RESEARCH ARTICLE OPEN ACCESS

Role of Quantum Computing in Evolution of Edge Computing and Cloud for Remote Area Maintenance and Control

Syed Anwarul Haque*, Saeed M Yami**, Syed Azfarul Haque***

*(Gas Compression Projects Department, Saudi Aramco, Saudi Arabia,

Email: syedanwarulhaque@gmail.com,

** (Gas Compression Projects Department, Saudi Aramco, Saudi Arabia,

Email:sayeed.yami.5@aramco.com)

***(Department of Physics, Jamshedpur Worker's College, Kolhan University, Chaibasa, Jharkhand, India,

Email: azfarulhaque@gmail.com)

_____***************

Abstract:

The use of Edge computing for remote sites for oil and gas industries is increasing day by day. The limitations of Edge and Cloud computing architectures are latency, security concerns, cyber threat, scalability etc. Here on this technical paper, we will discuss about the emerging roles of Quantum Computing in data encryption. Quantum Computing is having unique capabilities, such as superposition, entanglement, and quantum parallelism, edge computing requires high data processing speed and more efficient resource management. This paper will discuss the benefits of integrating quantum computing with edge and cloud infrastructure, in real-time data analytics, providing more secure communication and advance machine learning for Industrial Internet of Things. We will also discuss about technical challenges need to be addressed for successful deployment of Quantum-edge cloud solution. Quantum Edge cloud computing having low latency benefits. The study on this paper covers the synergy between quantum computing, cloud computing and edge computing. The findings on this paper suggests about quantum computing pivotal role in the next generation AI based process control infrastructure and introducing new possibilities in implementation of smarter and secure edge computing system.

Keywords—AI based process control system, Industrial Internet of Things (IIoT), Quantum Computing, Cloud computing, edge computing, data encryption, Distributed Computing, Quantum key distribution, Quantum-Edge Cloud Computing (QECC).

_____****************

I. INTRODUCTION

Nowadays, the biggest trend in innovation, idea making and research is related to edge computing. Edge computing enables computation closer to its point of origin. This approach is reducing the delays and alleviates network congestion. Edge computing has arisen as a viable alternative to tackle these limitations, Traditional cloud computing infrastructures struggling to handle the enormous processing and security requirements of data security. To guarantee the security of the network and all connected resources within the cyber environment, by utilizing intrusion-detection systems, intrusion

prevention system, different kind of firewalls, and antivirus software and cryptography of data, and now quantum computing is developed. Quantum computing is having the ability to perform complex calculations, at an extraordinary speed. Quantum Computing is emerging as a transformative technology that could revolutionize the distributed computing by tackling the problems of traditional data security. The recent development in quantum computing and distributed computing hardware made it possible to implement in real world. This technical paper explores the utilization of edge computing based on deep learning with its data security by distributed and quantum computing. We

will also address the key challenges and future implications.

Distributed Computing:

Distributed computing is a field where computation is happening between distributed systems. The component under distributed system communicates and coordinate their actions by passing massages to each other in order to achieve a common goal. Distributed computing involves network of interconnected computers working to execute large scale computations efficiently. Distributed computing is being used in modern computing, on cloud platforms, big size data analytics and artificial intelligence etc. Advantages of distributed computing are fault tolerance (ability to withstand during individual system failure), parallel processing (dividing tasks among multiple computers for faster execution) and capacity to handle increasing load by adding more I/O points and resources. But even with all these advantages distributed computing system is facing limitations when require large computations required and cryptographic demands for more secure data transmission.

Edge Computing:

Edge Computing is a distributed computing structure where computation, data storage and client data is being processed near to origin of the data. Edge Computing involves running computer programs that deliver quick responses closer to where requests are made. The increase in IoT devices at edge of the network is producing a huge amount of data, storing and using all the data on cloud and servers in data centers pushes high bandwidth requirements. The aim of edge computing is to move the computation away from data centers towards the edge of the network.

Cloud Computing:

Cloud computing provides centralized computational and storage resources that can accommodate the huge amount of data generated by different IoT devices. It allows powerful data processing with centralized and long-term storage. Edge Computing is getting connected with cloud solution for centralized operation and maintenance of remote sites.

Ouantum Computing:

Quantum mechanics provide us information about matters and energy at quantum level. Quantum mechanics describe the probabilistic nature of particles. In quantum mechanics particles can exist in multiple states simultaneously and highlighting the dual nature of matter and energy. Understanding the behavior of particles in quantum level is the basic of quantum computing.

basically performs Ouantum computing calculations in different ways than classical computers. Instead of 0 and 1 it is working on quantum bits (qubits) and multiple qubits enabling complex correlations and computations. Quantum computer solves the problems much faster than classical super computers does. Quantum computing is well suited for tasks such as cryptography (breaking existing encryption, algorithms and developing a new, quantum-resistant ones) and materials science (simulating the behavior of molecules) and optimization (finding the best solution from vast numbers of possibilities). Ouantum computers are still at its early stage of development and facing challenges related to qubit stability, error correcting, scalability.

II- Quantum Computing recent advancements:

Quantum Error Correction: Quantum error check is very crucial area of research aimed at overcoming the fragile nature of qubits. The development of error-correcting codes has made quantum computing more practical for real world.

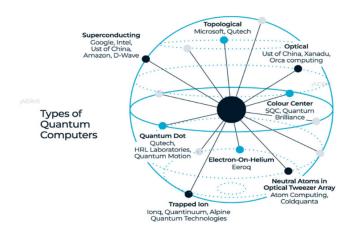


Fig.1: Foundations of quantum computing

Quantum Hardware Innovations: Quantum hardware innovations is ongoing and have significant progress as well. The recent developments are superconducting qubits, trapped ions and topological qubits. These innovations brought quantum computing closer to practical use.

Quantum software and algorithm: Quantum algorithms have been developed to address specific problems in optimization, cryptography, machine learning, and simulation. The algorithms are on their way to solve real world problems and integrate with classical computer system.

The recent development in hardware and software in quantum computing making it more accessible and practical and game changer for IoT devices. Specially in terms of faster processing and data security.

The integration of quantum computing with edge computing can enhance local highspeed computation and unlock new capabilities in terms of data security and encryptions. There some key areas where quantum computing can contribute with Edge computing.

