity between 
these sources. While they provide a rich source of 
longitudinal data, differences in scanning protocols 
and cognitive test versions create a "domain gap" 
that current machine learning models often 
struggle to bridge. 
C.  Analysis of Multimodal and Heterogeneous 

Datasets 
A critical finding of this systematic review is that 
the most robust machine learning models are those 
that successfully navigate the complexity of 

heterogeneous data types. Alzheimer’s research 
has transitioned from single-modality analysis to a 
more holistic approach. However, as the variety of 
data types increases from neuroimaging to clinical 
assessments so does the challenge of clinical 
reliability. The following table categorizes the 
major datasets used in the field by their data 
composition and the specific technical hurdles they 
present for generalization. 

Table2: Each datasets of Alzheimer’s disease are given below. 

Dataset 
Primary Data 
Types 

Sample 
Size 

Main Features 

ADNI 

Neuroimaging 
(MRI/PET), Bio-
markers (CSF), 
Clinical 
Assessments 

~2000+ 

Extensive 
longitudinal 
cognitive & 
clinical data 

NACC 

Clinical 
Assessments, Bio-
markers, 
Neuropathology 

~40,000+ 

Large, diverse, 
US-based, 
standardized 
assessments 

OASIS 

Neuroimaging 
(MRI/PET), 
Clinical 
Assessments 

1000+ 
Imaging + 
cognitive, 
longitudinal 

AIBL 

Neuroimaging, 
Bio-markers, 
Clinical 
Assessments, 
Lifestyle 

2000+ 
Lifestyle, 
genetics, regular 
cognitive testing 

Dementia 
Bank 

Audio Recordings 
(Speech), 
Transcripts, 
Clinical 
Assessments 

250+ 
Transcripts, 
audio, cognitive 
test scores 

 
  The Role of Multimodal Data in Machine Learning 

As shown in Table 2, datasets like ADNI 
and OASIS provide a rich combination of 
Neuroimaging and Clinical Assessments. In the 
content of machine learning, this allows for the 
development of multi-input architectures where 
structural changes in the brain (via MRI) are 
correlated with functional decline (via cognitive 
tests). However, the literature reveals a significant 
"Domain Gap." Models trained on the high-
resolution MRI data of ADNI often face a 
reduction in accuracy when deployed on more 
"noisy" or heterogeneous clinical datasets like 
NACC. This underscores the urgent need for 
Transfer Learning a technique that allows a model 
to retain learned features from one dataset while 
adapting to the specific distribution of another. 
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 Clinical Assessments vs. Biological Markers 

While Bio-markers (such as Amyloid-beta 
and Tau levels in CSF) and Neuroimaging are the 
gold standards for pathology, they are often 
inaccessible in primary care settings. Our analysis 
of these 42 studies emphasizes that Clinical 
Assessment Test Data remains the most scalable 
and cost-effective feature set. The challenge 
identified in the current state of the art is not the 
lack of data, but the Reliability Gap. Because 
different datasets use slightly different protocols 
for clinical assessments, models must be designed 
to be "Dataset Agnostic." This is the primary 
motivation for shifting research toward 
Generalized Clinical Reliability Systems that can 
handle the inherent heterogeneity of global medical 
data. 
  Longitudinal Follow-up and Multi-Class 

Classification 

A common thread across the datasets in 
Table 2 is the presence of Longitudinal Follow-up. 
This is essential for moving beyond Binary 
Classification (AD vs. Normal). To capture the true 
nature of Alzheimer's as a progressive illness, 
machine learning models must leverage these 
repeated measures to perform Multi-Class 
Detection. By tracking a patient across years of 
follow-up in the AIBL or NACC cohorts, 
researchers can train models to distinguish between 
stable MCI and progressive MCI a distinction that 
is clinically far more valuable than a late-stage AD 
diagnosis. 
D.  Analysis of Feature Domains: 

