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Abstract: 
            Face detection is a critical task in digital forensic investigations, supporting essential activities like 

suspect tracking, victim identification, and multimedia triage. Traditional and even modern deep learning 

methods often falter under forensic conditions, due to factors like low resolution, motion blur, occlusion, 

and suboptimal lighting. This study investigates the efficacy of optimized YOLO-based architectures 

(YOLOv8, YOLOv10, YOLOv12) for forensic face detection by retraining nano, small, and medium 

variants of each model on a refined subset of the WIDER FACE dataset. The proposed preprocessing 

approach eliminates images below 640×640 pixels to enhance learning efficiency and detection accuracy. 

Experimental results demonstrate significant improvements across precision, recall, and inference speed 

metrics compared to pretrained baselines, with YOLOv12 achieving superior latency and precision scores. 

The findings highlight the importance of task-specific training and dataset refinement in digital forensics. 

 

Keywords — Digital forensics, face detection, real-time detection, forensic evidence, YOLO, facial 

recognition technology. 

----------------------------------------************************----------------------------------

I.  INTRODUCTION 

In digital forensics, face detection plays a vital role, 

enabling core functions like suspect tracking, victim 

identification, and image filtering in vast collections 

of multimedia evidence. It has seen applications in 

surveillance video analysis, forensic triage of seized 

devices, social media investigations and border 

control systems [1]. Forensic evidence from 

surveillance and archival sources typically suffer 

from limitations such as low resolution, motion blur, 

compression artifacts, occlusion, and suboptimal 

lighting. These issues significantly challenge the 

reliability of face detection systems, leading to false 

negatives and missed detections [2], [3]. Traditional 

methods using handcrafted features, such as the 

Viola–Jones detector, show rapid performance 

degradation in complex scenarios [4]. Advances in 

deep learning, including one-stage detectors like 

Single Shot MultiBox Detector (SSD) and You Only 

Look Once (YOLO), have improved robustness but 

still struggle under harsh forensic conditions like 

small faces in cluttered scenes [5], [6]. Moreover, 

processing large datasets quickly is essential in 

digital forensics, making accuracy and speed critical 

factors [7]. 

A. Problem Statement 

Forensic practitioners require face detection 

algorithms that can handle poor-quality inputs while 

delivering fast and reliable results. However, 

existing detectors face several setbacks, including: 

1)  Low-resolution degradation  

Faces captured in surveillance contexts often 

occupy few pixels, leading to substantial drops in 

detection and recognition accuracy [8], [9]. 

 

2)  Complex environmental factors  
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Variations in pose, occlusion, illumination, and 

dynamic backgrounds further hinder detection 

capabilities [2], [10]. 

3)  Operational constraints 

Forensic workflows must process extensive image 

collections under tight time constraints, necessitating 

high-performance detection [7]. 

These challenges impact the trustworthiness and 

effectiveness of automated forensic systems, with 

missed faces equating to missed leads or evidence 

B. Motivation 

Electronic devices with data storage are crucial in 

forensic analysis, as they hold extensive information 

about users and their environment. Devices collected 

from crime scenes may contain thousands of files, 

which are analyzed, classified, and used to identify 

and report criminal data or individuals.  

Facial recognition technology (FRT) has become 

a vital tool in modern digital forensics and law 

enforcement globally. The International Biometrics 

+ Identity Association recognizes FRT as one of the 

fastest-growing biometric modalities due to its 

contactless nature and increasing accuracy powered 

by deep learning algorithms [11]. In countries like 

China, the United States, and the United Kingdom, 

FRT is widely used for both public safety and 

commercial purposes[12]. This widespread rollout 

draws criticism over privacy violations and 

algorithmic bias. In Turkey for example, while FRT 

has been deployed to reunite victims of earthquake 

with their families, it has also been used to identify 

peaceful protesters, including minors with high 

potential for misidentification [13]. 

Given the existing gaps in face detection in 

forensic applications, it is evident that bridging them 

requires both data-centric and model-centric 

strategies. On the data part, focusing training on 

higher-quality images can help learn clearer facial 

patterns, thereby improving detection reliability [8], 

[14]. On the model part, leveraging efficient real 

time detectors like YOLOv8 has shown great 

potential in forensic applications, balancing speed 

and accuracy [7]. By leveraging right dataset 

tailoring and hardware optimization, making such 

systems more practical tools for digital forensic 

applications. 

C. Contribution 

The study significantly improves accuracy face 

detection in digital forensic applications by 

retraining 3 versions of the YOLO models of 3 

different weights each, to attain higher frequency 

through dataset refinement, thus making them a new 

benchmark in forensic face detection. 

