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Abstract:

Face detection is a critical task in digital forensic investigations, supporting essential activities like
suspect tracking, victim identification, and multimedia triage. Traditional and even modern deep learning
methods often falter under forensic conditions, due to factors like low resolution, motion blur, occlusion,
and suboptimal lighting. This study investigates the efficacy of optimized YOLO-based architectures
(YOLOV8, YOLOV10, YOLOvV12) for forensic face detection by retraining nano, small, and medium
variants of each model on a refined subset of the WIDER FACE dataset. The proposed preprocessing
approach eliminates images below 640x640 pixels to enhance learning efficiency and detection accuracy.
Experimental results demonstrate significant improvements across precision, recall, and inference speed
metrics compared to pretrained baselines, with YOLOvV12 achieving superior latency and precision scores.

The findings highlight the importance of task-specific training and dataset refinement in digital forensics.

Keywords — Digital forensics, face detection, real-time detection, forensic evidence, YOLO, facial

recognition technology.
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I.  INTRODUCTION

In digital forensics, face detection plays a vital role,
enabling core functions like suspect tracking, victim
identification, and image filtering in vast collections
of multimedia evidence. It has seen applications in
surveillance video analysis, forensic triage of seized
devices, social media investigations and border
control systems [1]. Forensic evidence from
surveillance and archival sources typically suffer
from limitations such as low resolution, motion blur,
compression artifacts, occlusion, and suboptimal
lighting. These issues significantly challenge the
reliability of face detection systems, leading to false
negatives and missed detections [2], [3]. Traditional
methods using handcrafted features, such as the
Viola—Jones detector, show rapid performance
degradation in complex scenarios [4]. Advances in
deep learning, including one-stage detectors like

Single Shot MultiBox Detector (SSD) and You Only
Look Once (YOLO), have improved robustness but
still struggle under harsh forensic conditions like
small faces in cluttered scenes [5], [6]. Moreover,
processing large datasets quickly is essential in
digital forensics, making accuracy and speed critical
factors [7].

A. Problem Statement

Forensic practitioners require face detection
algorithms that can handle poor-quality inputs while
delivering fast and reliable results. However,
existing detectors face several setbacks, including:

1) Low-resolution degradation

Faces captured in surveillance contexts often
occupy few pixels, leading to substantial drops in
detection and recognition accuracy [8], [9].

2) Complex environmental factors
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Variations in pose, occlusion, illumination, and
dynamic backgrounds further hinder detection
capabilities [2], [10].

3) Operational constraints

Forensic workflows must process extensive image
collections under tight time constraints, necessitating
high-performance detection [7].

These challenges impact the trustworthiness and
effectiveness of automated forensic systems, with
missed faces equating to missed leads or evidence

B. Motivation

Electronic devices with data storage are crucial in
forensic analysis, as they hold extensive information
about users and their environment. Devices collected
from crime scenes may contain thousands of files,
which are analyzed, classified, and used to identify
and report criminal data or individuals.

Facial recognition technology (FRT) has become
a vital tool in modern digital forensics and law
enforcement globally. The International Biometrics
+ Identity Association recognizes FRT as one of the
fastest-growing biometric modalities due to its
contactless nature and increasing accuracy powered
by deep learning algorithms [11]. In countries like
China, the United States, and the United Kingdom,
FRT is widely used for both public safety and
commercial purposes[12]. This widespread rollout
draws criticism over privacy violations and
algorithmic bias. In Turkey for example, while FRT
has been deployed to reunite victims of earthquake
with their families, it has also been used to identify
peaceful protesters, including minors with high
potential for misidentification [13].

Given the existing gaps in face detection in
forensic applications, it is evident that bridging them
requires both data-centric and model-centric
strategies. On the data part, focusing training on
higher-quality images can help learn clearer facial
patterns, thereby improving detection reliability [8],
[14]. On the model part, leveraging efficient real
time detectors like YOLOvV8 has shown great
potential in forensic applications, balancing speed
and accuracy [7]. By leveraging right dataset
tailoring and hardware optimization, making such
systems more practical tools for digital forensic
applications.
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C. Contribution

The study significantly improves accuracy face
detection in digital forensic applications by
retraining 3 versions of the YOLO models of 3
different weights each, to attain higher frequency
through dataset refinement, thus making them a new
benchmark in forensic face detection.

D. Paper Organization

This paper addresses optimized face detection for
digital forensics applications.

Section II presents the relevant literature and
previous works that form the basis of this study.

