
International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 1505

Gesture talk: an Integrated Multimodal AI Assistant

(Gesture, Voice, and Conversational Intelligence)

Pawan gandhi1, Krishna Masharu2

(B.Teach in Computer Science Engineering, Atmiya University, Rajkot, India

Email: gandhipawan054@gmail.com)

(Faculty of Engineering and Technology, Atmiya University, Rajkot, India

Email: krina.masharu@atmiyauni.ac.in)

Abstract:
Emerging trends in Human‑Computer Interaction (HCI) emphasize multimodal input systems that combine

visual gestures, voice commands, and dialogue-based AI. This work presents a Python‑based assistant

integrating MediaPipe/OpenCV, voice automation through SpeechRecognition and system subprocesses,

and a Generative AI chatbot powered by Google’s Gemini API. Inspired by prior multimodal studies and

systems combining speech and gestures, our system enables real‑time control of volume, brightness, media,

applications, files, and AI chat—all running concurrently using multithreading for responsiveness.

Evaluation demonstrates high accuracy and low latency, showing promise for intuitive, accessible

multimodal interfaces.

Index Term- Computer Interaction, Gesture Recognition, Voice Assistant, Generative AI, Multiomodal

Interfaces, MediaPipe, Gemini, Automation

1. Introduction
- While today traditional interfaces rely heavily on

keyboards and mice, it requires the user to be

limited to just one way to use their device(s). this

Multi-modal system is designed to create an

interactive relation between the user and the device.

Apart from that it also allows one to be away from

their computers or laptops and still use it although

other similar modals exist in the market, Gesture

Talk is completely free to anyone across the world

and open to any customization. Gesture talk has

three modules; AI, ChatBot and Gesture & Voice

Control. This Multi-modal is designed to create an

easy to use atmosphere for people new to

technology and the physically disabled. It is simple

and easy to use for anyone. Universal actions have

been coded for elements such as brightness,

volume and cursor control. Settings can also be

accessed to with Gesture Talk

2.Related Work
Gesture-based Interfaces: Survey by Saravana et al.

highlights challenges and applications of gesture

control. - Multimodal Systems: Liu & Kavakli

(2010) explored integration of speech and gesture

for games. - Voice-gesture Fusion: Studies show

combining speech and vision improves recognition.

- AI Chat Interfaces: Generative models enhance

interaction flexibility and productivity.

3.System Architecture
Our system comprises three concurrent modules:1.

Gesture Module – MediaPipe, PyAutoGUI, WMI,

pycaw for system control. 2. Voice Module –

SpeechRecognition and subprocess for file/app

operations. 3. AI Chat Module – Google Gemini

API for conversational intelligence.

Synchronization is achieved through

multithreading.

4. Implementation Details

Gesture Detection: Real-time tracking with

MediaPipe, rules for volume/brightness, clicks,

media, windows.Voice Commands: Continuous

recognition with trigger phrases for apps.

Conversational Chat: Gemini API chat integrated

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 1506

into same interface. All modules run as daemon

threads for smooth execution.

5. Evaluation & Discussion
Environment: Windows 10, Python 3.10.9. -

Gesture Control: >90% accuracy under lighting. -

Voice Control: Reliable recognition, latency<1s. -

AI Chat: Responsive, context-aware, non-blocking.

Multimodal integration improved usability over

single-modality systems.

6. Conclusion & Future Work

This project demonstrates a functional multimodal

assistant combining gestures, voice, and chatbot

AI. Future-work: - Custom ML gesture recognition.

-Offline-speech-models. -Cross-platform

expansion. - Memory-aware AI with task

execution.

References

1. 1. Saravana M. K., et al., 'A Comprehensive

Survey on Gesture-Controlled Interfaces,' Int. J.

Sci. Res. Sci. Technol., 2025.

2. 2. J. Liu and M. Kavakli, 'A survey of speech-

hand gesture recognition,' IEEE ICME, 2010.

3. 3.'Multimodal Interaction, Interfaces, and

Communication: A Survey,' MDPI, 2025.

4. 4. E. Ghaleb et al., 'Leveraging Speech for

Gesture Detection,' arXiv, 2024.

Human–Computer Interaction (HCI) has

historically revolved around keyboards, mice, and

more recently, touchscreens. While these methods

are effective, they impose a cognitive and physical

load that can reduce efficiency in certain contexts.

Emerging trends emphasize natural interaction,

drawing inspiration from human communication

that combines gestures, speech, and dialogue. For

example, gesturing to adjust brightness or speaking

to open an application mirrors real-world

interaction models. Multimodal systems also have

accessibility implications. Users with motor

impairments may find gestures easier than typing,

while speech-based interaction can assist those

with visual limitations. The convergence of

multimodal inputs in a single system can thus

support inclusive design, making computing

environments more universally usable. Our work

contributes to this paradigm by demonstrating an

integrated assistant capable of performing daily

computing tasks using gestures, voice commands,

and conversational AI—all synchronized in real

time. Unlike siloed systems that handle one

modality at a time, our design emphasizes

concurrency. We employ Python multithreading to

ensure low-latency responses across all input

channels, preventing the “blocking” effect common

in sequential designs. This responsiveness is

particularly vital for time-sensitive operations such

as volume control during media playback or hands-

free navigation while multitasking.

