RESEARCH ARTICLE OPEN ACCESS

CareVoice AI: Emotion Aware Consultation System

M. Vasuki¹, T. Amalraj Victoire², Nithyalakshmi S³

¹(Associate professor, Department of Master Computer Application, Sri Manakula Vinayagar Engineering College, Pondicherry-605 107)

Email:dheshna@gmail.com

² (Professor, Department of Master Computer Application, Sri Manakula Vinayagar Engineering College, Pondicherry-605 107)

Email:amalrajvictoire@gmail.com

³ (Student, Department of Master Computer Application, Sri Manakula Vinayagar Engineering College, Pondicherry-605 107)
Email:nithyasundar1605@gmail.com

Abstract:

Good communication between doctors and patients is essential for good quality healthcare service. Unfortunately, factors such as time pressures, the use of medical jargon, and emotional stress often impact patients' comprehension and ratability. This paper outlines the development of "CareVoice AI" an emotion-aware consultation system comprised of six single integrated AI models, the Goal is to enhance empathy, comprehension, and collaboration in health care communication: 1) Adaptive Empathy Chatbot (AEC), 2) Contextual Memory Assistant (CMA), 3) Cooperative Virtual Assistant (CVA), 4) Emotion-Sensitive Voice Recognition (ESVR), 5) Dynamic Voice-to-Meaning Translator (DVMT), and 6) Multilingual Accessibility Voice Assistant (MAVA). Collectively, these models develop a multimodal communication bridge between patients and physicians. The architecture envisioned conceptually with NLP, speech recognition, and sentiment analysis frameworks has the potential to foster doctor-patient conversation, ease physician workload, and increase equitable, empathetic care.

Keywords — doctor patient communication, empathy, MVA, CMA, AEC, ESVR, MAVA, DVMT, AI technologies, human AI.

I. INTRODUCTION

Doctor and patient interactions are fundamental to good healthcare, but effective communication can be very complicated. Patients struggle with medical language, anxiety during the appointment, and follow-up appointments. Doctors, on the other hand, face burdens of documentation and time to communicate. These issues erode trust, limit adherence, and reduce patient satisfaction. Artificial Intelligence (AI) has opened up new a new way for conversational agents, or Chabot's or virtual assistants, to imitate human conversation. However, their use in healthcare has been limited to very low levels of communication, such as transactional communication around booking an

appointment or reminders for taking medication. This is a major underutilizing their potential to transform healthcare communication. This study modifies this prescription, with new models of AI driven conversational agents developed to improve empathy, continuity, and comprehension in healthcare communication.

Background between Doctor Patient Communication Effective communication between the clinician and the patient is fundamental to the health care delivery system. Research has shown that patients appear more likely to follow recommendations, are more satisfied, and have improved health outcomes when patients understand what the diagnosis is

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 1832

and what they can do to care for themselves. Even though communication can become complicated by many factors, including lexical complexity, cultural factors, and language barriers; the limited time the clinician has during the appointment space; and potential emotional distress for the patient in the appointment setting, communication barriers, both verbal and nonverbal lead to misunderstandings, mistrust, and medical error. Established methods of communication such as patient education materials and interpreter and services passively translation address communication, and are effective, to varying degrees, but they do not offer the same interactive and contextualized conversation capabilities that some patients, and certainly some clinicians, may wish to derive, particularly when engaging in conversation with the clinician.

Therefore there is a tremendous need to cultivate new ways to link doctor and patient, nurture a flow of communication, and ultimately create effective, respectful, and unobstructed communication pathways, and potentially an advocate, between the patient and doctor.enterprise, or patient health advocacy, and that technology possibly has a valuable role to play toward that goal.

II. LITERATURE SURVEY

Kocaballi et al. [1] undertook a study on chatbots that helped rule-based systems, natural language processing (NLP), and lower-level machine learning (ML) models. They found evidence of positive integration and along with personalization, while considering several limitations: short-term memory capacity, less ability to identify emotion, and few longitudinal studies.