Neuroimaging, Biomarkers, and Cognitive 
Assessments 

In the development of machine learning 
models for Alzheimer’s detection, the selection of 
feature domains is the most critical factor 
influencing both accuracy and clinical utility. 
While early research focused on single-modality 
models, the field is rapidly moving toward multi-
modal fusion. However, each domain presents 
unique challenges regarding data acquisition, cost, 
and generalizability. 
1) Neuroimaging Features (Structural & Functional) 

Neuroimaging remains the "gold standard" for 
visualizing the physical manifestations of 

neurodegeneration. Machine learning models 
primarily leverage features from: 

 Structural MRI (sMRI): Extracted 
features often include gray matter volume, 
cortical thickness, and hippocampal 
atrophy rates. Deep learning models, 
particularly Convolutional Neural 
Networks (CNNs), are frequently used to 
identify vowel-based patterns that precede 
clinical symptoms [12, 15]. 

 Functional Imaging (PET/fMRI): 
Features include glucose metabolism rates 
(FDG-PET) or amyloid/tau protein 
deposition. 

 The Technical Challenge: These features 
are high-dimensional and highly sensitive 
to scanning protocols. Models trained on 
MRI features often struggle with reliability 
when moved from a controlled research 
environment (like ADNI) to a diverse 
clinical setting [62]. 

2)  Biological Markers (Fluid Biomarkers) 

Biomarkers provide a biochemical "fingerprint" of 
the disease. Features extracted for ML models 
include: 

 Cerebrospinal Fluid (CSF): 
Concentrations of Amyloid-beta (Aβ42), 
Total Tau (t-tau), and Phosphorylated Tau 
(p-tau). 

 Blood-based Biomarkers: Emerging 
research is focusing on plasma p-tau217 as 
a less invasive feature. 

 The Technical Challenge: Although 
highly accurate for binary classification 
(AD vs. Normal), biomarkers are invasive 
and expensive. In our review, we highlight 
that while biomarkers provide high 
"Ground Truth" labels, they are often 
missing in large-scale heterogeneous 
datasets, requiring Transfer Learning to 
bridge the data gap. 

3) Cognitive and Neuropsychological Features 

As the primary focus of this review, cognitive 
features represent the most scalable and non-
invasive data domain. These features capture the 
functional impact of the biological changes 
mentioned above. 
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 Global Screening Features 
(MMSE/MoCA): These provide a 
"snapshot" of cognitive health. Total scores 
are often used as baseline features, while 
sub-scores (memory recall, orientation, 
abstraction) allow ML models to detect 
subtle impairments in specific domains. 

 Functional Independence Features 
(CDR): The Clinical Dementia Rating 
(CDR) provides a categorical feature set (0, 
0.5, 1, 2) that is essential for training Multi-
Class Detection models to identify the 
stages of progression. 

 Linguistic and Behavioral Features: 
Advanced models now extract features 
from spontaneous speech (fluency, 
vocabulary richness) and daily activity 
patterns, offering a continuous stream of 
data for longitudinal analysis. 

4) Cross-Domain Feature Fusion: The Path to 
Reliability 

The synthesis of these 42 studies suggests that the 
future of the field lies in Feature Fusion. By 
combining the "Precision" of neuroimaging and 
biomarkers with the "Scalability" of cognitive 
assessments, researchers can create models that are 
both highly accurate and clinically viable. 
However, the major hurdle identified is the 
Heterogeneity of Features. A cognitive score from 
a clinic in Australia (AIBL) may not be directly 
comparable to one from the US (NACC). This 
discrepancy necessitates the development of a 
reliable System. Such systems must use Transfer 
Learning to harmonize these diverse feature sets, 
ensuring that the model’s prediction remains stable 
regardless of whether it is processing an MRI scan, 
a CSF report, or a simple MMSE score. 
V. Machine learning and Deep Learning 

models 
A diverse range of machine learning (ML) 

and deep learning (DL) models have been 
employed by researchers for the early detection of 
Alzheimer's Disease (AD) using clinical 
assessments. A common approach involves 
utilizing Support Vector Machines (SVMs) as the 
final classifier, which is a popular choice for its 
effectiveness in binary classification tasks, such as 
distinguishing between healthy controls (HC), 

cognitively normal (CN) individuals, and those 
with mild cognitive impairment (MCI). 
Researchers have used SVMs with various kernels, 
including the Radial Basis Function (RBF) kernel 
and polynomial kernels, to classify patients based 
on features derived from tests like the Mini-Mental 
State Examination (MMSE) and the Montreal 
Cognitive Assessment (MoCA). SVMs are 
frequently combined with other techniques, with 
extracted features from deep learning models being 
fed into an SVM for final classification. This 
approach is noted in studies by researchers in Refs. 
[34, 36–40, 42, 43, 47, 48, 64]. 