Previous literature demonstrates a steady evolution

of multimodal systems. Gesture-based interfaces,

for instance, have been applied in domains ranging

from gaming (e.g., Microsoft Kinect) to healthcare,

where surgeons use touchless interfaces to interact

with digital imaging during operations. Saravana et

al. (2025) provided a comprehensive survey on

gesture-controlled interfaces, identifying challenges

such as lighting conditions, occlusion, and cultural

variation in gestures. Speech-based systems have

advanced through the proliferation of cloud-based

APIs like Google Speech Recognition and offline

models such as Vosk. Studies indicate that

recognition rates exceed 95% under ideal

conditions, though accents, background noise, and

latency remain key challenges. Liu & Kavakli

(2010) emphasized the synergy of combining

speech and hand gestures, particularly in gaming

environments. Conversational AI has progressed

dramatically with the rise of generative models.

Early chatbots relied on rule-based systems, but

transformer-based architectures such as Gemini

(Google), GPT (OpenAI), and LLaMA (Meta) now

enable contextual, multi-turn dialogue. Recent

surveys (MDPI, 2025) highlight their ability to

adapt across professional, educational, and assistive

contexts. Despite these advances, few systems

integrate gestures, speech, and conversational

intelligence into a cohesive architecture. Our work

addresses this gap by developing a unified

framework that combines these three modalities.

The proposed multimodal AI assistant comprises

three independent yet synchronized modules:

Gesture Control, Voice Assistant, and

Conversational AI Chatbot. Each module processes

a distinct input stream and executes corresponding

actions in real time. 1. Gesture Control Module:

Built using MediaPipe and OpenCV, this module

captures real-time video frames, identifies hand

landmarks, and interprets gestures. It controls

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 1507

system features such as brightness and volume via

WMI and pycaw, and enables application

navigation using pyautogui. 2. Voice Assistant

Module: Powered by the SpeechRecognition

library, it listens continuously through a

microphone. Recognized commands map to

predefined system operations such as opening

YouTube, launching applications, or manipulating

files. It includes simple file editing capabilities via

voice. 3. Conversational AI Module: Integrates

Google’s Gemini API to handle free-form dialogue.

This chatbot offers context-aware responses,

enabling users to query information or perform

task-oriented conversations. The synchronization

between these modules is achieved through

multithreading. Each module runs in a daemon

thread, ensuring responsiveness even when other

modules are active. The architecture is designed

with modularity, allowing future extensions such as

gesture–speech fusion or integration with IoT

devices.

Our prototype implementation was developed in

Python 3.10.9 on Windows 10. The system

leverages the following core libraries: - MediaPipe

+ OpenCV: For real-time hand tracking and gesture

recognition. - pyautogui: For cursor, keyboard, and

screen interaction. - WMI + pycaw: For brightness

and audio volume manipulation. -

SpeechRecognition + Google API: For real-time

voice-to-text translation. - google.generativeai: For

conversational dialogue with Gemini. - threading +

queue: For concurrent execution and message

passing. Gesture Module: The gesture detection

rules are simple yet effective. For instance,

detecting “all fingers up” on the right hand triggers

volume adjustments. The relative wrist

displacement determines whether the volume

increases or decreases. Similarly, left-hand gestures

control brightness levels. These intuitive mappings

reduce learning curves for new users. Voice

Module: Voice commands include “open

YouTube,” “close Chrome,” “open calculator,” and

file-based commands such as “open new file,”

“replace word,” and “close file.” These

demonstrate the assistant’s utility as both a

productivity tool and system manager. AI Chat

Module: The chatbot leverages Google’s Gemini-

2.5-Pro model, providing human-like responses.

The integration allows the user to seamlessly

switch from task execution (e.g., opening

applications) to conversational queries (e.g.,

“Explain quantum computing”). Code integration

emphasizes error handling to ensure robustness.

For example, speech recognition failures trigger

retries, and gesture control includes thresholding to

minimize false positives caused by camera noise.

We conducted preliminary evaluation in a

controlled environment with moderate lighting and

minimal background noise. Key findings include: -

Gesture Control: Achieved >90% accuracy in

detecting open-hand gestures for volume and

brightness control. Latency was <150 ms per

frame, enabling real-time responsiveness.

Limitations included reduced accuracy under low

light and occasional misclassification when hands

overlapped. - Voice Control: Recognition accuracy

was reliable (>93%) for standard English accents.

Latency remained below 1 second due to cloud-

based processing. Limitations included challenges

in noisy environments and difficulties with

multilingual commands. - Conversational AI: The

Gemini chatbot exhibited coherent, context-aware

responses. In extended conversations, it maintained

topic continuity for up to 10 exchanges, after which

occasional drift occurred. The system’s

multithreading ensured that chatbot interactions did

not block gesture or voice functions. Comparative

Usability: In surveys with 5 test users, multimodal

interaction was preferred over unimodal

approaches. Users appreciated being able to

“switch modalities” depending on convenience—

for instance, using gestures while hands were free,

or voice commands while away from the keyboard.

Overall, the assistant shows promise as an intuitive,

accessible, and responsive multimodal interface.

This paper presented a multimodal AI assistant that

integrates gestures, voice commands, and

conversational dialogue into a unified system. The

prototype demonstrated high responsiveness and

usability, outperforming unimodal alternatives. Its

modular design allows for extensibility and

customization across diverse application domains

such as smart homes, education, and accessibility.

Future work will explore the following directions: -

Custom machine learning models to extend the

gesture vocabulary beyond simple rules. - Offline

voice recognition to reduce reliance on cloud

services and improve privacy. - Integration with

wearable devices and IoT for ubiquitous

multimodal interaction. - Contextual memory for

the chatbot to enable long-term personalized

assistance. - Cross-platform deployment, extending

beyond Windows to Linux, macOS, and mobile

devices. By addressing these challenges, the system

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 1508

can evolve into a robust, widely applicable

multimodal assistant capable of transforming

human–computer interaction.