Section III details the methodology used,
including the dataset (WIDER FACE dataset), the
preprocessing  strategies applied, a holistic
description of the architecture as well as the
hardware infrastructure utilized for training.

Section IV outlines the experimental results
obtained by custom training the PyTorch model files
on the customised dataset, highlighting key
performance improvements compared to the
Ultralytics pretrained weights of the various models.

Section V discusses the findings, providing
insights into key performance indicators like
precision-recall trade-offs, inference efficiency, as
well as real world applicability of the models,
particularly in digital forensic analysis.

Section VI concludes the study, summarizing
contributions and suggesting future directions for
improving face detection in forensic investigations.

II. RELATED WORK

Artificial Intelligence (AI) has gained significant
traction across diverse disciplines, including digital
forensics, where it is increasingly applied to
optimize analytical processes. The integration of Al
into forensic investigations has been facilitated by
the availability of open-source datasets and advances
in machine learning architectures, yielding
promising results in areas such as object detection
and classification. This section reviews existing
studies that have employed Al methodologies to
address key challenges in digital forensics,
highlighting their contributions, limitations, and
relevance to this work.
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Riadi et al. [15] ran forensic investigation on the
Signal Messenger application on Android devices,
particularly during the rise of cybercrimes in the
COVID-19 era. Using three tools; Belkasoft, Magnet
AXIOM, and MOBILedit Forensic Express within
the Digital Forensics Research Workshop (DFRWS)
framework, they sought to uncover digital evidence.
Their research pinpointed several types of evidence,
including chats, media, and account data, with
Belkasoft Evidence Center delivering superior
accuracy at 78.69%. Their findings offer valuable
insights for future forensic research on the Signal
Messenger application. In a related study, Korkmaz
and Boyacit [16] proposed a hybrid speaker
recognition model using long short-term memory
(LSTM) networks. Their model demonstrated the
potential to be applied to audio files obtained in
digital forensics for content analysis.

Artificial intelligence has also been employed in
analyzing social media content. Abebaw et al. [17]
used multi-channel convolutional neural networks
(CNNs) to extract features of hate speech from social
media, using Support Vector Machine (SVM) for
classification. This methodology facilitated anomaly
detection from social media data. Channabasava and
Raghavendra [18] built a consensus-based ensemble
model for social media link prediction using several
features. Through methods like cross-correlation and
Principal Component Analysis (PCA), they achieved
an accuracy of up to 97%. Incorporating logistic
regression, decision trees, and deep-neuro
algorithms, their model surpassed other methods
with a link-prediction accuracy of 98%.

Digital image analysis in forensics is gaining
research attention. Piva [19] provides a detailed
overview of passive image forensics techniques used
to verify the authenticity of digital images without
requiring original data. The study focused on
procedures such as copy-move forgery, resampling
detection, image enhancement, and compression,
offering a solid foundation for modern developments
in image forensics using machine learning and Al
CNN architectures in this respect have been applied
successfully in steganography [20], watermarking
[21], SCI-camera information detection [22], and
copy-move forgery [23].
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The application of object detection and
recognition tasks to image and video files acquired
as forensic evidence is gaining momentum in recent
years. One of such innovative approaches, proposed
by Javed and Jalil [24], is a byte-level object
identification method for the forensic examination of
digital images. The method deciphers the byte code
of each pixel in an image and identifies objects based
on their unique byte code.

Facial recognition tasks have also been broadly
explored in computer science and digital forensics.
Zafeiriou et al. [25] provided a comprehensive
discussion on deep learning-based face recognition
technologies, datasets, deep learning architectures,
and performance, along with future projections.
Viola and Jones [4] examined face detection and
recognition tasks, exploring the challenges,
algorithmic use, and success rates, as well as
strategies for minimizing the False Positive Rate
(FPR) and to develop real-time applications.
Bledsoe's seminal work [26] was pivotal in the
development of face recognition technology,
proposing the "model method," in which a
mathematical model of a person's face would be
constructed and compared with other faces.
Following this, several classical face recognition
applications were developed, including EigenFace
[27], FisherFace [28], BayesianFace [29], MetaFace
[30], LaplancianFace [31], and Support Vector
Machine (SVM)[32].

The advent of deep learning algorithms and
advanced graphics cards, particularly after 2010, has
significantly impacted face recognition technology.
Krizhevsky et al.'s success in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) with
the AlexNet network was a breakthrough[33]. This
network used deep neural networks and was trained
on graphics cards with parallel processing capability.