Park et al. [2] presented a survey of conversational agents that included NLP-based models, dialog managers, generative/retrieval-based language models, and multimodal systems or integration with wearable sensors. While the

survey focused on multimodal applications for health care, it proposed little in the way of experimental development and deployment, clinical applications, or principles of interpretability that lead to actionable data.

SAGE 2024 [3] undertook a follow up study in cognitive empathy with patients and chatbots that used prompts and responses that were adjusted based on "empathy awareness." The findings indicated that one of the prompts delivering explicit empathic response did deliver increased patient satisfaction. They did note that "false empathy" can be an issue and that their lab-centric approach yielded limitations and on regulatory issues with differing risk models in clinical practice.

Memory-enhanced AI (2025) [4] investigated a memory-augmented large language model (LLM) using retrieval techniques e.g. Google Search - to deliver a markedly improved outcome with coherence, decreased repetition, and individualized patient centered responses. The authors of the paper cited concerns, similar to the SAGE paper, with privacy, uncertainty, and reliance on out-of-date or biased training data.

Finally, the authors of AIVA (2025) [5] explored chatbots with emotion detection, text-to-speech responses, and avatars that provided real-time emotion detection. The authors claimed the program would not take away from in clinic monitoring, noting acceptable levels of privacy, hardware integration, and latency as limitations to AIVA's application pending affirmation of their method.

III. THEORITICAL FRAMEWORK

The proposed models are grounded in established theories of communication: Communication Accommodation Theory (CAT) posits that AI will adjust language, tone, and pace depending on what is perceived as suitable for the patients' needs. Uncertainty Reduction Theory (URT)

posits that AI will help clarify uncertainty for patients and thereby reduce associated anxiety. Media Richness Theory (MRT) posits that AI will utilize the appropriate medium (voice, text, avatar) for the interaction. Narrative Theory posits that AI will store and recall the patient story to carry forward through time for continuity from appointment to appointment. This foundation of theory establishes that the proposed systems are not purely technical but also socially and relationally relevant.

IV.METHODOLOGY

In this research, the methodology is described as a conceptual model-building methodology to design and analyze conversational AI systems for health communication. The research began with problem identification, where the main barriers were found, including medical jargon, discontinuity across visits, and patient anxieties. At the same time, a review of existing communication agents was conducted to determine their current state and limitations, which gaps in empathy, contextual memory, and multiple capabilities.

Uniting the findings with traditional communication theories (Communication Accommodation Theory, Uncertainty Reduction Theory, Media Richness Theory, and Narrative Theory) provided a substantial groundwork to help develop the system.

In the process of designing system stage, *six* conceptual models emerged: AEC, CMA, CVA, ESVR, DVMT, and MAVA. All six models corresponded to the relevant communicative barrier.

Although the current study is conceptual, a prototype simulation platform is suggested where AI prototypes could be tested using NLP and voice recognition with dialogue in a simulated patient context. A range of measurement approaches including patient satisfaction, trust, understanding, and physician workload measures

could all be potential variables of interest to provide evaluator effectiveness.

Table 1: Comparison of Current System vs. Proposed System

Feature	Current	Proposed
	System	System
Core	Scheduling	Empathy
Functions	appointments/	centric form of
	reminders,	communicatio
	basic FAQ	n & help with
		memory &
		collaborative
		care
Empathy	Not present	Adaptive
Responses	or very	empathy
	limited	chatbot (AEC)
	(simple	to Examples,
	programmed	dynamic
	responses for	empathy is
	empathy)	provided
Memory	No continuity	Contextual
	(from visit to	memory
	visit)	assistant
		(CMA)
		product is
		working
Collaboration	One way	Collaborative
	communicati	virtual
	on (patient \leftrightarrow	assistant
	system) no	(CVA) Doc-
	doctor	patient-AI
	involved	collaboration
Voice	Basic voice to	Emotional
Recognition	text	sensing voice
		recognition
		(ESVR) +
		DVMT to
		translate
		jargon
Language	Only speaks	Multilingual
Access	in English	Accessibility
		Voice
		Assistant