D. Paper Organization 

This paper addresses optimized face detection for 

digital forensics applications. 

Section II presents the relevant literature and 

previous works that form the basis of this study. 

Section III details the methodology used, 

including the dataset (WIDER FACE dataset), the 

preprocessing strategies applied, a holistic 

description of the architecture as well as the 

hardware infrastructure utilized for training. 

Section IV outlines the experimental results 

obtained by custom training the PyTorch model files 

on the customised dataset, highlighting key 

performance improvements compared to the 

Ultralytics pretrained weights of the various models. 

Section V discusses the findings, providing 

insights into key performance indicators like 

precision-recall trade-offs, inference efficiency, as 

well as real world applicability of the models, 

particularly in digital forensic analysis. 

Section VI concludes the study, summarizing 

contributions and suggesting future directions for 

improving face detection in forensic investigations. 

II. RELATED WORK 

Artificial Intelligence (AI) has gained significant 

traction across diverse disciplines, including digital 

forensics, where it is increasingly applied to 

optimize analytical processes. The integration of AI 

into forensic investigations has been facilitated by 

the availability of open-source datasets and advances 

in machine learning architectures, yielding 

promising results in areas such as object detection 

and classification. This section reviews existing 

studies that have employed AI methodologies to 

address key challenges in digital forensics, 

highlighting their contributions, limitations, and 

relevance to this work. 
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Riadi et al. [15] ran forensic investigation on the 

Signal Messenger application on Android devices, 

particularly during the rise of cybercrimes in the 

COVID-19 era. Using three tools; Belkasoft, Magnet 

AXIOM, and MOBILedit Forensic Express within 

the Digital Forensics Research Workshop (DFRWS) 

framework, they sought to uncover digital evidence. 

Their research pinpointed several types of evidence, 

including chats, media, and account data, with 

Belkasoft Evidence Center delivering superior 

accuracy at 78.69%. Their findings offer valuable 

insights for future forensic research on the Signal 

Messenger application. In a related study, Korkmaz 

and Boyacı [16] proposed a hybrid speaker 

recognition model using long short-term memory 

(LSTM) networks. Their model demonstrated the 

potential to be applied to audio files obtained in 

digital forensics for content analysis. 

Artificial intelligence has also been employed in 

analyzing social media content. Abebaw et al. [17] 

used multi-channel convolutional neural networks 

(CNNs) to extract features of hate speech from social 

media, using Support Vector Machine (SVM) for 

classification. This methodology facilitated anomaly 

detection from social media data. Channabasava and 

Raghavendra [18] built a consensus-based ensemble 

model for social media link prediction using several 

features. Through methods like cross-correlation and 

Principal Component Analysis (PCA), they achieved 

an accuracy of up to 97%. Incorporating logistic 

regression, decision trees, and deep-neuro 

algorithms, their model surpassed other methods 

with a link-prediction accuracy of 98%. 

Digital image analysis in forensics is gaining 

research attention. Piva [19] provides a detailed 

overview of passive image forensics techniques used 

to verify the authenticity of digital images without 

requiring original data. The study focused on 

procedures such as copy-move forgery, resampling 

detection, image enhancement, and compression, 

offering a solid foundation for modern developments 

in image forensics using machine learning and AI. 

CNN architectures in this respect have been applied 

successfully in steganography [20], watermarking 

[21], SCI-camera information detection [22], and 

copy-move forgery [23]. 

The application of object detection and 

recognition tasks to image and video files acquired 

as forensic evidence is gaining momentum in recent 

years. One of such innovative approaches, proposed 

by Javed and Jalil [24], is a byte-level object 

identification method for the forensic examination of 

digital images. The method deciphers the byte code 

of each pixel in an image and identifies objects based 

on their unique byte code. 

Facial recognition tasks have also been broadly 

explored in computer science and digital forensics. 

Zafeiriou et al. [25] provided a comprehensive 

discussion on deep learning-based face recognition 

technologies, datasets, deep learning architectures, 

and performance, along with future projections. 

Viola and Jones [4] examined face detection and 

recognition tasks, exploring the challenges, 

algorithmic use, and success rates, as well as 

strategies for minimizing the False Positive Rate 

(FPR) and to develop real-time applications. 

Bledsoe's seminal work [26] was pivotal in the 

development of face recognition technology, 

proposing the "model method," in which a 

mathematical model of a person's face would be 

constructed and compared with other faces. 

Following this, several classical face recognition 

applications were developed, including EigenFace 

[27], FisherFace [28], BayesianFace [29], MetaFace 

[30], LaplancianFace [31], and Support Vector 

Machine (SVM)[32]. 