Subsequent  studies have utilized CNN
architectures for face detection tasks. For example,
the DeepFace model by Taigman et al. [34], which
was created by training a 9-layer CNN model on four
million images achieved a performance comparable
to human image detection, with a success rate of
97.53%. Sun et al. [35] demonstrated that the
DeepID model, trained with a CNN architecture,
could perform face recognition in 10,000 classes.
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More recent models such as FaceNet [36],
VGGFace [37], VGGFace2 [38], and ArcFace [41]
have utilized CNN architectures. These models are
trained on face data and have weight files that can
easily extract unique features of face data.

A more recent study, by Mei and Zhu et al. [40]
presents YOLO-AFR, an improved version of
YOLOvVI12 tailored for small and occluded face
detection in complex environments. Incorporating
novel modules—Feature Reweighting Fusion
Network (FRFN), Scale-Consistent Convolution
(SC-Conv), and Shared Enhanced Attention Module
(SEAM). The YOLO-AFR architecture enhances
multi-scale feature representation and cross-scale
prediction consistency while mitigating occlusion
errors. Evaluated on standard benchmarks, YOLO-
AFR demonstrates higher average precision (AP)
than baseline YOLOvV12 networks, particularly
excelling in small-face detection with lower
computational overhead [40].

Our prior work by Karakus et al. [7], which
includes two of the current authors, established a
benchmark framework for real-time face detection
and 1identification tailored to digital forensic
applications. In that study, YOLOV8 object detection
models spanning nano to extra-large variants were
trained on the WIDER FACE dataset to achieve
high-precision face detection across vast forensic
image and video archives. The models delivered
exceptional results, with mean Average Precision
(mAP) values ranging from 97.51% to 99.03%,
significantly outperforming YOLOvVS by 7.1% to
8.8%. The system further integrated a VGGFace2-
based feature extractor to support suspect
identification using cosine similarity, and a desktop
application was developed to facilitate real-time
analysis by forensic experts. This work serves as a
reference standard for applying YOLO architectures
in forensic image analysis, demonstrating the
effectiveness of scalable models and practical tools
in addressing the operational challenges of modern
digital forensics.

The reviewed literature reflects significant
progress in object and face detection, with deep
learning models, particularly the YOLO family,
offering a promising balance between accuracy and
speed. However, forensic-specific requirements such
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as low-quality input tolerance, real-time analysis,
and operational scalability remain partially unmet.
While our previous study set a strong foundation by
applying YOLOVS to forensic evidence, the current
research builds upon that benchmark by refining data
quality through resolution-based filtering and
extending model comparison to newer YOLO
versions. This positions the present work to further
advance the state-of-the-art in forensic face detection
by improving precision, adaptability, and
deployment readiness

III. MATERIALS AND METHODS

This study follows a methodological framework
that is structured to optimize face detection for
forensic applications using retrained variants of the
YOLO object detection algorithm. The process
begins with the WIDER FACE dataset, an
extensively benchmarked and diverse face dataset
which was then pre-processed using OpenCV to
improve model performance and attain high
precision in forensic applications, by filtering out
low-resolution images below 640 x 640 pixels.

Training deep learning models, especially
convolutional architectures like YOLO, is resource
intensive. Traditional Central Processing Units
(CPUs) lack the necessary parallelism required for
efficient training. Therefore, dedicated hardware
equipped with Graphics Processing Unit (GPU) was
employed. The YOLOv8 and YOLOvIO models
were trained on a local workstation configured with
the necessary requirements, while the YOLOv12
model was trained using the Google Colab Pro
platform, leveraging its strong cloud-based
infrastructure.

The following subsections provide more details on
the dataset used, preprocessing strategy, the
infrastructure used and the Yolo architecture.

A. Dataset

A good number of datasets have driven advances
in object and face detection. Microsoft's COCO
dataset features 330,000 images with 1.5 million
object instances across 80 categories and is widely
adopted for training multi-object detectors in
cluttered scenes [41]. PASCAL VOC, another
foundational dataset features around 11,000 images
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with around 27,000 annotated objects in 20 classes,
but is not commonly used for facial detection tasks
due to its limited scope [42]. For face-specific
detection, datasets such as the FDDB that features
5,171 faces in 2,845 images and the AFW that
features 205 images with 473 faces were early
benchmarks but are constrained in scale and
diversity [43]. Larger datasets like AFLW containing
25,000 faces and 1JB-A containing 500 subjects with
5,712 images and 2,085 videos improve on pose and
demographic variety, yet they lack comprehensive
annotations for occlusion, blur, and fine-grained
facial expressions, which are critical in real-world
environments [44], [45]. While CelebA and
VGGFace2 are widely adopted for face recognition
due to identity and attribute labeling, they do not
provide dense bounding box annotations optimized
for detection [38], [46]. The WIDER FACE dataset,
in contrast, includes 32,203 images and 393,703
labeled faces spanning 61 event categories and is
specifically constructed to challenge detectors with
variations in scale, pose, occlusion, and lighting [47],
thereby being more suitable for this work.