Quantum-Assisted Optimization:

In field of logistic, financial modelling, and AI based Industrial Internet of things still facing issues with classical computation and complexity to solve the issues. Quantum algorithms, like Grover's search and Quantum Optimization Algorithm (QAOA) offer high speed algorithm and database searches. Many optimization problems can be formulated as search problems, where Grover's search method can be formulated. Grover's search is quadratically faster than classical algorithm. It is being used in finding the optimal routes for logistic networks.

Quantum Machine Learning in Edge Computing Environment:

Quantum computing has the ability to accelerate machine learning process and improving its accuracy, edge computing with AI is leading to remote site maintenance. Below are the potential advantages of quantum machine learning over classical approach:

Quantum support vector machines (QSVMs):

QSVMs utilize quantum algorithms to perform classification more efficiently than classical SVMs. Studies showing that QSVMs can achieve quadratic speedup in processing complex datasets.

An easy way to comply with the conference paper formatting requirements is to use this document as a template and simply type your text into it.

In Support Vector Machine algorithm, for classifying the data is done by support points which are closer points of data. There are photographs of the feature spaces below showing that sometimes it is not be possible to classify the data using two or three dimensions, in such cases, it is necessary and

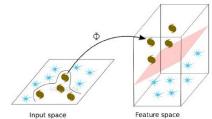


Fig.2: Photograph showing multidimensional spaces can be developed by utilizing QSVM

to separate the data with points representing this space. As we work in multi-dimensional spaces, our computing power starts to be insufficient in classical computers.

Quantum Neural Network (QNNs):

QNNs is utilizing quantum phenomena to enhance artificial neural network architectures to speedup learning and training process. QNNs can be trained on larger datasets to edge computing environment across multiple quantum processors.

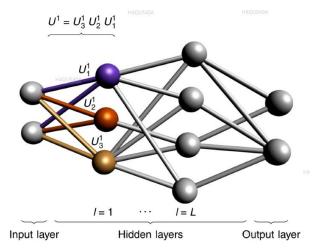


Fig.3: A quantum neural network has an input, output, and L hidden-layers. We apply the perceptron unitary layer wise from top to bottom (indicated with colors for the first layer), first the violet unitary is applied, followed by the orange one, and finally the yellow one.

Quantum Neural network (QNN) comprised of quantum perceptron acting on 4 level qudits that communicate within each layer. QNN is capable of carrying out universal quantum computation. A crucial property of Quantum Neural network (QNN) is that the network output may be expressed as the composition of a sequence of completely positive layer-to-layer transition maps ε^l :

$$\rho^{out} = \varepsilon^{out} \left(\varepsilon^{L} \left(\dots \, \varepsilon^{2} (\varepsilon^{1}(\rho^{in})) \dots \right) \right),$$

Where,

$$\mathcal{E}^{l}\left(X^{l-1}
ight) \equiv \mathrm{tr}_{l-1}\left(\prod_{j=m_{l}}^{1}U_{j}^{l}\left(X^{l-1}\otimes\left|0\cdots0
ight|_{l}^{\mathsf{HAQUSADA}}
ight)\prod_{j=1}^{m_{l}}U_{j}^{l\,\dagger}
ight), U_{j}^{l}$$

is the *j*th perceptron

acting on layers l-1 and l, m_l is the total number of perceptrons acting on layers l-1 and l. This characterization of the output of QNN highlights a key structural characteristic: information propagates from input to output and hence naturally implements a quantum feedforward neural network. This key result is the fundamental basis of quantum analogue of the backpropagation algorithm.

Quantum Principal Component Analysis:

Principal Component Analysis (PCA) is a common and time-consuming unsupervised learning algorithm for machine learning. This method is using orthogonal transformation to transform the observed data represented by linearly dependent variables into

a few data represented by linearly independent variables. The linearly independent variables are being called Principal Components. Quantum Principal Component Analysis algorithm can accelerate the classical approach of principal component analysis. In QPCA parameterized quantum circuits (PQC) usually consists of fixed gates known as controlled NOTs and adjustable gates. PQC formalize the target problem in to parametric optimization problem and uses a hybrid system of quantum and classical hardware to find approximate solutions.

Quantum Resistant Algorithms:

As quantum computing became more power, so they can easily break different kind of encryptions. Edge computing with quantum capabilities will require quantum-resistant algorithms (such lattice-based cryptography) to safeguard end devices and instruments connected with edge computing from future threats. It is mostly requiring for edge computing as they are located in remote and unmanned areas where process data is more vulnerable to hacking.

Quantum-Resistant Homomorphic Encryption (QRHE)

QRHE is showing the progress in cryptographic research providing security solution IoT devices and protecting from continuously changing quantum threats. QRHE is designed to secure information processing by IoT networks. Homographic encryption is the property of performing operations on encrypted data without decrypting it and ensuring that data remains confidential and integral throughout the process life cycle.

Quantum Distributed Deep Learning

Quantum Distributed Deep Learning combines with QDL (Quantum Deep Learning) and provide strengthen data security from external attacks by utilizing secure quantum communication protocols between the server and client.

Quantum Federated Learning

Federated Quantum Machine Learning and Quantum Federated Learning (QFL) utilize Quantum Deep Learning algorithm in federated settings by implementing blind quantum computing to boost the computational efficiency while ensuring data privacy and security. The QFL uses remote servers without exposing the private data of local devices and applying blind quantum computing ensures differential privacy and can defend against external gradient attacks.

Quantum-based Privacy-Preserving Federated Learning (Q-P2FL)

It is a technique to detect adversarial attacks on computing devices. Quantum registration and authentication with Additive Homographic Encryption (AHE) is employed to safeguard privacy on Edge Devices and then imagebased features are extracted from network traffic bytes to generate distinguished datasets and then adversarial examples are generated to assess the robustness of datasets by employing distinct types of adversarial techniques which incorporate perturbations into the input data. The pre-trained Vision Transformer (ViT) extracts features to generate the local model weights. At last, the Q-P2FL approach detects and classifies adversarial attacks, ensuring data security and privacy. This approach is providing 99.38% to 99.41% of detection accuracy. The approach presents the best solution to protect edge devices from adversarial improving privacy-preserving attacks and capabilities.

Anomaly Detection and Predictive Maintenance

Quantum Neural Network (QNN) represents promising applications in IoT pattern recognition, anomaly detection and predictive maintenance by utilizing quantum computing's parallel processing capabilities, can identify complex patterns.

acting on layers l-1 and l, m_l is the total number of perceptrons acting on layers l-1 and l. This characterization of the output of QNN highlights a key structural characteristic: information propagates from input to output and hence naturally implements a quantum feedforward neural network. This key result is the fundamental basis of quantum analogue of the backpropagation algorithm.