The advent of deep learning algorithms and 

advanced graphics cards, particularly after 2010, has 

significantly impacted face recognition technology. 

Krizhevsky et al.'s success in the ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC) with 

the AlexNet network was a breakthrough[33]. This 

network used deep neural networks and was trained 

on graphics cards with parallel processing capability. 

Subsequent studies have utilized CNN 

architectures for face detection tasks. For example, 

the DeepFace model by Taigman et al. [34], which 

was created by training a 9-layer CNN model on four 

million images achieved a performance comparable 

to human image detection, with a success rate of 

97.53%.  Sun et al. [35] demonstrated that the 

DeepID model, trained with a CNN architecture, 

could perform face recognition in 10,000 classes. 
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More recent models such as FaceNet [36], 

VGGFace [37], VGGFace2 [38], and ArcFace [41] 

have utilized CNN architectures. These models are 

trained on face data and have weight files that can 

easily extract unique features of face data. 

A more recent study, by Mei and Zhu et al. [40] 

presents YOLO-AFR, an improved version of 

YOLOv12 tailored for small and occluded face 

detection in complex environments. Incorporating 

novel modules—Feature Reweighting Fusion 

Network (FRFN), Scale-Consistent Convolution 

(SC-Conv), and Shared Enhanced Attention Module 

(SEAM). The YOLO-AFR architecture enhances 

multi-scale feature representation and cross-scale 

prediction consistency while mitigating occlusion 

errors. Evaluated on standard benchmarks, YOLO-

AFR demonstrates higher average precision (AP) 

than baseline YOLOv12 networks, particularly 

excelling in small-face detection with lower 

computational overhead [40]. 

Our prior work by Karakuş et al. [7], which 

includes two of the current authors, established a 

benchmark framework for real-time face detection 

and identification tailored to digital forensic 

applications. In that study, YOLOv8 object detection 

models spanning nano to extra-large variants were 

trained on the WIDER FACE dataset to achieve 

high-precision face detection across vast forensic 

image and video archives. The models delivered 

exceptional results, with mean Average Precision 

(mAP) values ranging from 97.51% to 99.03%, 

significantly outperforming YOLOv5 by 7.1% to 

8.8%. The system further integrated a VGGFace2-

based feature extractor to support suspect 

identification using cosine similarity, and a desktop 

application was developed to facilitate real-time 

analysis by forensic experts. This work serves as a 

reference standard for applying YOLO architectures 

in forensic image analysis, demonstrating the 

effectiveness of scalable models and practical tools 

in addressing the operational challenges of modern 

digital forensics. 

The reviewed literature reflects significant 

progress in object and face detection, with deep 

learning models, particularly the YOLO family, 

offering a promising balance between accuracy and 

speed. However, forensic-specific requirements such 

as low-quality input tolerance, real-time analysis, 

and operational scalability remain partially unmet. 

While our previous study set a strong foundation by 

applying YOLOv8 to forensic evidence, the current 

research builds upon that benchmark by refining data 

quality through resolution-based filtering and 

extending model comparison to newer YOLO 

versions. This positions the present work to further 

advance the state-of-the-art in forensic face detection 

by improving precision, adaptability, and 

deployment readiness 

III. MATERIALS AND METHODS 

This study follows a methodological framework 

that is structured to optimize face detection for 

forensic applications using retrained variants of the 

YOLO object detection algorithm. The process 

begins with the WIDER FACE dataset, an 

extensively benchmarked and diverse face dataset 

which was then pre-processed using OpenCV to 

improve model performance and attain high 

precision in forensic applications, by filtering out 

low-resolution images below 640 × 640 pixels.  

Training deep learning models, especially 

convolutional architectures like YOLO, is resource 

intensive. Traditional Central Processing Units 

(CPUs) lack the necessary parallelism required for 

efficient training. Therefore, dedicated hardware 

equipped with Graphics Processing Unit (GPU) was 

employed. The YOLOv8 and YOLOv10 models 

were trained on a local workstation configured with 

the necessary requirements, while the YOLOv12 

model was trained using the Google Colab Pro 

platform, leveraging its strong cloud-based 

infrastructure. 

The following subsections provide more details on 

the dataset used, preprocessing strategy, the 

infrastructure used and the Yolo architecture. 