Wider Face dataset is organized into three subsets;
training (40%), validation (10%), and testing (50%).
Samples are also categorized into Easy, Medium,
and Hard levels based on detection difficulty. These
features make it suitable for challenging real-world
applications, including digital forensics, where
robustness to diverse imaging conditions is essential.
Individual faces in the dataset are labelled with tight
bounding boxes and metadata regarding occlusion or
blurriness. This granular annotation supports
effective training and evaluation of deep learning
models designed for fine-grained face detection [47].
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Fig. 1 Wider face dataset sample

B. Data Preprocessing

A resolution-based filtering was applied to the
train and validation subsets, due to the forensic
application's requirement for high accuracy and
minimal false positives. The dataset was filtered to
images of minimal dimension of 640 x 640 pixels.
This led to the train set sliced down to 12102(37.5%
of Wider Face dataset) images and the validation set
to 2853 (8.9% of Wider Face) images. This
resolution threshold is in line with standard input
sizes recommended for convolutional neural
networks (CNNs) wused in object detection
frameworks like YOLO, ensuring reliability in
detection and computational efficiency [5], [6].

Images with low resolution are known to
negatively impact the performance of face detectors,
particularly when faces appear small or occluded.
Prior studies have found out that model accuracy
declines significantly when input image resolution
falls below recommended levels, especially in
datasets with dense face clusters [48]. Therefore,
applying a minimum size threshold enables the
model to focus on clearer, information-rich samples,
enhancing learning during retraining.

Filtering was done using the OpenCV library in
Python, reading and evaluating each image by its
height and width. This gave room for removing
unsuitable images, i.e. those with dimensions lower
than 640 x 640 pixels. Filtering the training and
validation set ensured that the pretrained models
learn more discriminative features relevant to
forensic imagery which mostly demand high
precision.
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filtered folder,
increment kept.
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Fig. 2 Dataset preprocessing with OpenCV

C. The YOLO Architecture

The YOLO (You Only Look Once) architecture is
a family of detectors that treat object detection as a
single end to end regression problem. A YOLO
model typically divides an input image into an S x S
grid. Each grid cell is then tasked to predict bounding
boxes and class probabilities for objects whose
centers fall into the cell. Unlike two-stage detectors
like R-CNN(), which generates region proposals
before classification, YOLO processes the image in
a single forward pass, thereby being extremely fast
and efficient for real-time applications [49].

1. Core Components of YOLO

The YOLO architecture comprises of three main
components, the backbone, the neck and the head.
Backbone: The backbone typically, is a
convolutional neural network (CNN), used to extract
hierarchical features from the input image. In
YOLOv3-YOLOvVS, the backbone was often
Darknet-53 or CSPDarknet53. YOLOVS and later
versions use optimized backbones like CSPDarknet-
A or PP-YOLOE [6], [50].

Neck: This neck combines feature maps from
different depths of the network to improve object
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localization at multiple scales. Common neck
modules include the Feature Pyramid Network (FPN)
and Path Aggregation Network (PAN), which
enhance semantic flow across layers [51].
Head: The head is in charge of final predictions. It
outputs bounding box coordinates, objectness scores,
and class probabilities. Modern YOLO versions
(YOLOV8+) adopt an anchor-free detection head,
where the model directly predicts center points and
box sizes, thereby reducing complexity and
increasing generalization across datasets [50], [52].

2. Training Protocols and Loss Functions
Training is augmented with techniques like Mosaic
augmentation, MixUp, and color jittering, which
improve generalization and robustness to diverse
conditions. The loss function combines Localization
Loss (e.g., CIOU or DIOU) for bounding box
accuracy, Confidence/Objectness Loss to penalize
incorrect object presence predictions, and
Classification Loss for multi-class detection
accuracy [50], [53]. Non-Maximum Suppression
(NMS) is then applied, after inference to filter out
overlapping boxes based on their Intersection over
Union (IoU) scores

3. Evolution of the YOLO architecture

Since its introduction in 2016, YOLO has
undergone significant architectural transformations,
each improving detection performance, speed, and
efficiency.