For feature selection and classification, 
Least Absolute Shrinkage and Selection Operator 
(LASSO) regression has been employed. This 
method is effective for identifying the most 
predictive clinical features from a large set of 
assessment scores. One study [31] used LASSO to 
build a feature selection framework and a classifier 
to distinguish between different stages of cognitive 
decline. 
In addition, regression models have been 
developed for AD prediction. For example, a linear 
Sparse Regression model was proposed by 
researchers in Ref. [41]. Co regression models, 
specifically designed for survival analysis, have 
also been adapted for classifying patients. These 
models, used in Refs. [33, 45], can predict the time 
to conversion from MCI to AD. One study [33] 
used a Co regression model as a classifier to predict 
the conversion from stable MCI (sMCI) to 
progressive MCI (pMCI) using clinical data. 
Similarly, a Co hazard model was implemented in 
Ref. [45] to identify whether a patient belongs to 
the sMCI or pMCI category based on the calculated 
Co probability value. 

Longitudinal classifiers are crucial for 
analysing data collected over multiple patient visits 
[6]. Researchers in Refs. [35, 63] utilized these 
models to capture the progression of cognitive 
decline. A Mixed Effects Model was proposed in 
Ref. [63] to account for varying visit intervals and 
individual patient trajectories. Furthermore, a 
sliding window-based approach [35] was used to 
measure the influence of one visit's assessment 
results on the prediction of subsequent cognitive 
states. 



International Journal of Scientific Research and Engineering Development— Volume 8 Issue 2, Mar-Apr 2025 

               Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 3109 

The use of ensemble methods has shown promise 
in improving classification accuracy. An ensemble 
of ML classifiers, such as a combination of SVM 
and Logistic Regression (LR), was used by 
researchers in Refs. [27, 50] to better helping 
doctors tell the difference between people who 
have different levels of thinking ability. 

Deep Learning (DL) architectures are used 
for both feature Extraction and as direct classifiers. 
Convolutional Neural Networks (CNNs), while 
traditionally used for image analysis, have been 
adapted to process structured clinical data by 
treating it as a one-dimensional signal. Researchers 
in Refs. [28, 30, 44, 46, 49, 52–62, 65] used CNNs 
for feature extraction from clinical assessment 
batteries. These extracted features can then be used 
by traditional classifiers like SVMs, as shown in 
studies [32, 33, 35, 36, 39, 65], or directly 
classified by the deep learning architecture itself. 
A table summarizing the purpose and 
configurations of these models is provided below. 
Table 3: Configuration of ML and DL algorithms used in previous works. 
Reference Model Configuration Purpose 

[27, 50] 

Ensemble of SVM 
and Logistic 
Regression (LR): 
SVM with RBF kernel, 
Binary Logistic 
Regression 

Classification of AD 
progression based on 
clinical and 
neuropsychological test 
scores. 

[28–30, 
47, 54, 
66] 

Convolutional Neural 
Network (CNN): 
Variable number of 
fully connected layers 
(FCLs), activation 
functions like Sigmoid 
or ReLU 

Feature extraction from 
clinical data and direct 
classification of 
cognitive status. 

[31, 32] 

Sparse Autoencoder 
(SAE): Rectified 
Linear Unit (ReLU) 
activation 

Capturing latent 
features from 
neuropsychological data 
for dimensionality 
reduction and 
classification. 

[34, 44] 
Co Regression 
Models 

Calculating the survival 
time to AD conversion 
from multimodal 
clinical data. 