A. Dataset 

A good number of datasets have driven advances 

in object and face detection. Microsoft's COCO 

dataset features 330,000 images with 1.5 million 

object instances across 80 categories and is widely 

adopted for training multi-object detectors in 

cluttered scenes [41]. PASCAL VOC, another 

foundational dataset features around 11,000 images 



International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025  

                  Available at www.ijsred.com                       

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1770 

with around 27,000 annotated objects in 20 classes, 

but is not commonly used for facial detection tasks 

due to its limited scope [42]. For face-specific 

detection, datasets such as the FDDB that features 

5,171 faces in 2,845 images and the AFW that 

features 205 images with 473 faces were early 

benchmarks but are constrained in scale and 

diversity [43]. Larger datasets like AFLW containing 

25,000 faces and IJB-A containing 500 subjects with 

5,712 images and 2,085 videos improve on pose and 

demographic variety, yet they lack comprehensive 

annotations for occlusion, blur, and fine-grained 

facial expressions, which are critical in real-world 

environments [44], [45]. While CelebA and 

VGGFace2 are widely adopted for face recognition 

due to identity and attribute labeling, they do not 

provide dense bounding box annotations optimized 

for detection [38], [46]. The WIDER FACE dataset, 

in contrast, includes 32,203 images and 393,703 

labeled faces spanning 61 event categories and is 

specifically constructed to challenge detectors with 

variations in scale, pose, occlusion, and lighting [47], 

thereby being more suitable for this work. 

Wider Face dataset is organized into three subsets; 

training (40%), validation (10%), and testing (50%). 

Samples are also categorized into Easy, Medium, 

and Hard levels based on detection difficulty. These 

features make it suitable for challenging real-world 

applications, including digital forensics, where 

robustness to diverse imaging conditions is essential. 

Individual faces in the dataset are labelled with tight 

bounding boxes and metadata regarding occlusion or 

blurriness. This granular annotation supports 

effective training and evaluation of deep learning 

models designed for fine-grained face detection [47].  

 

 

Fig. 1  Wider face dataset sample 

B. Data Preprocessing 

A resolution-based filtering was applied to the 

train and validation subsets, due to the forensic 

application's requirement for high accuracy and 

minimal false positives. The dataset was filtered to 

images of minimal dimension of 640 x 640 pixels. 

This led to the train set sliced down to 12102(37.5% 

of Wider Face dataset) images and the validation set 

to 2853 (8.9% of Wider Face) images. This 

resolution threshold is in line with standard input 

sizes recommended for convolutional neural 

networks (CNNs) used in object detection 

frameworks like YOLO, ensuring reliability in 

detection and computational efficiency [5], [6]. 

Images with low resolution are known to 

negatively impact the performance of face detectors, 

particularly when faces appear small or occluded. 

Prior studies have found out that model accuracy 

declines significantly when input image resolution 

falls below recommended levels, especially in 

datasets with dense face clusters [48]. Therefore, 

applying a minimum size threshold enables the 

model to focus on clearer, information-rich samples, 

enhancing learning during retraining. 

Filtering was done using the OpenCV library in 

Python, reading and evaluating each image by its 

height and width. This gave room for removing 

unsuitable images, i.e. those with dimensions lower 

than 640 x 640 pixels. Filtering the training and 

validation set ensured that the pretrained models 

learn more discriminative features relevant to 

forensic imagery which mostly demand high 

precision. 
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Fig. 2 Dataset preprocessing with OpenCV 

C. The YOLO Architecture 

The YOLO (You Only Look Once) architecture is 

a family of detectors that treat object detection as a 

single end to end regression problem. A YOLO 

model typically divides an input image in to an S x S 

grid. Each grid cell is then tasked to predict bounding 

boxes and class probabilities for objects whose 

centers fall into the cell. Unlike two-stage detectors 

like R-CNN(), which generates region proposals 

before classification, YOLO processes the image in 

a single forward pass, thereby being extremely fast 

and efficient for real-time applications [49]. 

1. Core Components of YOLO 

The YOLO architecture comprises of three main 

components, the backbone, the neck and the head. 

Backbone: The backbone typically, is a 

convolutional neural network (CNN), used to extract 

hierarchical features from the input image. In 

YOLOv3–YOLOv5, the backbone was often 

Darknet-53 or CSPDarknet53. YOLOv8 and later 

versions use optimized backbones like CSPDarknet-

A or PP-YOLOE [6], [50]. 

Neck: This neck combines feature maps from 

different depths of the network to improve object 

localization at multiple scales. Common neck 

modules include the Feature Pyramid Network (FPN) 

and Path Aggregation Network (PAN), which 

enhance semantic flow across layers [51]. 