III - Table: Comparison of IoT and cloud computing with Quantum Edge Cloud Computing:

Aspect	IoT and Cloud Computing	Quantum Edge Cloud Computing
Data Processing	Data Processing occurs in centralized cloud servers, which may introduce latency.	Data Processing happens at the edge of the network using quantum computing enabling real-time analysis and reduced latency.
Storage	Cloud Computing offers vast storage capabilities accessible over the internet.	Quantum Edge cloud computing provides decentralized storage options, leveraging quantum encryption for enhanced security.
Scalability	Scalability relies on cloud server infrastructure, with potential limitations based on server capacity.	Quantum Edge Cloud Computing allows for greater scalability due to decentralized processing at the edge, enabling more devices to be connected without overwhelming centralized server.
Security	Security measures are implemented at the cloud server level, with data encryption and access controls.	Quantum edge cloud computing enhances security through quantum encryption technique, making data less susceptible to traditional hacking methods.
Latency	Latency may be higher due to transmission to and from centralized cloud server.	Quantum edge cloud computing reduces latency by processing the data at the edge closer to where it is generated.
Bandwidth Consumption	High bandwidth consumption as all data without processing are being send to centralized server for further processing.	Very less bandwidth consumption as processing is happening at edge and only necessary data is being send to centralized server for storage and high-level process requirements.
Energy Efficiency	Energy consumption will be higher for transmitting data to	Quantum edge cloud computing can be more energy efficient

and fr	om	cloud	by processing the
servers	over	the	data locally at the
internet.			edge, reducing the
			need of extensive
			data transmission.

Reference: htttps://arxiv.org/pdf/2405.04824 (2405.04824)

IV Motivation and current trends for remote site monitoring & control:

As number of IIoT devices are increasing day by day at remote sites which require real time data processing with low latency. High computational abilities have been developed to tackle the issues. The Edge computing at remote sites only is not able to tackle the new network, bandwidth and data security requirements mainly the process which require optimization and large-scale data analytics with high security standard. Quantum Computing helps to solve problems by processing vast data in parallel. Combining quantum computing with edge computing increases the calculation power, reduces time to respond and make resource management efficient in process automation network. Quantum Edge Cloud Computing (QECC) bring the computation closer to the source of data origin and enabling secure and efficient data processing even for complex issues. Below are current trends in monitoring remote sites such as wellheads, Gas gathering manifolds and remote headers:

4.1 Edge-Cloud Architecture:

Edge-Cloud architecture is being deployed to monitor and control the remote sites instruments and processing the data. The advantage of Edge-Cloud computing is that large scale data processing in real-time. Edge Computing is doing time sensitive computations at the remote sites and cloud handles more historian task and saving all events on different servers.

- **4.2 Real-Time Processing:** The real-time data processing demand is increasing everyday at Industrial Internet of Things (IIoT) era. Edge computing is now playing a vital role by doing all data processing, computations and decision making as well at remote sites and before further sending the data to cloud.
- **4.3 Cloud-Edge Synergy for Scalability:** Edge Computing is helping for local data processing and computations to reduce latency; cloud computing is for handling large scale datasets.
- **4.4 Data Security and Privacy:** Edge computing is helping to process data locally and mitigating the

concerns for transmitting the sensitive data to cloud far end servers.

4.5 Machine Learning at the Edge: The integration of machine learning at the edge is now allowing the devices to analyze data locally, and make decision in real-time without relying on cloud based central process control. Predictive maintenance, anomaly detection and intelligent automation is making its way for future Process Automation systems.

V- Benefits for considering the integration of Quantum Computing with Edge and Cloud:

Reduced Latency and Real-Time data processing:

Edge Computing has the ability to process the data closer to data origination source and minimizing the delays associated with sending the data to cloud for processing. Integrating quantum computing with edge environment further enhances the capability to process complex and large data computations quickly and in real-time.

Bandwidth Optimization and Data Pre-processing:

IIoT Sensors at edge can generate complex datasets that are impractical to transmit in full. Transmitting raw data from hundreds of IIoT sensors to cloud server consume immense bandwidth. By applying pre-process and data filters locally by small quantum processor can perform initial data analysis and will extract only the most relevant and important data need to be sent to the central cloud server and computer for deeper analysis. This transforms edge into intelligent filter.

Enhanced Security Protocols:

At edge computing concept security is very critical concern, as these are sensitive data and can be vulnerable to cyber threats. Integrating Edge computing with quantum computing offer many benefits to data security and protection from any data kind of intrusions and cyberattacks.

Exponential Speedup for specific and critical algorithms: Instead of direct database search for understanding the edge IIot devices patterns, it accelerates the solution of any problem that involves searching vast solutions space like cracking certain types of encryption keys and optimizing complex problems.

Supercharged Machine Learning: Quantum computing can process the vast, high-dimensional datasets used in Artificial Intelligence (AI) in new ways, such as:

- **Feature Space Mapping:** Quantum circuits can map classical data into a much higher-dimensional "feature space". This can make complex patterns in the data easier for machine learning model to identify and learn.
- Faster Linear Algebra: Many machine learning algorithms (like Support Vector machines and recommender systems) rely on linear algebra operations. Quantum algorithms can perform operations like matrix inversion and Fourier transforms exponentially faster in many cases.

Quantum Key Distribution (QKD)

QKD uses quantum mechanics to securely distribute the encryption keys used to encrypt the data. The key is sent using individual photons (qubits or light) in specific quantum states. The No-Cloning Theorem of quantum mechanics states that an unknown quantum state cannot be copied. Any attempt to a measure quantum state will inevitably disturb it. Therefore, if an eavesdropper tries to intercept the quantum key, it will alter the states of the photons and qubits. The Edge and Cloud can understand this disturbance by comparing the subset of their keys, revealing the presence of eavesdropper. The cloud server or SCADA operator will discard the compromised key and generate a new one.

Quantum data transmission (Quantum Teleportation):

Quantum teleportation is a protocol to transfer the exact quantum state of particles from one location to another, without physically moving the particle itself. This principle works in quantum data transmission specially for long distance networks and also enhancing data processing speed.

Secure Cloud Quantum Computing: The wellhead and remote area data can be securely transmit to cloud and SCADA operator and get an encrypted result to edge server which never be decrypt by tapping it in the middle.

Distributed Quantum Sensing: Linking all IIoT edge devices could create a network with unprecedented accuracy.

