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Abstract 
The rapid advancement and pervasive integration of Artificial Intelligence (AI) across various sectors hold 

immense potential for societal progress, yet simultaneously present significant challenges, particularly 

concerning global sustainability. This article explores the multifaceted relationship between AI and 

sustainability, moving beyond the often-highlighted benefits to critically examine the environmental, social, 

and economic burdens AI systems can impose. We delve into the substantial energy consumption associated 

with AI model training and deployment, the escalating demand for rare earth minerals in hardware 

production, and the burgeoning e-waste crisis. Beyond environmental concerns, the abstract also touches 

upon the social implications, such as job displacement, algorithmic bias, and the exacerbation of digital 

divides, which can undermine equitable and sustainable development. Economically, the concentration of 

AI development in a few large corporations raises questions about market monopolization and accessibility 

for developing nations. This paper aims to synthesize existing literature, identify key challenges, and 

propose actionable recommendations for fostering sustainable AI development and deployment. By 

outlining specific objectives, a qualitative methodology, and a comprehensive discussion of current issues, 

we seek to contribute to a more holistic understanding of AI's sustainability footprint. The ultimate goal is 

to advocate for responsible innovation, urging stakeholders to prioritize eco-conscious design, ethical 

governance, and inclusive access to ensure AI serves as a true enabler of a sustainable future rather than a 

contributor to global crises. 
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1. Introduction 
Artificial Intelligence (AI) stands at the forefront of technological innovation, reshaping industries, 

economies, and societies at an unprecedented pace. From optimizing supply chains and predicting climate 

patterns to revolutionizing healthcare and enhancing renewable energy grids, AI's potential to address some 

of humanity's most pressing challenges, including those related to sustainability, is widely lauded. Indeed, 

AI-powered solutions are frequently presented as crucial tools in achieving the United Nations Sustainable 

Development Goals (SDGs), offering pathways to more efficient resource management, smarter cities, and 

improved environmental monitoring. The narrative often emphasizes AI's capacity to drive efficiency, 

reduce waste, and provide insights that were previously unattainable, thereby accelerating the transition to 

a more sustainable world. 

However, this optimistic outlook often overlooks the substantial and growing ecological and societal 

footprint of AI itself. The development, training, and deployment of sophisticated AI models, particularly 

large language models (LLMs) and complex neural networks, are profoundly resource intensive. These 

processes demand vast amounts of computational power, leading to significant energy consumption and 

associated carbon emissions. Furthermore, the hardware infrastructure supporting AI relies heavily on the 

extraction of finite rare earth minerals, contributing to environmental degradation and geopolitical tensions. 

The lifecycle of AI hardware also generates a rapidly increasing volume of electronic waste, posing a severe 

disposal challenge. Beyond the environmental dimension, the sustainability discourse around AI must also 

encompass social and economic equity. Concerns such as job displacement due to automation, the 
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perpetuation and amplification of societal biases through algorithmic decision-making, and the widening 

digital divide due to unequal access to AI technologies threaten the very fabric of an inclusive and 

sustainable society. This article aims to bridge this gap in understanding by critically examining the inherent 

challenges AI poses to sustainability, moving beyond the superficial benefits to uncover the deeper, often 

overlooked, implications. By systematically analysing these challenges, an attempt is made to foster a more 

balanced perspective and lay the groundwork for developing strategies that ensure AI's evolution is aligned 

with, rather than detrimental to, global sustainability objectives. 

2. Review of Literature 

The academic and industry discourse on AI and sustainability has evolved rapidly, moving from an initial 

focus on AI's potential as a solution to environmental problems to a more critical examination of its own 

ecological and societal footprint. This section reviews key contributions, highlighting their objectives, 

methodologies, and findings. 

A 2019 study by Strubell, Ganesh, and McCallum, "Energy and Policy Considerations for Deep Learning 

in NLP," quantified the environmental cost of training large AI models. They calculated the power 

consumption of GPUs for models like BERT and the Transformer, then converted this energy use to carbon 

emissions. The study found that training a single model could produce as much carbon as five cars in their 

lifetime. This seminal work brought the significant "carbon footprint of AI" to wider attention. Their 

findings underscored the need for greater energy efficiency in deep learning research and development. 

In "Carbon Emissions and Large Neural Network Training," Patterson et al. (2021) provided a detailed 

analysis of AI's carbon footprint. The Google-led team developed a more refined model, using real-world 

data to show how hardware, cooling, and electricity sources affect emissions. While acknowledging high 

energy use, their study demonstrated that using more efficient hardware and renewable energy could 

significantly reduce the environmental impact of AI. This research points toward a path for more sustainable 

deep learning. 