YOLOv1 unveiled the single-stage detection
paradigm by wusing a unified convolutional
architecture to predict bounding boxes and class
probabilities from full images in a single pass [49].
YOLOv2 introduced anchor boxes, batch
normalization, and multi-scale training to improve
accuracy and localization [54]. YOLOv3 adopted a
deeper Darknet-53 backbone and incorporated multi-
scale predictions using feature pyramids for better
small-object detection [54]. YOLOv4 combined
CSPDarknet as the backbone with advanced data
augmentation and bag of freebies, significantly
boosting mAP and speed [6].

YOLOVS, although not released by the original
authors, became widely adopted due to its modular
PyTorch implementation and continued
improvements to speed and usability [50].
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YOLOV7 introduced E-ELAN, re-parameterized
convolutional modules, and model scaling strategies
that optimized both speed and accuracy in real-time
settings [50].

YOLOvVS8 moved toward an anchor-free detection
head and implemented an improved backbone with
better generalization and training speed, packaged
into a unified PyTorch framework [50].

YOLOvV10 further improved efficiency and
latency by integrating a bi-level routing attention
mechanism and a simplified detection head. It
adopted a decoupled head structure and retained
anchor-free operation, making it particularly suitable
for resource-constrained environments [40].

YOLOv12, the latest of the YOLO family,
leverages lightweight attention modules and
transformer-based enhancements for long-range
feature modeling, delivering robust performance in
complex, cluttered scenes [55].
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Fig. 4 YOLO models and other related detectors comparisons in terms of
latency-accuracy (left) and FLOPs-accuracy (right) trade-offs [55].

D. Forensic Face Detection Workflow
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Our implementation of YOLO models for face
detection follows a five-step pipeline.

In the first stage, images are preprocessed, resized
to 640x640 and normalized.

In the second stage, the Backbone extracts feature
maps from the normalized image. The Neck, in the
third stage, the feature aggregation stage, following
a combination of Feature Pyramid Network and Path
Aggregation Network (FPN + PAN) computation,
then fuses features across multiple scales.

In the fourth stage, the prediction stage, the
detection head predicts bounding boxes, objectness
scores, and class labels in an anchor-free manner.

Finally, in the post-processing stage, the NMS
(Non-maximum suppression) removes redundant
boxes, leaving only high-confidence predictions.

Image Preprocessing
Resizing, normalization

l
v

Backbone
Feature extraction

!

Detection Head
Bounding box, objectness, class
prediction

:

Post-processing
Non-maximum suppression(NMS)

Fig. 5 Forensic Face Detection Pipeline

E. Hardware

Training Al models is resource-intensive;
therefore, traditional CPUs cannot handle the task.
The task requires hardware capable of parallel
processing, such as Graphics Processing Units
(GPUs). Additionally, updating the weights requires
images to be loaded into the RAM and then
transferred to the GPU, as shown in [7].
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In this research, the different weights of YOLO
versions 8 and 10 were trained on a local workstation
at Firat University’s digital forensics lab with an
Intel Core i7 processor, an NVIDIA
RTX 2070 SUPER GPU (8 GB VRAM) with a
compute capability of 7.5 [56], capable of
approximately 9.1 TFLOPS single-precision (FP32)
and 72 TFLOPS tensor-core performance [57], and
32 GB DDR6 RAM. The YOLOvVI12 models were
trained using Google Colab on an NVIDIA A100
Tensor Core GPU (40 GB VRAM), with a compute
power of 8.0 [56], offering up to 19.5 TFLOPS FP32,
312 TFLOPS FP16, and 156 TFLOPS
TensorFloat32 (TF32) performance, along with
9.7 TFLOPS FP64 capabilities, with 25 GB system
RAM[57].

IV. EXPERIMENTAL RESULT

This section presents a comprehensive evaluation
of YOLOvVS, YOLOvI10, and YOLOv12 models,
each retrained on a refined subset of the Wider Face
dataset. Performance metrics such as mAP@0.5,
precision, recall, inference speed, GFLOPs, and
parameter counts are analyzed across Nano, Small,
and Medium variants. These results are compared
against their respective pretrained baselines to assess
improvements in accuracy and efficiency, metrics
essential for robust digital forensic applications.