Modular Quantum Computing: Connecting smaller quantum processors and its installation before edge computing server and cloud server will create more powerful, fault tolerant virtual quantum data transmissions.

Distributed Quantum Computing and Hybrid Workloads: The edge computing at remote areas can work a node in distributed quantum network. The interconnected quantum processors at various edge computing locations can work together to solve a single and larger problem. Multiple edge nodes with their own quantum processor can collaborate on massive molecular simulation with their computers working in concert as single and more powerful virtual quantum computer.

VI - Contribution:

This technical paper is providing the theoretical aspects of quantum edge cloud computing integration for remote area data processing and its connectivity with main SCADA server and cloud for further processing. This idea will revolutionize the traditional remote sites connectivity to SCADA servers and cloud.

This paper is providing basic concepts of quantum computing, quantum encryption methods, quantum computing integration with deep and neural networks for process data training at edge.

We are also analyzing the practicality of utilizing the idea for remote site monitoring and control without depending on SCADA operators.

This paper is explaining the role of edge computing, cloud computing and quantum computing in Industrial Internet of Things (IIoT) applications and also explaining the difference between these technologies.

Here, we are also investigating the key components of the architecture of quantum, edge and cloud computing and its limitations and challenges.

Finally, this research will revolutionize the process data transmission in future and will and will open the doors for researchers to analyze and commercialize the idea for its implementation in Oil and Gas companies.

VII - Framework

Synergistic Intelligence Loop:

The integration of Edge computing, Quantum computing and Cloud computing creates a continuous cycle of intelligence:

Edge Computing: Deep Learning modules run inference on real-time sensor data (e.g. flame detector, valves, strain gauges, smoke detectors). They act locally and filter massive data streams.

Quantum Computing (Accelerated Insight): Acts as a co-processor for specific, complex tasks that bottleneck classical Deep Learning, such as optimizing neural network architectures, generating complex synthetic data or solving core mathematical problems within machine learning algorithms.

Key Integration Patterns:

Quantum as a Service (QAAS) with Edge Preprocessing: Implementation steps:

Step-1: Edge devices collect and filter raw data.

Step-2: Cloud arranges workflow and prepares problem for quantum processing.

Step-3: Quantum Computer solves specific interactable sub-problems.

Step-4: Results flow back through cloud to edge for execution

API gateways required between cloud and quantum processors and Edge data compression and feature extraction capabilities required edge side.

Federated Quantum-Edge Learning: Implementation steps:

Step-1: Multiple Edge nodes train local models on their data.

Step-2: Cloud aggregates model updates using quantum-enhanced federated learning.

Step-3: Quantum processor optimizes global model parameters.

Step-4: Improved models deployed back to edge devices.

To implement this model secure multi-party computation and quantum machine learning frameworks is required.

Hierarchy of Quantum Computing model:

Step-1: Physical layer is collecting input data from all remote site IoT sensors such as Flame detector, smoke detector, different kind of valves and other measuring devices feeding the data through smart PLCs to Quantum Neural network at Edge computing.

Step-2: The data from IoT sensors of remote areas are first being processed and encrypted by quantum layer computing then being fed to Edge computing for further process, encryption and then being decrypted by edge and getting stored at remote edge server. Quantum Neural network processor track the patterns of each data filtering the major changes in process and evaluating all process data.

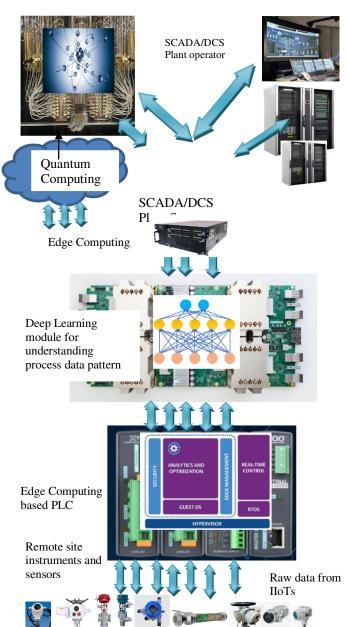


Fig.3: Representation of the idea of Edge- Cloud Quantum computing for IIoT Sensors connectivity for Oil and Gas Companies.

Step -3: The Deep Learning module will be integrated with Quantum Processor which is further connected with smart PLC and will learn the data patterns. Edge Computing system can give commands for monitoring, control, preventive maintenance and proactively shutdown any IoT device before complete failure to avoid major shutdown of the site.

Step-4: The processed data at Edge Computing will store the required data at Edge Server for any network disconnections and will provide completely independent control of remote site and will avoid any shutdown.

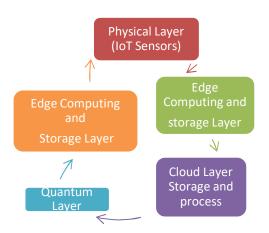


Fig. 5: Hierarchical model showing integration of Quantum Computing with Edge Computing system and Cloud.

Step-5: The quantum processor once again will filter and encrypt the data for long distance transmission to SCADA operator and to cloud server. By filtering the data before transmission can optimize and reduce the bandwidth requirements.

Step-6: The filtered data will reach to SCADA operator and historian server and cloud for further process.

Step-7: The cloud server will also have a quantum layer before sending the data to remote edge computing system in order to filter the required data need to be send as well for encryption to avoid any intrusion or cyber-attacks.

Step-8: Edge Computing system will receive the input data instructions from SCADA operator and its

deep learning module will train itself for future and will utilize the fed data for proactive maintenance and control.

Step-9: All Edge computing systems will work as a node with quantum processors to develop a quantum neural network and will communicate with each other to solve critical problems.

Step-10: Quantum processors will get connected with Edge IoT devices for further data monitoring, control.

Workflow and Problem solving:

Segmentation: First a problem is being submitted by the user (e.g optimizing a logistics network, simulating a new molecule) to the cloud platform. The system first identifies if the problem contains a sub-problem that is quantum -suited.

Post- Processing: The cloud handles all classical parts. It prepares the data, encodes the quantum suitable sub-problem into a format the quantum computer understands (eg. A quantum circuit, QUBO model) and decides on the best quantum backend to use.

Quantum task submission: The cloud platform sends the prepared quantum task to a quantum processing unit (QPU) or quantum simulator.

Execution and Result Retrieval: The QPU executes the job (often multiple times, "shots"). The raw results (e.g., a set of bit-strings) are sent back to the cloud.