Crawford, K. (2021) analysed a critical, interdisciplinary examination of the material and environmental 

costs of AI, tracing its origins from mineral extraction to data centres and labour. He employed a critical 

theory and socio-technical systems approach, drawing on investigative journalism, historical analysis, and 

academic research to expose the hidden costs and power structures behind AI. Crawford argued that AI is 

not ethereal but deeply embedded in physical infrastructure with significant environmental impacts 

(mining, energy, waste) and social costs (exploitative labour, surveillance). She emphasized that AI's 

sustainability challenges are inherently linked to broader issues of capitalism, colonialism, and resource 

extraction. 

 

Schwartz, R., et al. (2020) advocated for a shift towards "Green AI," emphasizing efficiency as a core 

metric alongside accuracy in AI research and development. The Study proposed a conceptual framework 

for Green AI, outlining principles and practices that prioritized computational efficiency, smaller models, 

and transparent reporting of energy consumption. The authors held that the current focus on achieving 

marginal performance gains through ever-larger models is unsustainable. The study called for a cultural 

shift in the AI research community to value and reward computationally efficient models, which can 

significantly reduce environmental impact. 

 

Jobin, A., Ienca, M., & Vayena, E. (2019) systematically mapped and analysed the ethical guidelines and 

principles proposed by various organizations globally for the responsible development and deployment of 

AI in terms of a systematic review and content analysis of 84 AI ethics guidelines published by 

governmental, non-governmental, and corporate entities. The study identified common themes across 

guidelines, including fairness, accountability, transparency, and privacy. While environmental 

sustainability was less prominent than other ethical considerations, the increasing recognition of AI's 

societal impact underscored the need for broader ethical frameworks that include ecological responsibility. 
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Bender, E. M., Gebru, T., McMillan-Major, A., & Mitchell, M. (2021) critically examined the risks 

associated with large language models (LLMs), including their environmental impact, potential for bias, 

and the economic barriers to their development. The study was based on conceptual analysis drawn on 

existing research and theoretical frameworks in linguistics, ethics, and computer science. Findings: The 

research highlighted the immense computational cost of LLMs, the potential for these models to encode 

and amplify societal biases, and the concentration of power in entities capable of building and deploying 

such resource-intensive systems. They argued for more responsible scaling and a focus on smaller, more 

interpretable models. 

 

Rolnick, D., et al. (2019) made an analysis to identify high-impact applications of machine learning for 

mitigating and adapting to climate change across various sectors with the help of an comprehensive review 

and categorization of potential machine learning applications, ranging from energy systems and urban 

planning to agriculture and disaster response. The study Findings: The provided a broad overview of how 

ML can be a powerful tool in the fight against climate change, offering solutions for optimizing energy 

grids, designing new materials, and improving climate modelling. While acknowledging the potential, it 

implicitly set the stage for later research to consider the carbon footprint of these very ML solutions. 

This literature review demonstrates a growing awareness of AI's dual role: a potential enabler of 

sustainability and a significant contributor to environmental and social challenges. The trend in research is 

shifting from purely technological solutions to a more holistic, critical, and interdisciplinary perspective 

that integrates ethical, social, and environmental considerations into the AI development lifecycle. 

 

3. Objectives of the Study 
Building upon the insights from the literature, this study aims to achieve the following objectives: 

a) To analyse the environmental footprint of Artificial Intelligence across its lifecycle:  

b) To investigate the socio-economic challenges posed by AI to equitable and inclusive sustainable 

development. 

c) To propose a comprehensive framework of recommendations for fostering sustainable and 

responsible AI development and deployment. 

 

4. Methodology 
The study employs a qualitative research methodology, primarily relying on a comprehensive literature 

review and conceptual analysis. Given its interdisciplinary nature which spans computer science, 

environmental science, ethics, economics, and social sciences, a qualitative approach allows for a nuanced 

exploration of complex interdependencies and emerging challenges. Based on the literature review, a 

conceptual framework will be developed to categorize and analyse the various dimensions of AI's 

sustainability challenges. This framework will help in systematically identifying the drivers, impacts, and 

potential mitigation strategies. Further a detailed analysis of the identified environmental and socio-

economic impacts of AI involving synthesizing quantitative data (where available from reviewed literature) 

on energy consumption and emissions, alongside qualitative insights into social equity and ethical 

dilemmas. The study will identify current gaps in research, policy, and industry practices regarding 

sustainable AI. Concurrently, it will highlight emerging best practices and innovative solutions proposed 

in the literature. 