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 1834

		(MAVA)
		cultural
		awareness
Trust and	Low patient	Greater trust in
Engagement	satisfaction	care, inclusive,
	with care that	equitable
	lacks sense of	
	empathy and	
	context	
Doctor	Did not	Summarizatio
burden	lessen	n, suggestions,
	physician	feedback
	communicati	provided for a
	on burden	new
		sustainable
		physician
		workload

V. EXISTING SYSTEM

Current healthcare communication systems are mainly based on rule-based chatbots, NLP-based chatbots, and chatbot communication systems that have been enhanced with machine learning. Rule-based chatbot systems are completely dependent upon a set of static if—then rules, which means that they cannot respond to queries it has not seen before, and they do not provide the user with empathy or personal interaction. NLP-based chatbots do understand patient input to establish intent, but they cannot understand context, they only have short-term memory of the previous interaction, and they cannot adjust dynamically to the specific patient needs.

Chatbots that use machine learning (ML) can learn from prior interactions, but once again they only provide limited personalization and struggle with patient interactions that are complex. Some cognitive empathy chatbots like the SAGE study (2024) utilize prompt-based NLP, and sentiment analysis, to simulate empathy.

In some cases, they do present incorrect (sometimes referred to as "false empathy") results, and the chatbot does not remember beyond the

short-term interaction. Memory-augmented AI systems use memory-augmented neural networks for memory and/or retrieval-augmented generation (RAG) systems to use past interactions, but they are mired in issues of privacy, memory and reliance of retrieval external sources, along with limited personalization.

Emotion detection avatars like AIVA (2025) use CNN, LSTM, and speech emotion recognition (SER) to detect emotions from patients, but are limited due to latency, privacy, and limited integrations with clinical settings. Basic voice assistants use speech-to text (STT), text-to-speech (TTS) for inputting text based on voice input and reading the text out loud but they aren't able to identify emotional cues, simplify medical terminology, multi-lingual support communication capable and are not collaborating with healthcare providers.

VI. PROPOSED SYSTEM

The healthcare AI system proposed provides a framework for a multimodal, collaborative and empathetic communication system to address the shortcomings of existing AI systems.

The system consists of six models: the Adaptive Empathy Chatbot (AEC), using BERT, GPT, RoBERTa to generate responsive dynamic empathy responses that are context-aware; the Contextual Memory Assistant (CMA), which uses memory-augmented neural networks and retrieval-augmented generation (RAG) to provide a sense of continuity across patient visits; the Cooperative Virtual Assistant (CVA) using multiagent reinforcement learning (MARL) collaborative interaction between the doctor. patient and the AI; the Emotion-Sensitive Voice Recognition (ESVR), which uses CNN, LSTM, and speech emotion recognition (SER) for realdetection of patient emotion engagement; the Dynamic Voice-to-Meaning Translator (DVMT) which employs transformer-based NLP pipeline with speech-to-

text (STT) and text-to-speech (TTS) to explain complicated medical terms; and the Multilingual Accessibility Voice Assistant (MAVA), which uses neural machine translation (NMT) and multilingual BERT (mBERT) for real-time crosslanguage communication.

Collectively, models enhance these understanding, trust and engagement; lessen physician workload by summarization and suggestions; support equitable care across language; opportunity for and create an collaborative, empathetic and contextual communication with patients.

1. Adaptive Empathy Chatbot (AEC)

Emotion Detection: Detect anxiety, indecision or distress in the patient.

Empathy Simulation: Offers supportive language in response to patient mood prior to providing a medical explanation.

Dynamic Tone Adaptation: Adjusts communication style to align with the sense of patient mood.

Progressive Disclosure: Presents troubling/sensitive news in incremental ways and reassures patients.

Impact: Lowers anxiety, increases trust and stimulates meaningful interaction.

2. Contextual Memory Assistant (CMA)

Stable Memory of Current Interaction: Remembers past symptoms, fears and decisions within the on going discussion.

Personalization of Care: Retains the institutional memory of previous fear of concern to inform follow-up conversation and care.