[40, 61] 
CNN, SVM, Support 
Vector Regression 
(SVR) 

CNN for automatic 
feature extraction; SVR 
for estimating cognitive 
decline rates; SVM for 
classification. 

[42] 
Sparse Learning 
Regression 

Causal inference model 
for identifying the 
relationship between 
different clinical 
features and cognitive 
decline. 

[48] Bayes Classifier 

Probabilistic model for 
classifying AD using 
speech features from 
clinical interviews. 

[49] 
CNN + Graph 
Networks: Tanh 
activation function 

CNN for feature 
extraction; Graph 
Networks for analysing 
connectivity measures 
from clinical data. 

[60] 
Ensemble Voting 
Classifier: SVM, 
KNN, MLP 

Combining multiple 
models (SVM with RBF 
kernel, KNN, MLP) for 
enhanced classification 
accuracy. 

[53] 
CNN with Attention 
Mechanism 

Focusing on more 
significant clinical 
assessment scores or 
regions of interest (ROI) 
for better classification. 

[55] CNN 

Extracting features from 
Electroencephalography 
(EEG) data as part of a 
multi-modal clinical 
assessment. 

[44, 49, 
65] 

CNN + Recurrent 
Neural Network 
(RNN) 

CNN for feature 
extraction from clinical 
data; RNN for capturing 
temporal features and 
dependencies over 
multiple visits. 

 
A. Research Challenges 

 Identifying Precise Clinical Biomarkers: 
A major challenge is pinpointing the most 
accurate and specific biomarkers for early 
AD detection from clinical assessment 
data. It's particularly difficult to distinguish 
between MCI to AD converters and those 
who remain stable (non-converters). This 
requires identifying subtle, yet significant, 
changes in neuropsychological test scores 
over time, which can be easily confused 
with normal aging or other conditions. 

 Feature Selection from Multimodal 
Data: When integrating data from various 
clinical assessments, such as cognitive 
tests, functional questionnaires, and 
demographic information, the challenge 
lies in identifying the most relevant and 
non-redundant features. This is often 
referred to as a "curse of dimensionality" 
problem, where an abundance of features 
can introduce noise and reduce model 
performance. Effectively combining these 
different data modalities while selecting 
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only the most predictive features is a 
critical task. 

 Predicting Rapid Conversion: There is an 
urgent need to identify patients who are 
likely to progress from MCI to AD in a 
short timeframe (e.g., within 6 months to 1 
year). Predicting this rapid conversion is 
difficult because the data often lacks 
sufficient granularity and long-term 
follow-up to capture these accelerated 
changes. This necessitates the development 
of advanced longitudinal models that can 
effectively capture subtle, quick-onset 
changes in patient data. 

B. Future Directions 
 Advanced Feature Engineering: Future 

research should focus on developing more 
sophisticated methods for feature 
engineering that go beyond standard test 
scores. This could include creating new 
composite scores or metrics that capture the 
rate of change in cognitive function. 
Techniques like Principal Component 
Analysis (PCA) or Sparse Autoencoders 
(SAEs) could be used to discover latent, 
more predictive features from the raw 
clinical assessment data. 

 Longitudinal Deep Learning Models: 
While traditional ML models like SVMs 
have been effective, future work should 
explore more powerful deep learning 
architectures capable of handling time-
series data. Models such as Recurrent 
Neural Networks (RNNs) or Long Short-
Term Memory (LSTM) networks can be 
designed to analyze the temporal evolution 
of clinical scores, capturing dependencies 
between different patient visits. 

 Explainable AI (AI) for Clinical 
Adoption: To build trust among clinicians, 
it is crucial to move beyond "black-box" 
models. Future research should integrate 
Explainable AI techniques (e.g., SHAP, 
LIME) to highlight which specific clinical 
features or test questions are most 
influential in a model's prediction. This will 
help clinicians understand the model's 
reasoning and better interpret the results. 