A. Yolov8

The Ultralytics pretrained YOLOv8 models
achieved inference speeds of 0.99, 1.20, and 1.83ms
using the coco dataset on an A100 TensorRT GPU.
Our training and inference on the refined Wider Face
dataset on an NVIDIA RTX 2070 SUPER GPU
attained high accuracy and efficiency as shown in
table 2 against the original models depicted in Table
L.

TABLE I

ULTRALYTICS YOLOV8 MODEL PERFORMANCE METRICS[58]

— \ —~ | o — _
3 @ 22| Sk = 2

® ~ [ 7))

o] ] S c; = g = &
P 5| 55|28 2de| 2| €
s 3| Ex |55 |28 & | &
Yolov8n 640 37.3 80.4 0.99 3.2 8.7
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Yolov8s 640 | 449 1284 | 1.2 11.2 28.6

Yolov8m 640 50.2 2347 | 1.83 259 78.9

Table I presents the performance metrics of the
Ultralytics-pretrained YOLOv8 models, evaluated
on the COCO dataset across three model sizes: Nano,
Small, and Medium. Inputs of size 640 x 640 were
processed, demonstrating progressive improvements
in detection accuracy, with mAPval (50-95%)
increasing from 37.3% for Nano to 50.2% for
Medium. The accuracy gains notably called for
higher computational demands, as indicated by
increased FLOPs from 8.7B to 78.9B and parameter
sizes 3.2M to 25.9M.

TABLE II

CUSTOM TRAINED YOLOV8 PERFORMANCE METRICS

w
—_ =
s | % 2E & b
< ® 2] = x| Q 4 £
= > 13} s 50 - 4 =
S g Z g | € B | F| 5
= & &~ SR O | Q| &E
Yolov8n 0.968 | 0.955 0.904 | 209 | 8.1 72 3.0
Yolov8s 0.984 | 0.953 0938 | 9.1 78.7 | 92 25.8
Yolov8m 0.985 0.953 0.94 9.0 78.7 | 92 25.8

Table II summarizes the performance of the custom-
trained YOLOvV8 models, Nano, Small, and Medium,
after retraining on the refined Wider Face dataset.
All weights demonstrate significant improvements
in accuracy, with high mAP@0.5 values. Precision
and recall scores remain consistently high across all
versions, reflecting high robustness.

B. Yolovi0

The Ultralytics pretrained YOLOv10 models have
latencies of 1.84, 2.49, and 4.74ms. This is based on
the coco dataset and a TensorRT FP16 on T4 GPU.
Our training and inference on the refined Wider Face
dataset on an NVIDIA RTX 2070 SUPER GPU
attained high accuracy and efficiency as shown in
table 4 against the original models depicted in Table
111
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TABLE III C. Yolovi2
ULTRALYTICS YOLOV10 PERFORMANCE METRICS[40] The UltralytiCS pretrained YOLOvVI2 models
_ _ = achieved inference speeds of 1.64, 2.61, and 4.86ms
e 5 g g E using the coco dataset on a T4 TensorRT GPU. Our
= é Z E:S g training and inference on the refined Wider Face
= < = 3 dataset on an NVIDIA A100 Tensor Core GPU
YOLOYIOn 10 185 s ga | attained high accuracy and efficiency as shown in
table VI against the original models depicted in table
YOLOV10s 640 463 216 249 |y
YOLOv10m 640 511 59.1 474 TABLE V
Table III presents the performance metrics of the ULTRALYTICS YOLOV12 MODEL PERFORMANCE METRICS[55]
pretrained YOLOv10 models Nano, Small, and _ _
Medium evaluated on the COCO dataset with an = e §'§ 2E € %
input resolution of 640 x 640 pixels. The models g & E7 | 3zE g &
show a balance between accuracy and complexity, 7 7 2= g =
with Average Precision values increasing as the
model size increases. Similarly, the computational YOLOvi2n 040 400 o > 03
cost increases with the increase in weights. FLOPs YOLOv12s 640 48 261 93| 214
grow from 6.7G in the Nano model to 59.1G in the YOLOv12m 640 505 4.86 202 | 675

medium variant, while latency rises from 1.84ms to
4.74ms, measured using TensorRT FP16 on a T4 410 v outlines the performance metrics of the