 

5. Discussion 
It elaborates on the core findings related to AI's environmental and socio-economic footprint, and has  

contextualized them within the broader sustainability agenda. 

 

5.1 Environmental Footprint: The Hidden Costs of Computation 
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The most prominent environmental challenge posed by AI is its escalating energy consumption. The 

training of large AI models, particularly deep neural networks and large language models (LLMs), is 

computationally intensive, requiring immense processing power over extended periods. This translates 

directly into significant electricity usage and, consequently, substantial carbon emissions, especially when 

powered by fossil fuel-dependent grids.  

 

A Mathematical Model of the Environmental Footprint of Computation 
This model aims to quantify the hidden environmental costs of computation by breaking down the total 

environmental footprint into key contributing factors. We'll use a modular approach, allowing for the 

analysis of different components and their interactions. 

1. Defining the Total Environmental Footprint 

The total environmental footprint of a computational task over its entire lifecycle is expressed as the sum 

of three primary components; namely 

ET=EProduction+EUsage+EDisposal 
where: 

  EProduction is the footprint associated with the manufacturing and supply chain of the hardware. 

  EUsage is the footprint from the energy consumed during the operational life of the hardware. 

  EDisposal is the footprint from the end-of-life management (recycling, landfill, etc.) of the 

hardware. 

All these components are measured in a unified environmental unit, such as kilograms of CO$_2$ 

equivalent (kgCO2e) or a similar metric. 

2. The Production Footprint (EProduction) 
The production footprint is a significant, often overlooked, part of the total cost. It's a function of the 

hardware's complexity and the manufacturing processes involved. 

 EProduction =∑ n  
i =1 Mi×Ii 

where: 

 n is the number of components in the hardware (e.g., CPU, GPU, RAM, motherboard). 

  Mi is the mass (in kg) of the i-th component. 

 Ii is the environmental intensity of the i-th component's production (kgCO2e/kg). This value 

encapsulates the energy, water, and raw materials used, as well as the emissions generated during 

its creation. 

The environmental intensity Ii can be further modelled as a function of the component's complexity, Ci: 

Ii=f(Ci). For microchips, for example, the complexity Ci  could be the transistor count, and f would be a 

monotonically increasing function. More complex components require more energy and resources to 

produce, leading to a higher intensity. 

 

3. The Usage Footprint (EUsage) 

The usage footprint is determined by the energy consumed by the hardware over its operational lifetime 

and the carbon intensity of the electricity source. 

  

where: 

 L is the operational lifetime of the hardware (in 

hours). 

 P(t) is the power consumption of the hardware at time t (in kW). 

 CGrid(t) is the carbon intensity of the electrical grid at time t (kgCO2e/kWh). 

The power consumption P(t) is not constant. It depends on the workload being processed. We can model 

it as: 
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                    P(t)=PIdle+ (PMax− PIdle ) ×U(t) 
where: 

 PIdle is the power consumed when the hardware is idle. 

 PMax is the maximum power drawn under full load. 

 U(t) is the utilization of the hardware at time t (a value between 0 and 1). 

This model highlights that even idle hardware has an environmental cost, and the footprint can be 

drastically reduced by optimizing utilization and scheduling tasks during periods of high renewable 

energy availability (low CGrid ). 

 

4. The Disposal Footprint (EDisposal) 

The disposal footprint is the environmental cost or benefit associated with the end-of-life management of 

the hardware. This component can be positive (a cost) or negative (a benefit, representing avoided costs 

from recycling). 

                    EDisposal=(1−R) ×CLandfill+R×(CRecycle−SRecycle) 
where: 

 R is the recycling rate (a value between 0 and 1). 

 CLandfill is the environmental cost of disposing of the hardware in a landfill (kgCO2e). This cost 

includes land usage, potential pollution, and methane emissions from plastics. 

 CRecycle is the environmental cost of the recycling process itself (energy, transport). 

 SRecycle is the environmental benefit (a negative cost) from recovering raw materials that would 

otherwise have been mined. 

For a specific component i, the total disposal footprint is the sum of these costs for all components. If 

SRecycle > CRecycle, a net environmental benefit is achieved. This model underscores the importance of a 

high recycling rate R to minimize the total footprint. 

