
 International Journal of Scientific Research and Engineering Development-– Volume X Issue X, Year

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1

Automated Software Testing Using AI Tools
Kuldipsinh Jethwa 1, Mr Janak Maru2

 1. (B Tech in Computer Engineering, Atmiya University, Rajkot, India
Email:jethwakuldipsinh293@gmail.com)

2. (Faculty of Engineering and Technology (CE), Atmiya University, Rajkot, India
Email: janak.maru@atmiyauni.ac.in)

Abstract- Software testing is a crucial step in software development. It ensures that applications

function correctly and meet user requirements. Traditional automated testing tools like Selenium

and JUnit are popular but often encounter issues such as fragile test cases and high maintenance

costs when applications change frequently. Recently, Artificial Intelligence (AI) has been

introduced into software testing to address these challenges. AI-powered testing tools can

automatically generate test cases, adjust to changes in the application, and even identify visual

differences in user interfaces. This research paper examines how AI tools improve automated

software testing compared to traditional methods. A case study approach compares the efficiency,

accuracy, and maintenance effort of AI-based testing tools with traditional ones. The study

indicates that AI testing can decrease manual effort and enhance flexibility, but it also faces

limitations, including higher costs and fewer free tools available. Overall, AI-powered testing has

great potential to make software testing smarter, faster, and more reliable in the future.

1. Introduction

Software development has become

increasingly complex. Applications are

growing larger and require frequent updates.

To maintain quality, software testing is

essential. Manual testing takes time and is

prone to human error. That’s why automated

testing tools like Selenium, JUnit, and

Cypress are popular. These tools allow

developers to write test scripts that can be

reused and run automatically. However,

traditional automation often struggles when

applications frequently change. Test cases

may fail due to minor updates in the interface,

leading to increased maintenance efforts.

Artificial Intelligence (AI) offers new

opportunities to improve software testing.

AI-powered tools can learn from previous

tests, adjust to changes, and automatically

create new test cases. This paper explores the

role of AI in automated software testing,

contrasting it with traditional tools and

examining its benefits, challenges, and future

possibilities.

2. Background and Literature

Review

2.1 Importance of Software Testing

- Ensures software quality.

- Detects errors before release.

RESEARCH ARTICLE OPEN

ACCESS

http://www.ijsred.com/
about:blank
mailto:janak.maru@atmiyauni.ac.in

 International Journal of Scientific Research and Engineering Development-– Volume X Issue X, Year

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 2

- Increases customer satisfaction.

- Saves costs and time in the long term.

2.2 Traditional Automated Testing

Traditional automated testing involves

writing scripts that run test cases repeatedly

without manual intervention. Tools like

Selenium for web applications, JUnit for Java

programs, and Cypress for modern front-end

frameworks are widely used. These tools

provide speed and reusability but face

challenges in scalability, maintenance, and

adaptability.

2.3 Limitations of Traditional Testing

- Fragile test scripts that break when the user

interface changes.

- High maintenance costs for updating test

scripts.

- Limited ability to handle visual testing or

dynamic UI changes.

- Dependency on human testers for test

design.

2.4 AI in Software Testing

AI techniques like machine learning, natural

language processing, and computer vision are

being integrated into testing. AI-based tools

like Testim, Applitools, and Mabl can:

- Automatically generate test cases.

- Perform visual testing with image

recognition.

- Adapt to minor UI changes through self-

healing tests.

- Predict high-risk areas in the code for

targeted testing.

2.5 Related Work

Several studies highlight AI's growing role in

testing. For instance:

- Applitools uses computer vision to detect

visual bugs that traditional tools overlook.

- Testim employs AI to reduce flakiness in

test cases.

- Mabl integrates AI to enhance cloud-based

intelligent test automation.

Researchers argue that while AI can improve

reliability, it still lacks the maturity needed

for very large projects.

3. Research Objectives

The objectives of this study are:

1. To analyze differences between traditional

automated testing and AI-based testing tools.

2. To evaluate the efficiency, accuracy, and

adaptability of AI tools.

3. To identify the limitations and challenges

of using AI in software testing.

4. To offer recommendations for students and

small teams considering AI-based testing.

_

4. Methodology

This research employs a comparative case

study method:

http://www.ijsred.com/

 International Journal of Scientific Research and Engineering Development-– Volume X Issue X, Year

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 3

- Case Selection: A small web application

with login and form submission features was

chosen.

- Tools Used:

 - Traditional: Selenium, JUnit.