Head: The head is in charge of final predictions. It 

outputs bounding box coordinates, objectness scores, 

and class probabilities. Modern YOLO versions 

(YOLOv8+) adopt an anchor-free detection head, 

where the model directly predicts center points and 

box sizes, thereby reducing complexity and 

increasing generalization across datasets [50], [52]. 
2. Training Protocols and Loss Functions 

Training is augmented with techniques like Mosaic 

augmentation, MixUp, and color jittering, which 

improve generalization and robustness to diverse 

conditions. The loss function combines Localization 

Loss (e.g., CIOU or DIOU) for bounding box 

accuracy, Confidence/Objectness Loss to penalize 

incorrect object presence predictions, and 

Classification Loss for multi-class detection 

accuracy [50], [53]. Non-Maximum Suppression 

(NMS) is then applied, after inference to filter out 

overlapping boxes based on their Intersection over 

Union (IoU) scores 
3. Evolution of the YOLO architecture 

Since its introduction in 2016, YOLO has 

undergone significant architectural transformations, 

each improving detection performance, speed, and 

efficiency. 

YOLOv1 unveiled the single-stage detection 

paradigm by using a unified convolutional 

architecture to predict bounding boxes and class 

probabilities from full images in a single pass [49]. 

YOLOv2 introduced anchor boxes, batch 

normalization, and multi-scale training to improve 

accuracy and localization [54]. YOLOv3 adopted a 

deeper Darknet-53 backbone and incorporated multi-

scale predictions using feature pyramids for better 

small-object detection [54]. YOLOv4 combined 

CSPDarknet as the backbone with advanced data 

augmentation and bag of freebies, significantly 

boosting mAP and speed [6]. 

YOLOv5, although not released by the original 

authors, became widely adopted due to its modular 

PyTorch implementation and continued 

improvements to speed and usability [50]. 
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YOLOv7 introduced E-ELAN, re-parameterized 

convolutional modules, and model scaling strategies 

that optimized both speed and accuracy in real-time 

settings [50]. 

YOLOv8 moved toward an anchor-free detection 

head and implemented an improved backbone with 

better generalization and training speed, packaged 

into a unified PyTorch framework [50]. 

YOLOv10 further improved efficiency and 

latency by integrating a bi-level routing attention 

mechanism and a simplified detection head. It 

adopted a decoupled head structure and retained 

anchor-free operation, making it particularly suitable 

for resource-constrained environments [40]. 

YOLOv12, the latest of the YOLO family, 

leverages lightweight attention modules and 

transformer-based enhancements for long-range 

feature modeling, delivering robust performance in 

complex, cluttered scenes [55]. 

 
Fig. 3 YOLO generic architecture[49] 

 
Fig. 4  YOLO models and other related detectors comparisons in terms of 

latency-accuracy (left) and FLOPs-accuracy (right) trade-offs [55]. 

 

D. Forensic Face Detection Workflow 

Our implementation of YOLO models for face 

detection follows a five-step pipeline. 

In the first stage, images are preprocessed, resized 

to 640x640 and normalized.  

In the second stage, the Backbone extracts feature 

maps from the normalized image. The Neck, in the 

third stage, the feature aggregation stage, following 

a combination of Feature Pyramid Network and Path 

Aggregation Network (FPN + PAN) computation, 

then fuses features across multiple scales.  

In the fourth stage, the prediction stage, the 

detection head predicts bounding boxes, objectness 

scores, and class labels in an anchor-free manner. 

Finally, in the post-processing stage, the NMS 

(Non-maximum suppression) removes redundant 

boxes, leaving only high-confidence predictions. 

 

 

Fig. 5 Forensic Face Detection Pipeline 

 

E. Hardware 

Training AI models is resource-intensive; 

therefore, traditional CPUs cannot handle the task. 

The task requires hardware capable of parallel 

processing, such as Graphics Processing Units 

(GPUs). Additionally, updating the weights requires 

images to be loaded into the RAM and then 

transferred to the GPU, as shown in [7].  
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In this research, the different weights of YOLO 

versions 8 and 10 were trained on a local workstation 

at Firat University’s digital forensics lab with an 

Intel Core i7 processor, an NVIDIA 

RTX 2070 SUPER GPU (8 GB VRAM) with a 

compute capability of 7.5 [56], capable of 

approximately 9.1 TFLOPS single-precision (FP32) 

and 72 TFLOPS tensor‑core performance [57], and 

32 GB DDR6 RAM. The YOLOv12 models were 

trained using Google Colab on an NVIDIA A100 

Tensor Core GPU (40 GB VRAM), with a compute 

power of 8.0 [56], offering up to 19.5 TFLOPS FP32, 

312 TFLOPS FP16, and 156 TFLOPS 

TensorFloat32 (TF32) performance, along with 

9.7 TFLOPS FP64 capabilities, with 25 GB system 

RAM[57]. 