Result Interpretation and Integration: The cloud post-processes the quantum results, translating them back into classical answer. The answer is then integrated with results from classical computation to form a complete solution.

Edge Action: The final solution is pushed back to the edge IIoTs.

Technology Required

Cloud layer:

- (a) **Hybrid Quantum Cloud:** Hybrid Quantum cloud platforms like Microsoft Azure Quantum, Google Quantum AI engine etc. are nervous system, providing access to QPU.
- (b) **Containerization:** Kubernetes and Docker to manage complex hybrid workflows, packaging different parts of the computation, quantum jobs, classical post processing into portable containers.
- (c) **HPC & GPUs:** Required for running high fidelity quantum simulations and handling intensive pre/post-processing tasks.
- (d) **API Gateways & Middleware:** To manage communication between cloud and quantum backends and edge gateways securely and efficiently.

Quantum Layer

- (a) **Quantum Processing Unit (QPU):** The physical hardware from vendors like IBM, Rigetti, IonQ and D-Wave. Different QPU technologies (superconducting, trapped-ion, etc.) are chosen based on the problem and process data type.
- (b) **Quantum Simulators:** Software running on classical HPC that mimics a quantum computer. Essential for algorithm development, testing and debugging without using expensive QPU time.

(c) Quantum SDKs & Libraries:

- Qiskit (IBM)
- Cirq (Google)
- PennyLane (Xanadu) Agnostically works with multiple hardware backends.
- Azure Quantum SDK (Microsoft)

These are used to construct and optimize quantum circuits within cloud environment

Edge Layer:

- (a) **Edge Gateways:** Devices with more processing power than simple sensor (e.g. NVIDIA Jetson, Intel Movidius) that can run Deep Learning modules for data filtration, optimization and compression.
- (b) Lightweight Deep Machine Learning Models: TinyML models can be deployed at edge devices for tasks like anomaly detection, which can trigger a more complex quantum hybrid analysis in cloud.
- (c) MQTT and CoAP for efficient, low-power communication between edge devices and cloud gateway.
- (d) **IoT Devices Profiling:** IoT devices (sensors, valves, strain gauges, downhole monitoring system, gateways, edge nodes) are profiled at edge layer for their computational, memory, Machine Learning and energy budgets, which includes:
 - Encryption/decryption latency
 - Energy consumption by cryptographic operation
 - Memory footprints for key storage and protocol execution.

Infrastructure Requirement

(a) Network Infrastructure:

- High Speed, Low latency, Edge-Cloud links: Gigabit Ethernet FOC links are crucial for rapidly sending pre-processed data from the edge to the cloud and receiving instructions back.
- High-Bandwidth Cloud-Quantum Links: Data centers hosting QPUs and need ultrareliable, high-bandwidth connections to the major cloud providers to facilitate swift transfer of quantum circuit and results.

(b) Security & Access Control

- Zero-Trust Architecture: Assume no entity
 is trusted by default. Every request from the
 edge to the cloud and from the cloud to the
 quantum backend must be authenticated and
 authorized.
- Quantum-Safe Cryptography: As quantum computers will eventually break current RSA/ECC encryption, the infrastructure must be prepared to integrate post quantum cryptography (PQC) algorithms to protect data in transit and at rest.
- API Security: Robust key management and API gateway security to prevent unauthorized access to costly quantum resources.

(c) Software & Platform Infrastructure

- Unified Developer Platform: A single pane of glass for developers to build, test and depoy hybrid quantum-classical applications without managing the underlying complexity. This is what AWS braket and Aure Quantum aim to provide.
- **Hybrid Job Scheduler:** Advanced schedulers that can manage queues for both classical and quantum resources optimizing for cost and QPU availability.
- Data Lakes & Management: Scalable storage (Like AWS S3, Azure Data Lakes) to hold the massive datasets generated at the edge that may be used for training or analysis in quantum algorithms.

VIII - Challenges

Quantum Edge Cloud Computing offers an approach to address future large scale computational demands for IoT connected networks. There are many obstacles and challenges need to overcome before it gets fully implemented in mainstream IoT networking. The limitations and challenges are

related to hardware limitations, security sensitivities, integration complexities and high architecture costs. Below are some major challenges in integration of Quantum Edge and Cloud Computing:

Fragile Qubits: Quantum Qubits are extremely fragile, reactive and extrinsic turmoil which make them un reliable and prone to errors for prolonged computations. Qubits are sensitive to environmental factors like temperature fluctuations, electromagnetic interference etc.

Excessive Energy requirement by Quantum Computers: Quantum computers have excessive energy requirements. They are demanding high power cooling system at very low temperature which require large scale arrangements and which is very costly too.

Quantum qubits struggle to maintain their state for long time: Qubits can not maintain the same state for long time, this leads to high error rate in calculations and disturb data processing.

Fracture classical encryption model: Quantum cryptography offers stronger security but the ability of quantum systems to fracture classical encryption and offers serious risks to existing IoT security models.

Computation Errors: Conventional quantum processors exhibit continual computation errors which necessitates sophisticated error correction techniques and require additional resources.

The Integration Puzzle: A major hurdle is the fundamental mismatch between the components. Powerful centralized quantum computer must work with distributed edge devices that have limited processing power. Edge devices may struggle to handle the pre-processing for quantum tasks or execution of quantum level outputs. Developing efficient software, algorithms and interfaces that allow this disparate system to communicate and function seamlessly is an ongoing effort.

A double-edged sword for security: The distributed nature of edge computing expands the

potential attack surface for cyber threats. Quantum computers themselves pose a future risk to widely used classical encryption methods. This creates an urgent need to develop and deploy quantum-resistant cryptographic techniques to protect data in this new integrated framework.

High cost: Building and maintaining quantum computing infrastructure is currently prohibitively expensive for most of the organizations. There is severe shortage of professionals with expertise in both quantum mechanics and distributed systems engineering, making it difficult to develop and manage these complex integrations.

IX - Recommendations

Based on findings and by literature reviews, the below recommendations and future research direction can be proposed:

Optimization of Quantum-Edge- Cloud Computing for HoTs: The traditional data processing is facing many critical issues in data transmission, data processing, training for patterns learning and high error rate in computational decision makings.

Advancement in Qubit design: Advancement in Qubit design is necessary to improve stability, enhance computational accuracy and minimize errors. The research is unfolding topological qubits, superconducting qubits and alternate material to make quantum qubits much more reliable and practical for future IoT networking and connectivity.