 - AI-based: Testim, Applitools (trial

versions).

- Evaluation Metrics:

 - Test execution time.

 - Number of defects detected.

 - Effort needed for maintenance.

 - Adaptability to UI changes.

- Data Collection: Experiments are conducted

over three weeks, recording failures, test

execution logs, and time spent on test

maintenance.

_

5. Case Study and Results

5.1 Traditional Tools

Using Selenium and JUnit, test cases were

made for login validation and form

submission. Initially, the tools worked well,

but they failed when minor changes were

made to the UI (e.g., changes in button

names). Fixing the scripts took extra time,

raising maintenance efforts.

5.2 AI-Based Tools

With Testim and Applitools, tests

automatically adjusted to minor UI changes.

Applitools identified visual bugs like

misaligned buttons, which Selenium could

not catch. The AI tools needed less

maintenance and produced more accurate

results in visual testing.

5.3 Comparative Results Table

Metric

Traditional

Tools

(Selenium/J

Unit)

AI-Based

Tools

(Testim/Appl

itools)
Executio

n Time
10 min 10 min

Bugs

Detected
8 12

Maintena

nce

Effort

High Low

Adaptabi

lity to UI

Changes

Poor High

Ease of

Use
Medium Easy

Cost
Free/Open-

source

Paid/Trial

Available

http://www.ijsred.com/

 International Journal of Scientific Research and Engineering Development-– Volume X Issue X, Year

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 4

5.4 Summary Table of Key Findings

Categ

ory

Traditional

Tools
AI-Based Tools

Reliab

ility

Good, but

scripts break

often

Very Good,

adapts

automatically

Visual

Testin

g

Limited
Strong visual bug

detection

Learni

ng

Curve

Easy for

beginners

Moderate (AI

concepts needed)

Best

Use

Case

Stable

applications

Applications

with frequent

changes

6. Discussion

The results indicate that AI-based tools offer

major benefits in adaptability and bug

detection. For small projects, AI testing

lightens the load of maintaining test scripts.

However, AI tools typically come with

subscription fees and limited free access,

which can pose a challenge for students or

small organizations.

Advantages of AI Testing

- Reduces manual effort.

- Automatically manages UI changes.

- Improves bug detection, particularly for

visual issues.

- Saves maintenance time.

Disadvantages of AI Testing

- High cost of commercial tools.

- Limited free or open-source options.

- Some false positives may occur.

- Learning curve for testers.

Traditional tools still matter because they are

open-source, widely supported, and effective

for stable applications. A combined approach

that utilizes traditional tools for functional

testing and AI tools for adaptability can yield

the best results.

7. Challenges and Limitations

- Cost: Many AI-based testing tools are

commercial.

- Learning Curve: Testers need to grasp both

testing and AI concepts.

- Limited Open-Source Options: Most AI-

powered tools are proprietary.

- Scalability Issues: AI tools may still

struggle with very large and complex

systems.

_

8. Future Scope

AI in software testing is still progressing.

Future research could focus on:

- Development of open-source AI testing

frameworks.

- Better integration of AI testing with

DevOps and CI/CD pipelines.

http://www.ijsred.com/

 International Journal of Scientific Research and Engineering Development-– Volume X Issue X, Year

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 5

- Smarter self-healing algorithms to reduce

false positives.

- Combining AI with human testers for

maximum effectiveness.

_

9. Conclusion

This research indicates that AI-powered

automated testing tools provide clear

advantages over traditional methods in

adaptability, maintenance, and bug detection.

While traditional tools are still valuable for

their cost-effectiveness and reliability, AI

tools introduce innovation and efficiency into

the testing process. Despite their limitations,

AI tools present a promising direction for the

future of software testing, making it smarter,

faster, and more reliable.

_

References

1. SeleniumHQ. (2025). Selenium

Documentation. https://www.selenium.dev/

2. JUnit Team. (2025). JUnit User Guide.

https://junit.org/junit5/

3. Testim.io. (2025). AI-based Test

Automation. https://www.testim.io/

4. Applitools. (2025). Visual AI for

Automated Testing. https://applitools.com/

5. Mabl. (2025). Intelligent Test

Automation. https://www.mabl.com/

6. Research papers on AI in Software

Testing (2020–2024).

http://www.ijsred.com/
https://www.selenium.dev/
https://junit.org/junit5/
https://www.testim.io/
https://applitools.com/
https://www.mabl.com/