IV. EXPERIMENTAL RESULT 

This section presents a comprehensive evaluation 

of YOLOv8, YOLOv10, and YOLOv12 models, 

each retrained on a refined subset of the Wider Face 

dataset. Performance metrics such as mAP@0.5, 

precision, recall, inference speed, GFLOPs, and 

parameter counts are analyzed across Nano, Small, 

and Medium variants. These results are compared 

against their respective pretrained baselines to assess 

improvements in accuracy and efficiency, metrics 

essential for robust digital forensic applications. 

 

A. Yolov8 

The Ultralytics pretrained YOLOv8 models 

achieved inference speeds of 0.99, 1.20, and 1.83ms 

using the coco dataset on an A100 TensorRT GPU. 

Our training and inference on the refined Wider Face 

dataset on an NVIDIA RTX 2070 SUPER GPU 

attained high accuracy and efficiency as shown in 

table 2 against the original models depicted in Table 

I. 

TABLE I 
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Yolov8n 640 37.3 80.4 0.99 3.2 8.7 

Yolov8s 640 44.9 128.4 1.2 11.2 28.6 

Yolov8m 640 50.2 234.7 1.83 25.9 78.9 

 

Table I presents the performance metrics of the 

Ultralytics-pretrained YOLOv8 models, evaluated 

on the COCO dataset across three model sizes: Nano, 

Small, and Medium. Inputs of size 640 x 640 were 

processed, demonstrating progressive improvements 

in detection accuracy, with mAPval (50–95%) 

increasing from 37.3% for Nano to 50.2% for 

Medium. The accuracy gains notably called for 

higher computational demands, as indicated by 

increased FLOPs from 8.7B to 78.9B and parameter 

sizes 3.2M to 25.9M. 

 

TABLE II 

 CUSTOM TRAINED YOLOV8 PERFORMANCE METRICS 
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Yolov8n 0.968 0.955 0.904 20.9 8.1 72 3.0 

Yolov8s 0.984 0.953 0.938 9.1 78.7 92 25.8 

Yolov8m 0.985 0.953 0.94 9.0 78.7 92 25.8 

 

Table II summarizes the performance of the custom-

trained YOLOv8 models, Nano, Small, and Medium, 

after retraining on the refined Wider Face dataset. 

All weights demonstrate significant improvements 

in accuracy, with high mAP@0.5 values. Precision 

and recall scores remain consistently high across all 

versions, reflecting high robustness. 

B. Yolov10 

The Ultralytics pretrained YOLOv10 models have 

latencies of 1.84, 2.49, and 4.74ms. This is based on 

the coco dataset and a TensorRT FP16 on T4 GPU. 

Our training and inference on the refined Wider Face 

dataset on an NVIDIA RTX 2070 SUPER GPU 

attained high accuracy and efficiency as shown in 

table 4 against the original models depicted in Table 

III. 

 



International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025  

                  Available at www.ijsred.com                       

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1774 

TABLE III  

ULTRALYTICS YOLOV10 PERFORMANCE METRICS[40] 

M
o

d
e
l 

In
p

u
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S
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e
 

A
P

v
a

l 
(%

) 

F
L

O
P

s 
(G

) 

L
a

te
n

c
y

 (
m

s)
 

YOLOv10n 640 38.5 6.7 1.84 

YOLOv10s 640 46.3 21.6 2.49 

YOLOv10m 640 51.1 59.1 4.74 

Table III presents the performance metrics of the 

pretrained YOLOv10 models Nano, Small, and 

Medium evaluated on the COCO dataset with an 

input resolution of 640 × 640 pixels. The models 

show a balance between accuracy and complexity, 

with Average Precision values increasing as the 

model size increases. Similarly, the computational 

cost increases with the increase in weights. FLOPs 

grow from 6.7G in the Nano model to 59.1G in the 

medium variant, while latency rises from 1.84ms to 

4.74ms, measured using TensorRT FP16 on a T4 

GPU. 

 

TABLE IV 

 CUSTOM-TRAINED YOLOV10 MODELS PERFORMANCE METRICS 
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P
a

r
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m
e
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r
s 

(m
) 

Yolov10n 0.96812 0.94985 0.9039 9.3 8.7 223 2.78 

Yolov10s 0.98 0.952 0.926 2.4 21.4 106 7.2 

Yolov10m 0.984 0.954 0.939 5.0 58.9 136 15.3 

 

Table IV reports the performance of the custom-

trained YOLOv10 models Nano, Small, and Medium 

optimized on the refined WIDER FACE dataset. The 

three variants all achieved remarkable accuracy, with 

mAP@0.5 values exceeding 0.96. Precision and 

recall scores notably remain high. The Small model 

stands out with the fastest inference time of 2.4ms, 

making it highly suitable for real-time detection 

without compromising accuracy. 