 

5. Optimizing the Total Footprint 

The goal is to minimize ET. This can be achieved by: 

 Improving Manufacturing Efficiency: Lowering the environmental intensity Ii of production. 

This involves using cleaner energy sources and more efficient processes in manufacturing. 

 Improving Hardware Efficiency: Designing hardware with lower PIdle and higher power 

efficiency, so that the average power consumption P(t) is minimized for a given workload. 

 Optimizing Usage: Implementing strategies to maximize hardware utilization and schedule 

computational tasks to align with times when CGrid is low (e.g., when renewable energy sources 

are abundant). This is a crucial area for green computing initiatives. 

 Improving End-of-Life Management: Increasing the recycling rate R and developing more 

efficient recycling technologies to maximize the environmental benefit from resource recovery. 

A simple example of the model in terms of a single server is explained as follows 

ET=EProduction+EUsage+EDisposal 
Assume: 

 A server has a mass of 20kg. The average production intensity is 100kgCO2e/kg. 

 Lifetime L=3 years =26,280 hours. 

 Average power consumption Pavg=0.5kW. 

 Average grid carbon intensity CGrid=0.4kgCO2e/kWh. 

 Recycling rate R=0.8. 

 Landfill cost CLandfill=50kgCO2e. 

 Net recycling benefit SRecycle−CRecycle=20kgCO2e. 

 

Calculation: 
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EProduction=20kg×100kgCO2e/kg=2000kgCO2e 

EUsage=26280h×0.5kW×0.4kgCO2e/kWh=5256kgCO2e 

EDisposal= (1−0.8) ×50kgCO2e−0.8×20kgCO2e=10−16=−6kgCO2e (The negative value indicates a net 

benefit from recycling) 

ET=2000+5256−6=7250kgCO2e 

This model clearly shows that the usage footprint is the dominant factor in this example, but the production 

footprint is still substantial. The disposal component, if managed well, can be a small net benefit. This 

mathematical framework provides a robust way to analyse and optimize the environmental impact of 

computational systems 

As highlighted by Strubell et al. (2019) and Patterson et al. (2021), the 

energy required to train a single large AI model can be equivalent to the 

lifetime emissions of several cars.  

This is driven by factors such as size and complexity of the model, y per 

parameter Tuning and Architecture Search, Inference at Scale, Data 

Centres, Raw Material Extraction and Hardware Production, geopolitical 

dependencies, electronic Waste (E-waste), water Usage etc. 

 

5.2 Socio-Economic Challenges: Equity, Bias, and Access 

Beyond the environmental impact, AI poses several critical socio-

economic challenges that can undermine equitable and inclusive 

sustainable development. It has the potential to displace human labour in various sectors, particularly in 

routine, repetitive tasks. While proponents argue that AI will create new jobs and augment human 

capabilities, the transition can lead to significant unemployment, widening income inequality, and requiring 

massive reskilling and upskilling efforts for the workforce. Without proactive policies, this could 

exacerbate social unrest and hinder economic sustainability. Economic analysis using the Theil index 

reveals two competing narratives about AI's impact on wages: 

 AI increases inequality: Some research suggests that AI will exacerbate existing disparities by 

giving a greater productivity boost to high-income, high-skilled workers. Additionally, if the 

economic returns from AI shift from labour to capital, and capital ownership is highly concentrated, 

wealth inequality would also increase. 

 AI reduces inequality: Other studies, particularly those focusing on task-level impacts, found that 

AI can empower less-skilled workers, enabling them to perform more complex tasks and close the 

productivity gap with their higher-skilled counterparts. This could lead to a reduction in wage 

inequality, especially within occupations. By using the decomposable nature of the Theil index, 

researchers can move beyond a simple "AI increases or decreases inequality" question and analyse 

the complex, nuanced ways in which it affects different parts of the workforce. This allows for a 

more precise understanding of the challenges and opportunities presented by AI, which is essential 

for informed policymaking. 

 Further, AI models are trained on vast datasets, and if these datasets reflect historical or societal 

biases (e.g., racial, gender, socio-economic) then it can perpetuate these biases, leading to 

discriminatory outcomes. Such biases can undermine fairness, equity, and social justice, which are 

fundamental pillars of sustainable development. T is also pointed out that the unequal access of AI 

can hinder the ability to leverage AI for the sustainable development goals. 

 AI systems, particularly those involving facial recognition, natural language processing, and 

behavioural analysis, raise profound privacy concerns.  