Developing efficient hybrid architectures: The core challenge is to develop that glue which can hold quantum, edge and cloud computing together.

- Intelligent Workload orchestration: Future systems need to automatically decide which parts of the problem are best to be solved sequentially by quantum processor, classical cloud server and edge computing.
- **Building a strategic roadmap:** We need to define a clear plan with triggers that signal

when to act. This should involve training and educating the workforce and technical team on quantum computing's potential and limitations to manage risks and define the right strategy for bringing talent and related partners.

- Develop talent and partnerships: Oil and Gas Companies should focus on upskilling internal talent and establishing relationships with third party quantum tech providers and cloud platforms (e.g. Amazon Braket, IBM Quantum, Microsoft Azure Quantum etc. to gain experience and codevelop targeted solutions.
- Proof-Of-Concept Projects: initiate small-scale projects to experiment with quantum algorithms available through cloud services. Early learnings can provide strategic guidance for future scaling and commercialization, positioning Organizations as early mover.

X - Future Research Directions:

After reviewing lots of research papers on Quantum-edge- cloud computing integration, we feel below fields require major research in future to establish and implement the idea of integrating Quantum computing with edge and cloud computing. Below are major areas of research requirements:

- Error Correction and Hardware Stability:
 Developing robust quantum error Correction
 architectures; improving qubit coherence
 times, suppressing environmental noise,
 creating stable hardware for edge and IoT
 sensor environment.
- Quantum-Resistant Security: Developing and implementing Post-Quantum Cryptography (PQC) algorithms; building quantum key distribution (QKD) networks; achieving crypto-agility to protect against "harvest now, decrypt later" attacks.

- Hybrid Algorithm & Software Development: Optimizing Quantum algorithms (like VQE and AQOA) for resource constrained edge devices; creating efficient hybrid quantum-classical workflows and software development kits (SDKs).
- System Architecture & Orchestration:
 Designing intelligent workload distribution
 systems; developing low latency
 communication protocols; creating efficient
 resource management across the quantumedge-cloud continuum.
- Accessibility & Hardware Access:
 Democratizing access via cloud-based quantum processing Units (QPUs); developing cost-effective hardware access models; building a skilled talent pool through education and tools.
- Conquering Quantum Errors: Future research must address on advance error correction codes and hardware-level error suppression techniques. Many companies are progressing in this area such as Google's work on its Willow chip and start-ups like Alice & Bob developing new architectures is critical in achieving stability needed for reliable deployment within broader computing infrastructures. This is the foundational step in utilizing quantum computing for IoTs edge connectivity.
- Building a Quantum-Safe Future: The power of quantum computers has a future threat to current public key encryption. Research is urgently needed to standardize and implement post quantum cryptography (PQC). Quantum Key Distribution (QKD) network is major research direction which includes developing hardware like quantum repeaters for long distance communication.

XI - Conclusion

This research investigates quantum computing technologies and their integration with edge computing and cloud computing network. This paper is evaluating the resource requirements such as infrastructure, cost, methodology and technology requirement to implement it in Oil and Gas Companies for remote area monitoring and control as well as for process data processing and troubleshooting of process data and network errors. In this paper, we tried to put some lights on making remote areas independent from plant SCADA system in order for self-data processing, filtering and optimizing to send it in small bandwidth to cloud. Quantum computing involvement will play major part in artificial intelligence and machine learning for edge through cloud to train for proactive fault finding and informing the operator ahead of time for faults and changing of hardware to have continuous production. By filtering and optimizing the process data will make it easy to transmit it to long distance in real-time. Edge server can store the process data and will support the remote sites during any Fiber cut. During any fiber cut edge computing will continue data processing and will not affect in productions. After retrieval the connectivity edge can send the required filtered data to SACADA operator for saving it on historian server. In conclusion, this research highlights the transformative potential of quantum computing within edge-cloud computing and establishing the future research basis.

Quantum computing is an emerging revolutionary technology having potential completely transform present data infrastructure of industries. When it will combine with other technologies like Big Data, Edge Computing, Cloud Computing, Deep Learning, Industrial Internet of Things (IIoTs) it opens up new opportunities in business. As quantum computing can resolve complex problems efficiently and rapidly it can be utilized in deep neural machine learning to have accurate decisions. Combining IIOTs with quantum computing can enhance the security and reliability of networks, connected object since quantum cryptography protocols offer more robust mechanism in reducing the cyber-attacks.

At the end of this research paper, we are able to conclude that quantum computing is representing the future of big data processing, cloud computing advancement, Deep learning future analysis for best decision makings and opening new perspective for companies in data analysis, Data security, process optimization and decision making. Organizations investing in quantum computing can benefit from a significant competitive advantage and position themselves at the forefront of in the industrial innovation in the next industrial revolution.

REFERENCES

- [1] Mohammad Ikbal Hossain, Shaharier Arafat Sumon, Habib Md. Hasan, Fatema Akter, Md Bahauddin Badhon, Mohammad Nahid Ul Islam, from Emporia State University, US, "Quantum-Edge Cloud Computing: A Future Paradigm for IoT Applications" published by Cornell University, arxiv.org on August 23, 2025.
- [2] Andreas Andreou (Member, IEEE) Department of Computer Science, University of Nicosia, 2417, Nicosia, Cyprus, Constaninos (Senior Member, IEEE), Mavromoustakis Department of Electrical and Computer Engineering, Mediterranean Hellenic University, Heraklion, 71410 Crete, Greece, Evangelos K. Markakis (Member, IEEE), 3Department of Business Administration and Tourism, Hellenic Mediterranean University, Heraklion, 714 10 Crete, Greece Athina Bourdena (Member, IEEE), and George Mastorakis (Member, IEEE), Department of Management Science and Technology, Hellenic Mediterranean University, Agios Nikolaos, 721 Greece Corresponding author: 00 Crete, Andreas Andreou (andreou.andreas@unic.ac.cy), "Sustainable AI With Quantum-Inspired Optimization: Enabling Automation End-to-End inCloud-Edge Computing" The associate editor coordinating the review of this manuscript and approving it for publication was Zhiwu Li, published on IEEE Access Received 7 February 2025, accepted 18 March 2025, date of publication 24