 

C. Yolov12 

The Ultralytics pretrained YOLOv12 models 

achieved inference speeds of 1.64, 2.61, and 4.86ms 

using the coco dataset on a T4 TensorRT GPU. Our 

training and inference on the refined Wider Face 

dataset on an NVIDIA A100 Tensor Core GPU 

attained high accuracy and efficiency as shown in 

table VI against the original models depicted in table 

V. 

TABLE V 

ULTRALYTICS YOLOV12 MODEL PERFORMANCE METRICS[55] 
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YOLOv12n 640 40.6 1.64 2.6 6.5 

YOLOv12s 640 48 2.61 9.3 21.4 

YOLOv12m 640 52.5 4.86 20.2 67.5 

 

Table V outlines the performance metrics of the 

pretrained YOLOv12 models, Nano, Small, and 

Medium on the COCO dataset using 640 × 640 pixel 

inputs. The models display a progressive increase in 

detection accuracy, with mAPval (50–95%) ranging 

from 40.6% for the Nano variant to 52.5% for the 

Medium variant. Inference latency also scales 

accordingly, from 1.64ms to 4.86ms when tested on 

a T4 GPU using TensorRT, highlighting the balance 

between speed and accuracy. Model complexity, 

reflected in parameter count and FLOPs, increases 

significantly with model size. 

 

TABLE VI 

CUSTOM TRAINED YOLOV12 PERFORMANCE METRICS 
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Yolov12n 0.959 0.948 0.883 0.5 5.8 376 2.5 

Yolov12n 0.978 0.959 0.917 1.1 19.3 376 9.07 

Yolov12m 0.984 0.962 0.932 1.9 59.5 402 19.6 

 

Table VI presents the performance of the custom-

trained YOLOv12 models, Nano, Small and Medium, 



International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025  

                  Available at www.ijsred.com                       

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1775 

on the refined WIDER FACE dataset. All three 

variants delivered strong results, with the medium 

model achieving the highest Mean Average 

Precision (mAP@0.5) of 0.984 and the best recall of 

93.2%, indicating highly reliable detection 

capabilities. The Small model offered an excellent 

balance of speed and accuracy, with a low inference 

time of 1.1ms and precision of 95.9%. The Nano 

model, while maintaining the smallest parameter 

count of 2.5M and lowest GFLOPs 5.8, delivered a 

solid mAP of 0.959 and an exceptionally fast 

inference speed of 0.5ms. 

V. DISCUSSION 

The experimental evaluation of the YOLOv8, 

YOLOv10, and YOLOv12 models on the refined 

WIDER FACE dataset demonstrates the benefits of 

applying models in task-specific environments, as in 

our case of facial recognition for digital forensics. 

The pretrained YOLO model weights from 

Ultralytics provided strong baseline performance 

metrics, however, custom training significantly 

enhanced face detection accuracy, precision, recall, 

and inference speed across all model sizes, nano, 

small, and medium. These improvements can be 

attributed to both dataset refinement and the 

forensics-specific learning objectives. A 

comparative analysis between the pretrained and 

custom-trained models is presented, with focus on 

precision-recall trade-offs, computational efficiency, 

and inference speeds. This will offer a practical 

evaluation of the models' suitability for application 

in investigative scenarios. 

 

A. Yolov8 

The experimental results for YOLOv8 models 

indicate notable improvements in face detection 

performance when trained on the refined WIDER 

FACE dataset compared to the official COCO-based 

benchmarks. While the Ultralytics pretrained models 

reported mAP scores of 37.3%, 44.9%, and 50.2% 

for the nano, small, and medium variants 

respectively, our custom-trained counterparts 

achieved impressive mAP scores of 96.8%, 98.4%, 

and 98.5%. These results highlight the effectiveness 

of dataset filtering and task-specific training in 

enhancing model accuracy. A point to note is that 

inference speeds in our configuration showed 

variations due to hardware differences, the YOLOv8 

small model which achieved an inference speed of 

1.2ms on an A100 TensorRT GPU achieved 9.1ms 

on our NVIDIA RTX 2070 SUPER GPU.  While this 

is a higher latency, it is still within an acceptable 

range for real-time applications and demonstrates 

strong performance even on mid-range GPUs. 

Additionally, our models maintained a consistently 

high precision-recall balance making them much 

suitable in forensic image analysis. 