 Developing Comprehensive Multimodal 
Frameworks: While the provided data 
focuses on clinical assessments, a key 
future direction is the creation of unified 
frameworks that seamlessly integrate 
clinical data with other modalities like 
neuroimaging (MRI, PET) and genetic 
data. This involves developing 
sophisticated multi-modal fusion 
techniques that can process heterogeneous 
data types to create more robust and 
accurate predictive models. 

 Cross-Cultural and Diverse Datasets: 
The data provided primarily comes from 
the USA and Canada. A significant future 
direction is to validate models on diverse, 
multi-ethnic, and multi-national datasets to 
ensure that the findings are generalizable 
and not biased toward a specific 
population. This will improve the clinical 
applicability of the models globally. 

Table 4: Summary of Machine Learning and Deep Learning Models 
for AD Detection Using Clinical Assessments 

Ref 
Year 

Data 
 Modalities 

ML/DL models Result 

[1] 
2023 

Clinical  
(Non-MRI), 
MRI 

Random Forest, 
GaussianNB, 
LinearSVC, 

Logistic 
Regression, 
KNeighbors, 

Adaboost 

96.07% 
accuracy (with 
MRI), 93.37% 
accuracy 
(without MRI) 

[2] 
2022 

Clinical 
(OASIS 
dataset) 

focuses on feature 
/selection 

90.20% 
accuracy (with 
MRI), 89.42% 
accuracy 
(without MRI)  

[3] 
2022 

Clinical 
(Normalized 
Whole Brain 
Volume, 
CDR,MMSE) 

SVM, Decision 
Tree, Gradient 
Booster, Random 
Forest, Gaussian 
Naive Bayes  

MLP 

Random Forest 
and Gradient 
Boosting: 
83.92% 
accuracy 

[4] 
2023 

Clinical 
(behavioural, 
clinical, 
lifestyle) 

SVM, Random 
Forest, Decision 
Tree, Logistic 
Regression 

ANN 

Random Forest: 
95% accuracy 

[27] 
2021 

Single 
(Clinical) 

SVM: RBF 
kernel, no feature 

selection 

Accuracy 71%, 
Sensitivity 96%, 
Specificity 53% 

[28] 
2021 

Single 
(Clinical) 

CNN with 93 
ROI patches 

Accuracy 74%, 
Sensitivity 70%, 
Specificity 78% 
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(automatic feature 
selection) 

[29] 
2021 

Single 
(Clinical) 

Regression on 
whole image 
patches 
CNN (automatic 
feature selection) 

Accuracy 76%, 
Sensitivity 42%, 
Specificity 82% 

[30] 
2021 

Single 
(Clinical) 

SAE on 
gray/white matter 

patches 
(automatic feature 

selection) 

Accuracy 82%, 
Sensitivity 81%, 
Specificity 82% 

[31] 
2022 

Single 
(Clinical) 

SVM on 
metabolic 

intensity values 

Accuracy 83%, 
Sensitivity 87%, 
Specificity 78% 

[32] 
2022 

Multi 
(Clinical & 
Imaging) 

SVM on 93 ROI 
GM 
CNN (automatic 
feature selection) 

Accuracy 73%, 
Sensitivity 69%, 
Specificity 77% 

[33] 
2022 

Multi 
(Clinical & 
Imaging) 

Co Regression 
Models 

Accuracy 84%, 
Sensitivity 86%, 
Specificity 82% 

[34] 
2022 

Single 
(Clinical) 

SVM on 
structural volume 
ratios (no feature 

selection) 

Accuracy 92%, 
Sensitivity 95%, 
Specificity 90% 

[35] 
2023 

Single 
(Clinical) 

SVM (sliding 
window 

approach) 

Accuracy 76%, 
Sensitivity 70%, 
Specificity 81% 

[36] 
2023 

Single 
(Clinical) 

SVM on 
amygdala 

distance (no 
feature selection) 

Accuracy 88%, 
Sensitivity 86%, 
Specificity 90% 

[37] 
2023 

Multi 
(Clinical & 
Imaging) 

SVM on 
structural MRI 
and FDG-PET 

Accuracy 90%, 
Sensitivity 86%, 
Specificity 83% 

[38] 
2023 

Single 
(Clinical) 