- March 2025, date of current version 2 April 2025. Digital Object Identifier 10.1109/ACCESS.2025.3554024.
- [3] Philip Thomas, "Post-Quantum Cryptographic Protocols for IoT-Cloud Integration: Ensuring Long-Term Security Against Quantum Adversaries" published on Research Gate Journal on August 1, 2025.
- [4] Anand Singh Rajawat, S. B. Goyal, Sandeep Kautish, Ruchi Mittal, "Quantum cloud computing: Integrating quantum algorithms for enhanced scalability and performance in cloud architectures" published in 2024 on book 'Applied Data Science and Smart Systems' from Chitkara University.
- [5] Abhijeet Mahapatra, Rosy Pradhan, Santosh Kumar Majhi, Kaushik Mishra, "Quantum ML-Based Cooperative Task Orchestration in Dew-Assisted IoT Framework" published on 8 May 2024 / Accepted: 29 September 2024 © King Fahd University of Petroleum & Minerals 2024, Arabian Journal for Science and Engineering https://doi.org/10.1007/s13369-024-09661-8.
- [6] Michail Alexandros Kourtisb Nikolay Tcholtcheva, *, Ilie-Daniel Gheorghe-Popa , Colin Kai-Uwe Beckera, Georgios Xylourisb, Evangelos Markakisc, Matic Petrica, Raphael Seidela and Sebastian Bock, Fraunhofer Institute for Open Communication Systems (FOKUS), Berlin, Germany b National Center of Scientific Research "Demokritos", Athens, Greece c Department of Electrical and Computer Engineering, Hellenic Mediterranean Heraklion, University, Greece. "Towards Continuous **Development Ouantum** for Programming in Decentralized IoTenvironments" published on ScienceDirect Available online at www.sciencedirect.com, Procedia Computer Science 238 (2024) 7-14, The 15th International Conference on Ambient Systems, Networks and Technologies (ANT) April 23-25, 2024, Hasselt, Belgium.
- [7] Zhe Liu, Kim-Kwang Raymond Choo, and Johann Großschädl, "Securing Edge Devices in

- the Post-Quantum Internet of Things Using Lattice-Based Cryptography" published on IEEE Communications Magazine, February 2018.
- [8] Alireza Furutanpey, Johanna Barzen, Marvin Bechtold, Schahram Dustdar, Frank Leymann, Philipp Raith, Felix Truger, Distributed Systems Group, TU Vienna first.last@dsg.tuwien.ac.in .at Institute of Architecture of Application Systems, University of Stuttgart first.last@iaas.uni-stuttgart.de , Corresponding Author, "Architectural Vision for Quantum Computing in the Edge-Cloud Continuum" published on arXiv:2305.05238v1 [quant-ph] 9 May 2023.
- [9] Tanveer Ahmad, Shakir Khan, Nahida Nigar, Essam Mohamed Obaid, Sameena Naaz, "Ouantum Reservoir-Based Intrusion Detection for Edge-IoT Systems" This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and content may change prior to final publication. information: Citation DOI 10.1109/TCE.2025.3618827, Journal of LATEX class Files, VOL. 14, NO. 8, AUGUST 2021.
- [10] Mritunjay Shall Peelam, Anjaney Asreet Rout, Vinay Chamola, Department of Electrical and Electronics Engineering, BITS Pilani, Pilani, India Correspondence Vinav Chamola. Department of Electrical and Electronics Engineering, BITS Pilani, Old Workshop, Near FD-1, Pilani Town, Rajasthan 333031, India. Email: vinay.chamola@pilani.bits-pilani.ac.in "Quantum computing applications for Internet of Things" published on IET Ouantum Communication, **IET** The institute ofEngineering & Technology, Willey.
- [11] Guoxing Yao, Department of Computer Sicnece University of Missouri – St Louis St Louis 63112, USA gym8g@umsl.edu, Navneet Kaur, Department of Computer Sicnece University of Missouri – St Louis St Louis 63112, USA

- nk62v@umsl.edu, Lav Gupta, Department of Computer Sicnece University of Missouri – St Louis St Louis 63112, USA lavgupta@umsl.edu, "A Latency Score based Benchmarking Framework integrating Quantum Computing in Edge-Cloud Environments" published on IEEE 15th Annual Information Technology, Electronics and Mobile Communication 979-8-3315-1984-Conference (IEMCON). 1/24/\$31.00 IEEE. DOI: ©2024 10.1109/IEMCON62851.2024.11093551.
- [12] Ahmed Hassam, Department of industrial engineering/MELT Loboratory, faculty of technology, University of Tlemcen, Algeria ahmed.hassam@univ-tlemcen.dz, "Quantum Computing: A New Era for Big Data, Cloud Computing, AI, and IIoT in Industry 4.0" published by All Sciences Academy, ICTAR, on 4 th International Conference on Trends in Advanced Research July 04-05, 2025: Konya, Turkey,

 Turkey,

 https://as-proceeding.com/index.php/ictar/home.
- [13] Shahanaz Akter, Department of Accounting and Finance, Southern Utah University, Cedar City, USA, shahnazakter@suu.edu, Md. Khairul Islam Bhuiyan, Inventive Apps Ltd., New York, USA Md. Bahauddin Badhon, mbadhon@g.emporia.edu Habib Md. Hasan, Fatema Akter, School of Business and Technology, Emporia State University, Emporia, US Mohammad Nahid Ul Islam, "Quantum-Edge Cloud Computing for IoT: Bridging the Gap between Cloud, Edge, and Quantum Technologies" How to cite this paper: Akter, S., Bhuiyan, M.K.I., Badhon, M.B., Hasan, H.M., Akter, F. and Islam, M.N.U. (2024) Quantum-Edge Cloud Computing for IoT: Bridging the Gap between Cloud, Edge, and Quantum Technologies. Advances in Internet of Things, 14. 99-120. https://doi.org/10.4236/ait.2024.144006

Received: September 23, 2024 Accepted: October 27, 2024 Published: October 30, 2024, Scientific Research Publishing.