Continuity Across Modes of Communication: Respects communication modes text, voice, video and incorporates them.

Physician's Assistant: CMA can provide a synthesis of patient concerns, worries.

Impact: A consistent communication stream, improved patients care stream.

3. Collaborative Virtual Assistant (CVA)

Live Jargon Simplification: Provides semantic meanings of medical jargon in a coherent way.

Soft Hint: Will let the physician know if the patient appears confused or anxious.

Framing Support: Assists healthcare providers in communicating by prompting the physician with a more precise wording when interacting with a patient.

Shared Decision Support: Can provide visual aids and summaries for discussion and understanding, to enhance the visit.

Training Feedback: Provides the physician with a summary on engagement and communication after the visit.

Impact: A triadic relationship between the physician, the patient, and the AI creates enhanced communication and collaboration.

4. Voice Recognition Technology Models

Emotion-Sensitive Voice Recognition (ESVR): Recognizes vocal intonation and stress and adjusts the response according to the patient's vocal tone.

Dynamic Voice-to-Meaning Translator (DVMT): Will recognize clinical language, so that language is descriptive and person-centered to the patient's dialogue.

Multilingualize Access Voice Assistant (MAVA): Has the capability of providing translation, accessibility features (for hearing impaired), and culturally sensitive interpretation.

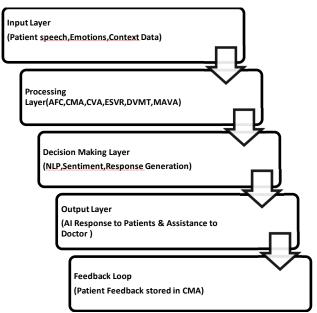
VII. SYSTEM ARCHITECTURE

The architecture of the system is layered to accommodate the integration of multiple AI modules. Voice and sensor approaches are used to process both patient verbal and behavior in the input layer. In the processing layer, patient needs will be interpreted in real time through natural language processing (NLP), sentiment analysis, and memory-based processes. The decision-making layer will use models driven by empathy to respond with appropriate interactions and further enhance with feedback. The output layer

will provide a human-like response to either the clinician or the patient to allow for a more seamless, and subsequently more efficacious, experience.

The multidimensional approach will help to ensure an approach that is flexible, scalable, and adaptable to each healthcare encounter.

Fig 7.1:Architecture diagram



VIII. APPLICAIONS

Conversational AI in healthcare can be harnessed in many ways. For example, it could improve the clinical documentation workflow by using voice, allowing physicians to use verbal notes as a substitute for documented clinical notes in patient records. There are other uses of the technology with patients who, instead of asking the clinician what they meant by specific medical language, can receive real-time clarification of that language to enhance their understanding and adherence.

The technology can certainly have a role in distant care, or telehealth, to enhance access to care. Conversational AI could also help a patient better articulate their symptoms and provide better documentation of their medical history. Finally, conversational AI can be used in chronic disease

management as a reminder system that may improve motivation, and provide reminders with tips to enhance medications or performance, in a chronic management plan.

IX. EVALUATION METRICS

To measure the effectiveness of the system proposed, several evaluations metrics will be included in this method. First, accuracy can be used to see if the system will provide an accurate interpretation of the speech and emotions of the patients; second, response time will be used to assess the ability of the AI to provide users with timely responses with information that was not delayed and allows for no lag during the consultation; and third, an empathy score will be used to assess the model's emotional intelligence to align with the emotional state of the patients based on sentiment alignment between the needs of the patient and what the model said.

User satisfaction surveys will assess the perceived utility and trust of the model. Together these evaluation metrics will provide a well-rounded viewpoint to evaluate/measure the reliability, effectiveness and ethical integrity of the AI-enabled interprofessional communication model.

X. BENEFITS

Conversational AI improves patients' suitability, improves trust, and promotes inclusion for patients with disabilities or who may be low literacy. Additionally, conversational artificial intelligence reduces the burden on the physician, and may enhance continuity of care throughout the health care setting.