SVM on grey 
matter regions 

(automatic feature 
selection) 

Accuracy 92%, 
Sensitivity 93%, 
Specificity 92% 

[39] 
2023 

Multi 
(Clinical & 
Imaging) 

Logistic 
Regression on 

selected vowels 

Accuracy 79%, 
Sensitivity 87%, 
Specificity 73% 

[40] 
2024 

Multi 
(Clinical & 
Imaging) 

SVM, SVR 
Accuracy 74%, 
Sensitivity 54%, 
Specificity 88% 

[41] 
2024 

Multi 
(Clinical, 
Imaging & 
Biomarkers) 

Sparse Learning 
Method 

Accuracy 89%, 
Sensitivity 89%, 
Specificity 92% 

[42] 
2024 

Multi 
(Clinical & 
Imaging) 

SVM on MTL, 
Entorhinal Corte 

Accuracy 91%, 
Sensitivity 95%, 
Specificity 87% 

[43] 
2024 

Multi 
(Clinical, 
Imaging & 
Biomarkers) 

SVM on 
structural MRI, 
PET, and CSF 

biomarkers 

Accuracy 82%, 
Sensitivity 85%, 
Specificity 70% 

[46] 
2024 

Multi 
(Clinical, 
Imaging & 
Biomarkers) 

SVM on VBM, 
DBM, PET, CSF, 
clinical variables 

Accuracy 73%, 
Sensitivity 72%, 
Specificity 74% 

[47] 
2024 

Multi 
(Clinical & 
Imaging) 

CNN + RNN Accuracy 96%  

VI. Future Directions and Conclusion 
A. Future Directions 

Despite significant advancements in leveraging 
machine learning (ML) and deep learning (DL) for 
early Alzheimer’s detection, this review identifies 
several critical research gaps that must be 
addressed to move from experimental studies to 
routine clinical deployment. 

 Transition to Multi-Stage Diagnostic 
Models: The majority of current research 
focuses on binary classification (e.g., AD 
vs. Healthy). Future studies should 
prioritize modeling the complete spectrum 
of the disease, including the nuanced 
transitions between different stages of 
cognitive impairment. 

 Enhancing Model Robustness Across 
Diverse Data: There is a critical need for 
models that maintain high performance 
when applied to data from various sources. 
Developing systems that are resilient to the 
variations inherent in different clinical 
environments and demographic 
populations is essential for global 
applicability. 

 Integrating Advanced Computational 
Architectures: While traditional ML 
models have shown success, further 
exploration into architectures designed for 
temporal data is necessary. Utilizing 
techniques like transfer learning can help 
bridge the gap between high-resolution 
research datasets and the more varied data 
found in standard clinical practice. 

 Promoting Transparency and Clinical 
Trust: For automated tools to be adopted 
by healthcare professionals, the "black-
box" nature of many deep learning models 
must be addressed. Integrating explainable 
AI techniques will allow clinicians to 
understand the specific features whether 
cognitive scores or structural brain changes 
that drive a model's prediction. 
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B. Conclusion 
The application of machine learning to 

early Alzheimer’s disease detection represents a 
transformative shift toward more accessible and 
cost-effective diagnostics. This systematic review 
demonstrates that non-invasive clinical 
assessments, when processed through 
sophisticated algorithms, can provide high 
diagnostic accuracy that rivals more expensive and 
invasive traditional methods. 
Current research highlights the effectiveness of 
diverse models, including Support Vector 
Machines, Ensemble methods, and Convolutional 
Neural Networks, across prominent datasets such 
as ADNI and NACC. However, the transition from 
research to practice requires addressing ongoing 
challenges related to data heterogeneity and the 
need for long-term predictive capabilities. 
By expanding the scope of features used such as 
incorporating a wider array of cognitive domains 
through tools like the MoCA and ADAS-Cog 
researchers can capture the subtle deficits 
characteristic of the earliest stages of decline. 
Ultimately, the development of reliable, 
generalized systems that can function across 
diverse global populations will be instrumental in 
ensuring that early detection leads to timely 
intervention and improved quality of life for 
patients and their families. 
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