 The immense resources required for cutting-edge AI research and development lead to a 

concentration of power in a few large tech companies. This monopolization can stifle innovation, 

limit competition, and allow these entities to exert undue influence over societal norms and 
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economic structures, potentially undermining democratic processes and equitable resource 

distribution.  

Thus, though AI offers transformative potential for sustainability, its current trajectory presents 

substantial environmental burdens and socio-economic risks. A holistic understanding of these 

challenges is crucial for developing strategies that ensure AI truly serves humanity's long-term well-

being. 

6. Recommendations 

Addressing the multifaceted challenges of AI and sustainability requires a concerted effort from various 

stakeholders. The following recommendations are categorized to provide actionable pathways towards 

a more sustainable and responsible AI future. 
6.1 For Researchers and Developers 

 Prioritize "Green AI" and Efficiency: One should integrate energy consumption and carbon 

footprint as primary evaluation metrics alongside accuracy and performance in AI research. 

Research into model compression, pruning, quantization, and efficient architectures (e.g., sparse 

models, knowledge distillation) should be prioritized to reduce the computational cost of training 

and inference. 

 There is a need to develop and adopt standardized methodologies for conducting full lifecycle 

assessments of AI models and systems, from data collection to deployment and disposal, including 

hardware manufacturing. 

 Researchers should be encouraged to transparently report the energy consumption and carbon 

emissions associated with their models in publications, using standardized tools and metrics 

 A proper C: B analysis should be done while developing AI solutions for environmental challenges 

(e.g., climate modelling, smart grids), ensuring that the computational cost of the AI itself does not 

outweigh the environmental benefits it provides. 

 More focus should be on the data-efficient learning methods that can achieve high performance with 

smaller datasets, reducing storage and processing requirements. 

 We have to develop more interpretable and explainable AI models to foster trust, identify potential 

biases, and ensure accountability. 

6.2 For Industry and Businesses 

 Invest in Sustainable Infrastructure: Renewable Energy for Data Centres: Transition data centres to 

100% renewable energy sources. Invest in on-site renewable energy generation or purchase 

renewable energy credits. 

 Circular Economy for Hardware: Implement strategies for extending the lifespan of AI hardware, 

refurbishing components, and establishing robust recycling programs to minimize e-waste. Explore 

design for disassembly.  

 Promote Responsible AI Practices: Internal Guidelines and Audits: Develop and enforce internal 

ethical AI guidelines and conduct regular audits of AI systems for bias, fairness, and environmental 

impact.  
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 Supply Chain Transparency: Demand transparency from hardware suppliers regarding the 

environmental and social impacts of raw material extraction and manufacturing. 

 Collaborate and Share Best Practices: Engage in industry consortia and initiatives to share best 

practices for sustainable AI development and deployment. 

 Foster a Culture of Sustainability: Employee Training: Educate employees on the environmental 

and social implications of AI and empower them to contribute to sustainable practices. 

 Corporate Social Responsibility: Integrate sustainable AI principles into broader corporate social 

responsibility strategies. 

6.3 For Policymakers and Governments 

 Develop Regulatory Frameworks for Sustainable AI: Energy Efficiency Standards: Implement 

energy efficiency standards for AI hardware and data centres, potentially including mandatory 

reporting of energy consumption. 

 E-waste Legislation: Strengthen e-waste legislation to include specific provisions for AI hardware, 

promoting responsible recycling and extended producer responsibility. 

 Incentivize Green AI: Offer tax breaks, grants, or other incentives for companies and research 

institutions that develop and deploy energy-efficient AI solutions or use renewable energy for AI 

operations. 

These recommendations collectively aim to shift the trajectory of AI development from one of unchecked 

growth to one that is consciously aligned with the principles of environmental stewardship, social equity, 

and long-term economic viability. 

Thus, it needs to be understood that while Artificial Intelligence, offers unprecedented opportunities to 

address some of humanity's most pressing challenges, simultaneously presents significant and escalating 

sustainability concerns. This article has systematically explored these challenges, moving beyond the often-

celebrated benefits of AI to critically examine its substantial environmental footprint and complex socio-

economic implications. AI is not a panacea; its development and deployment must be approached with a 

deep understanding of its inherent costs and potential negative externalities. For AI to truly serve as a force 

for good and an enabler of a sustainable future, it must be designed, developed, and governed responsibly, 

with environmental stewardship, social equity, and long-term planetary well-being at its core. The path to 

sustainable AI is challenging, but it is an imperative for ensuring that this transformative technology 

contributes positively to, rather than detracts from, our collective future. 
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