XI. ETHICAL AND PRACTICAL CONSIDERATIONS

Using conversational AI for health care also raises ethical and practical considerations that are of substantial value. One risk of anthropomorphizing conversational AI in health care is over-reliance on the technology, meaning, it could displace human rich interactions that are core to the

provision of care. Data privacy is paramount, as patient data must be digitally secured and hosted in platforms that sign confidentiality agreements. There will be risks for bias if, for instance, the system misreads cultural or linguistic signals that may be relevant to the care. The ethical consideration of transparency comes into play when the patient is not privy to the fact they are engaged with clinical AI. Accessibility is also an ethical concern as these systems need to consider equitable democratic decision making in the system design.

XII. FUTURE DIRECTIONS

Future developments in conversational AI trends will develop multimodal avatars that will incorporate facial expressions and gestures to enhance the interaction, and predictive empathy systems, which will anticipate feelings of their patient before providing sensitive information. These technologies will work to enhance timely continuity of care delivery across the hospital, clinic, and home context.

Hybrid human—AI dialogues will be used to assist the doctor input of the conversation with AI instruction for more efficient delivery of health care. Predictive voice analytics will expect to identify early signs of illness by monitoring subtle speech differences.

XIII. CONCLUSION

Communication between doctors and patients is important in successful healthcare but can be hindered by barriers of jargon, anxiety, and interruptions. This paper outlines an integrated framework of conversational agents AEC, CMA, CVA, and VRT models and explores their characteristics of empathy, continuity, understanding, and inclusivity.

These systems are all based on communication theory, and their goal is to supplement patient interaction while never replacing it. While ethical questions remain a consideration, it is hopeful that the opportunities for these types of systems to improve patients' understanding, trust, and efficiency in the health care system is a positive thing. Technologies such as predictive empathy and multimodal avatars will evolve the role of the AI in health care epistemology.

XIV. REFERENCES

- 1. Kocaballi, A. B., and colleagues. (2019). Adapting conversational agents for health care. Journal of Medical Internet Research.
- 2. Bickmore, T. W., and Giorgino, T. (2006). Patient and consumer healthcare dialog systems. Journal of Biomedical Informatics.
- 3. Pereira, J., and Díaz, O. (2019). Health bots and behavioral change. Journal of Medical Systems.
- 4. Laranjo, L., and colleagues. (2018). Conversational agents in health care: a systematic review. American Medical Informatics Association.
- 5. Reddy, S., Fox, J., and Purohit, M. P. (2019). artificial intelligence in health care delivery. Nature Digital Medicine Research.
- 6. Razzaki, S., Baker, A., Perov, Y., Middleton, K., Baxter, J., Mullarkey, D., ... & Wicks, P. (2018).analysis of artificial intelligence and human physicians for clinical consultations. Nature Digital Medicine, 1(1), 113.
- 7. Zhou, L., & Gao, J. (2020). Conversational AI: Dialogue Systems, Conversational Agents, and Chatbots. ACM Computing Surveys (CSUR), 53(6), 1–38.
- 8. Bickmore, T., Trinh, H., Asadi, R., & Olafsson, S. (2018). A patient communication system Developed with an assurance of safety first protocols. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
- 9. Yang, Q., Zimmerman, J., Steinfeld, A., Carey, L., & Antaki, J. (2016). Learning the heart of empathic communication in Artificial Intelligence systems. CHI Conference on Human Factors in Computing System, 3676–3687.

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 1838

- 10. Topol, E. (2019). High performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56.
- 11. Chen, M., Hao, Y., Cai, Y., & Wang, Y. (2020). Artificial intelligence in healthcare: Past, present, and future. IEEE Access, 8, 23391–23406. 12 Miner, A. S., Milstein, A., & Hancock, J. T. (2017). Talking to machines about my personal mental health problems. JAMA, 318(13), 1217–1218.
- 13. Shabbir, J., & Anwer, T. (2018). Artificial intelligence and its future role in the near future. Journal of Latex AI Research, 5(2), 1–11.

ISSN: 2581-7175