B. Yolov10 

The YOLOv10 model custom training 

experimental results further underscore the impact of 

dataset filtering on the models. The Ultralytics 

pretrained models, evaluated on COCO and a 

TensorRT T4 environment, achieved mAPval scores 

of 38.5%, 46.3%, and 51.1% for the nano, small and 

medium weights of the model. Following the fine-

tuning of the Wider Face dataset, the YOLOv10 

models achieved mAP@0.5 values of 96.8%, 98.0%, 

and 98.4%, for the nano, small and medium weights 

respectively. The custom-trained models further 

achieved substantial reductions in inference latency, 

down to 9.3ms for nano, 2.4ms for small, and 5.0ms 

for medium models, thereby suggesting improved 

deployment efficiency. Additionally, the recall 

scores surpassed 93% across all three variants, 

demonstrating their reliability in identifying subtle 

and occluded facial features. This confirms the 

suitability of the models for high-speed forensic 

applications without compromising precision. 

C. Yolov12 

The YOLOv12 models delivered the most 

consistent balance between accuracy and efficiency 

across all sizes. While the original Ultralytics 

benchmarks on COCO reported mAPval scores of 

40.6%, 48.0%, and 52.5%, our refined versions 

trained on WIDER FACE reached mAP@0.5 scores 

of 95.9%, 97.8%, and 98.4%, respectively. The small 

and medium weights of the YOLOv12 achieved high 

recall values of 91.7% and 93.2%, indicating robust 

sensitivity to face instances in complex scenes. 

Furthermore, latency was reduced substantially, with 
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the nano version achieving a lightning-fast 0.5ms per 

inference, outperforming its Ultralytics pretrained 

counterpart's 1.64ms. The reduction in GFLOPs, 

especially for the nano model, with 5.8 GFLOPs, 

reinforces the efficiency of the model even in 

resource-constrained environments. The YOLOv12 

architecture, when custom-trained, stands out as the 

most optimal solution for forensic applications 

requiring rapid and precise face detection. 

VI. CONCLUSION 

A systematic evaluation of the YOLO 

architectures, v8, v10 and v12, tailored for enhanced 

face detection in digital forensics was performed. In 

the process, a filtered Wider Face dataset for high 

resolution images was leveraged, and three weights, 

nano, small and medium for each of the YOLO 

versions 8, 10 and 12 were custom-trained, yielding 

substantial performance gains in accuracy, precision, 

recall and inference latency. The research reaffirms 

the suitability of the models for the Forensic 

Application they will be integrated in which among 

other forensic investigation purposes, features a 

facial recognition module on image and video files 

retrieved from digital evidence. 

Comparative analysis of the three YOLO 

architectures reveals distinct performance 

characteristics that inform their suitability for 

forensic applications. YOLOv12 emerged as the 

superior model across all evaluated metrics, 

demonstrating the most consistent balance between 

accuracy and computational efficiency. The 

YOLOv12-medium variant achieved the highest 

mAP@0.5 of 98.4% with a recall of 93.2%, while the 

YOLOv12-nano delivered exceptional inference 

speed of 0.5ms with only 5.8 GFLOPs, making it the 

optimal choice for resource-constrained 

environments. This superior performance can be 

attributed to YOLOv12's integration of lightweight 

attention modules and transformer-based 

enhancements for long-range feature modeling, 

which enable robust detection in complex, cluttered 

scenes typical of forensic evidence. YOLOv10 

demonstrated competitive performance with 

mAP@0.5 values ranging from 96.8% to 98.4% and 

notably achieved the fastest small-variant inference 

time of 2.4ms, owing to its bi-level routing attention 

mechanism and simplified detection head 

architecture. However, the YOLOv10-nano 

exhibited relatively higher latency (9.3ms) compared 

to its YOLOv12 counterpart, suggesting less 

optimized performance in the smallest configuration. 

YOLOv8, while still achieving impressive 

mAP@0.5 scores of 96.8% to 98.5%, exhibited the 

least favorable performance profile among the three 

architectures. The YOLOv8-small model recorded 

an inference time of 9.1ms on the NVIDIA RTX 

2070 SUPER GPU, significantly slower than both 

YOLOv10 (2.4ms) and YOLOv12 (1.1ms) small 

variants. This performance gap can be attributed to 

YOLOv8's lack of advanced attention mechanisms 

and architectural optimizations present in the newer 

versions. Furthermore, YOLOv8 demonstrated 

lower recall values (ranging from 89.6% to 91.8%) 

compared to YOLOv10 (93.0%-94.4%) and 

YOLOv12 (91.7%-93.2%), indicating reduced 

sensitivity in detecting subtle and occluded facial 

features—a critical limitation in forensic scenarios. 

The comparative evaluation conclusively establishes 

YOLOv12 as the most optimal solution for forensic 

face detection applications, offering superior 

accuracy, efficiency, and deployment flexibility, 

while YOLOv8, despite its acceptable performance, 

represents the least suitable option due to higher 

latency and reduced recall capabilities. 
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