GPU. pretrained YOLOv12 models, Nano, Small, and
Medium on the COCO dataset using 640 x 640 pixel
TABLEIV inputs. The models display a progressive increase in
CUSTOM-TRAINED YOLOV 10 MODELS PERFORMANCE METRICS detection accuracy, with mAPval (50-95%) ranging
from 40.6% for the Nano variant to 52.5% for the
o Medium variant. Inference latency also scales
_ é g _ g E g . § accordingly, from 1.64ms to 4.86ms when tested on
< & g £ EE 2| 2 £l a T4 GPU using TensorRT, highlighting the balance
= E & 2 |25 S | 3|28 petween speed and accuracy. Model complexity,
Yolovion | 096812 | 0.94985 | 09039 | 93 | 87 | 223 | 278 | reflected in parameter count and FLOPs, increases
significantly with model size.
Yolov10s | 0.98 0952 | 0926 |24 | 214|106 |72
YoloviOm | 0.984 | 0954 | 0939 |50 |589 | 136 | 153 TABLE VI

CUSTOM TRAINED YOLOV 12 PERFORMANCE METRICS

Table IV reports the performance of the custom-
trained YOLOv10 models Nano, Small, and Medium
optimized on the refined WIDER FACE dataset. The
three variants all achieved remarkable accuracy, with
mAP@0.5 values exceeding 0.96. Precision and Yolovizn | 0959 | 0948 | 0883 | 05 | 58 | 376 | 2.5
recall scores notably remain high. The Small model
stands out with the fastest inference time of 2.4ms,
making it highly suitable for real-time detection
without compromising accuracy.

Model
mAP@0.5
Precision
Recall
Inference
GFLOPs
Layers
Parameters
(m)

Yolov12n 0978 | 0.959 | 0917 | 1.1 193 | 376 | 9.07

Yolovl2m | 0984 | 0962 | 0932 | 1.9 | 595 | 402 | 19.6

Table VI presents the performance of the custom-
trained YOLOv12 models, Nano, Small and Medium,
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on the refined WIDER FACE dataset. All three
variants delivered strong results, with the medium
model achieving the highest Mean Average
Precision (mAP@0.5) of 0.984 and the best recall of
93.2%, indicating highly reliable detection
capabilities. The Small model offered an excellent
balance of speed and accuracy, with a low inference
time of 1.1ms and precision of 95.9%. The Nano
model, while maintaining the smallest parameter
count of 2.5M and lowest GFLOPs 5.8, delivered a
solid mAP of 0.959 and an exceptionally fast
inference speed of 0.5ms.

V. DISCUSSION

The experimental evaluation of the YOLOVS,
YOLOvV10, and YOLOvV12 models on the refined
WIDER FACE dataset demonstrates the benefits of
applying models in task-specific environments, as in
our case of facial recognition for digital forensics.

The pretrained YOLO model weights from
Ultralytics provided strong baseline performance
metrics, however, custom training significantly
enhanced face detection accuracy, precision, recall,
and inference speed across all model sizes, nano,
small, and medium. These improvements can be
attributed to both dataset refinement and the
forensics-specific learning objectives. A
comparative analysis between the pretrained and
custom-trained models is presented, with focus on
precision-recall trade-offs, computational efficiency,
and inference speeds. This will offer a practical
evaluation of the models' suitability for application
in investigative scenarios.

A. Yolov8

The experimental results for YOLOv8 models
indicate notable improvements in face detection
performance when trained on the refined WIDER
FACE dataset compared to the official COCO-based
benchmarks. While the Ultralytics pretrained models
reported mAP scores of 37.3%, 44.9%, and 50.2%
for the nano, small, and medium variants
respectively, our custom-trained counterparts
achieved impressive mAP scores of 96.8%, 98.4%,
and 98.5%. These results highlight the effectiveness
of dataset filtering and task-specific training in

Available at www.ijsred.com

enhancing model accuracy. A point to note is that
inference speeds in our configuration showed
variations due to hardware differences, the YOLOvVS8
small model which achieved an inference speed of
1.2ms on an A100 TensorRT GPU achieved 9.1ms
on our NVIDIA RTX 2070 SUPER GPU. While this
is a higher latency, it is still within an acceptable
range for real-time applications and demonstrates
strong performance even on mid-range GPUs.
Additionally, our models maintained a consistently
high precision-recall balance making them much
suitable in forensic image analysis.

B. Yolovi0

The YOLOv10 model custom training
experimental results further underscore the impact of
dataset filtering on the models. The Ultralytics
pretrained models, evaluated on COCO and a
TensorRT T4 environment, achieved mAPval scores
of 38.5%, 46.3%, and 51.1% for the nano, small and
medium weights of the model. Following the fine-
tuning of the Wider Face dataset, the YOLOv10
models achieved mAP@0.5 values of 96.8%, 98.0%,
and 98.4%, for the nano, small and medium weights
respectively. The custom-trained models further
achieved substantial reductions in inference latency,
down to 9.3ms for nano, 2.4ms for small, and 5.0ms
for medium models, thereby suggesting improved
deployment efficiency. Additionally, the recall
scores surpassed 93% across all three variants,
demonstrating their reliability in identifying subtle
and occluded facial features. This confirms the
suitability of the models for high-speed forensic
applications without compromising precision.

C. Yolovi2

The YOLOv12 models delivered the most
consistent balance between accuracy and efficiency
across all sizes. While the original Ultralytics
benchmarks on COCO reported mAPval scores of
40.6%, 48.0%, and 52.5%, our refined versions
trained on WIDER FACE reached mAP@0.5 scores
0f 95.9%, 97.8%, and 98.4%, respectively. The small
and medium weights of the YOLOv12 achieved high
recall values of 91.7% and 93.2%, indicating robust
sensitivity to face instances in complex scenes.
Furthermore, latency was reduced substantially, with
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the nano version achieving a lightning-fast 0.5ms per
inference, outperforming its Ultralytics pretrained
counterpart's 1.64ms. The reduction in GFLOPs,
especially for the nano model, with 5.8 GFLOPs,
reinforces the efficiency of the model even in
resource-constrained environments. The YOLOv12
architecture, when custom-trained, stands out as the
most optimal solution for forensic applications
requiring rapid and precise face detection.

VI. CONCLUSION

A systematic evaluation of the YOLO
architectures, v8, v10 and v12, tailored for enhanced
face detection in digital forensics was performed. In
the process, a filtered Wider Face dataset for high
resolution images was leveraged, and three weights,
nano, small and medium for each of the YOLO
versions 8, 10 and 12 were custom-trained, yielding
substantial performance gains in accuracy, precision,
recall and inference latency. The research reaffirms
the suitability of the models for the Forensic
Application they will be integrated in which among
other forensic investigation purposes, features a
facial recognition module on image and video files
retrieved from digital evidence.

Comparative analysis of the three YOLO
architectures  reveals  distinct  performance
characteristics that inform their suitability for
forensic applications. YOLOv12 emerged as the
superior model across all evaluated metrics,
demonstrating the most consistent balance between
accuracy and computational efficiency. The
YOLOvI2-medium variant achieved the highest
mAP@0.5 of 98.4% with arecall of 93.2%, while the
YOLOvI2-nano delivered exceptional inference
speed of 0.5ms with only 5.8 GFLOPs, making it the
optimal choice for resource-constrained
environments. This superior performance can be
attributed to YOLOv12's integration of lightweight
attention ~ modules and  transformer-based
enhancements for long-range feature modeling,
which enable robust detection in complex, cluttered
scenes typical of forensic evidence. YOLOvIO0
demonstrated  competitive  performance  with
mAP@0.5 values ranging from 96.8% to 98.4% and
notably achieved the fastest small-variant inference
time of 2.4ms, owing to its bi-level routing attention

Available at www.ijsred.com

mechanism and  simplified detection head
architecture.  However, the YOLOv10-nano
exhibited relatively higher latency (9.3ms) compared
to its YOLOvVI12 counterpart, suggesting less
optimized performance in the smallest configuration.
YOLOvVS, while still achieving impressive
mAP@0.5 scores of 96.8% to 98.5%, exhibited the
least favorable performance profile among the three
architectures. The YOLOv8-small model recorded
an inference time of 9.1ms on the NVIDIA RTX
2070 SUPER GPU, significantly slower than both
YOLOvV10 (2.4ms) and YOLOv12 (1.1ms) small
variants. This performance gap can be attributed to
YOLOVS's lack of advanced attention mechanisms
and architectural optimizations present in the newer
versions. Furthermore, YOLOvV8 demonstrated
lower recall values (ranging from 89.6% to 91.8%)
compared to YOLOvIO (93.0%-94.4%) and
YOLOvI2 (91.7%-93.2%), indicating reduced
sensitivity in detecting subtle and occluded facial
features—a critical limitation in forensic scenarios.
The comparative evaluation conclusively establishes
YOLOV12 as the most optimal solution for forensic
face detection applications, offering superior
accuracy, efficiency, and deployment flexibility,
while YOLOVS, despite its acceptable performance,
represents the least suitable option due to higher
latency and reduced recall capabilities.
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