- [14] Konstantinos Rallis, National Centre for Scientific Research "Demokritos", Greece and Democritus University of Thrace, Greece, Ioannis Liliopoulos, National Centre for Scientific Research "Demokritos", Greece and Democritus University of Thrace, Greece Georgios D. Varsamis, National Centre for Scientific Research "Demokritos", Greece and Democritus University of Thrace, Greece Evangelos Tsipas, National Centre for Scientific Research "Demokritos", Greece Democritus University of Thrace, Greece Ioannis G. Karafyllidis, Democritus University of Thrace, Greece, Georgios Ch. Sirakoulis, Democritus University of Thrace, Greece Panagiotis Dimitrakis, National Centre for Scientific Research "Demokritos", Greece "Interfacing Quantum Computing Systems with High-Performance Computing Systems: An overview" [2509.06205v1] Interfacing Quantum Computing Systems with High-Performance Computing Systems: Overview, Cornell University.
- [15] Jing Liu ID, Member, IEEE, Yao Du ID, Graduate Student Member, IEEE, Kun Yang ID, Jiaqi Wu ID, Yan Wang ID, Xiping Hu ID, Senior Member, IEEE, Zehua Wang ID, Member, IEEE, Yang Liu ID, Member, IEEE, Peng Sun ID, Senior Member, IEEE, Azzedine Boukerche ID, Fellow, IEEE, Victor C.M. Leung ID, Life Fellow, IEEE, "Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey" https://arxiv.org/abs/2505.01821v4.
- [16] Enrique Moguel, Javier Rojo1, David Valencia1, Javier Berrocal, Jose Garcia-Alonso1, Juan M. Murillo "Quantum service-oriented computing: current landscape and challenges" Accepted: 20 March 2022 / Published online: 25 April 2022, Software Quality Journal (2022) 30:983–1002 https://doi.org/10.1007/s11219-022-09589-y.
- [17] Engin Zeydan, (Senior Member, IEEE), Jorge Baranda, (Senior Member, IEEE), and Josep Mangues-Bafalluy Centre Tecnològic de

- Telecomunicacions de Catalunya, Castelldefels, 08860 Barcelona, Spain Corresponding author: Engin Zeydan (engin.zeydan@cttc.cat), "Post-Quantum Blockchain-Based Secure Service Orchestration in Multi-Cloud Networks" Received 24 November 2022, accepted 9 December 2022, date of publication 12 December 2022, date of current version 16 December 2022. Digital Object Identifier 10.1109/ACCESS.2022.3228823, IEEE Access.
- [18] Sarthika Dutt, Vansh, Garima Pahwa, Aishvi Guleria, Kamya Varshney & Deeksha Joshi "Sustainable Solutions for Serverless Edge, Fog, and Cloud Computing using Quantum and Blockchain technology", published on 28th July 2024, Sustainable Solutions for Serverless Edge, Fog, and Cloud Computing Using Quantum and Blockchain Technology | SpringerLink.
- [19] Maycon Leone M. Peixoto Department of Computer Science Institute of Computing Federal University of Bahia (UFBA), Salvador, Brazil, maycon.leone@ufba.br "Quantum Edge Computing for Data Analysis in connected Autonomous Vehicle". 2024 IEEE Symposium on Computers and Communications (ISCC) | 979-8-3503-5423-2/24/\$31.00 ©2024 IEEE | DOI: 10.1109/ISCC61673.2024.1073368.
- [20] Engin Zeydan, Josep Mangues-Bafalluy, Yekta Turk, Abdullah Aydeger V, Madhusanka Liyanage Centre Tecnològic Telecomunicacions de Catalunya (CTTC), Spain Aselsan Corp., Turkey, V Florida Institute of Technology, University College Dublin, Ireland. {engin.zeydan, Email: josep.mangues}@cttc.cat yektaturk@aselsan.com ; aaydeger@fit.edu , madhusanka@ucd.ie, "Quantum Orchestrator Design for Service Management in Edge-Cloud Continuum" 2025 **IEEE** International Mediterranean Conference on Communications and Networking (MeditCom) | 979-8-3315-2965-9/25/\$31.00 ©2025 IEEE | DOI: 10.1109/MEDITCOM64437.2025.1110433. International Mediterranean 2025 **IEEE**

- Conference on Communications and Networking (MeditCom).
- [21] Qingcheng Zhu, Graduate Student Member, IEEE, Xiaosong Yu, Member, IEEE, Yongli Zhao, Senior Member, IEEE, Avishek Nag, Senior Member, IEEE, and Jie Zhang, "Resource Allocation in Quantum-Key-Distribution-Secured Datacenter Networks with Cloud-Edge Collaboration" IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 12, 15 JUNE 2023.
- [22] Harshad Pitkar Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, **USA** IN Harshad.Pitkar@outlook.com "Exploring Quantum Processors in Decentralized Edge Computing for improved Data Processing", published on Proceedings of the International Conference on Machine Learning Autonomous Systems (ICMLAS-2025) IEEE Xplore Part Number: CFP258A9-ART; ISBN: 979-8-3315-0574-5. International 2025 Conference Machine Learning on and Autonomous Systems (ICMLAS) | 979-8-3315-0574-5/25/\$31.00 ©2025 IEEE | DOI: 10.1109/ICMLAS64557.2025.1096815.
- [23] Kranthi Kumar Singamaneni, (Member, IEEE) 1Department of Computer Engineering and Technology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India, Ghulam Muhammad. (Senior Member. IEEE). Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia, and Zulfigar Ali, School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ Colchester, U.K. Corresponding Muhammad author: Ghulam (ghulam@ksu.edu.sa) " A Novel Quantum Hash-Based Attribute-Based Encryption ApproaCH for Secure Data Integrity and Access Control in Mobile Edge Computing-Enabled Customer Behaviour Analysis", published on 28 January 2024, accepted 25 February 2024, date of publication 4 March 2024, date of current

- version 14 March 2024. Digital Object Identifier 10.1109/ACCESS.2024.3373648, IEEE Access.
- [24] "Quantum Cloud Computing: Redefining the Future of Digital Infrastructure". Published on www.novasarc.com, October 6, 2025.
- [25] Alireza Furtanpey, Johanna Brazen, Marvin Bechtold, Scharam Dustdar, Frank Leymann, Philipp Raith, Felix Truger, "Architectural Vision for Quantum Cimputing in Edge-Cloud Continuum" published on www.arxiv.org, arXiv:2305.05238, https://doi.org/10.1109/QSW59989.2023.0002.
- [26] "Cloud-Based Quantum Computing: How it works?", published on 21.02.2025 www.spinquanta.com.
- [27] "Quantum Computing Companies In 2025: Mapping The Global Quantum Landscape", published on October 17, 2025, www.thequantuminsider.com.
- [28] "Edge Computing and Hybrid Cloud: Scaling AI within manufacturing", published on www.ibm.com.
- [29] "Quantum AI vs. Edge Cloud AI: Which one Wins in 2025?", published on May 8, 2025 www.medium.com Servifyspheresolutions.
- [30] "What is Hybrid Quantum Computing", published on August 8, 2024, www.learn.microsoft.com.
- [31] "How Quantum Computing will Transform Cloud Security", published on September 25, 2025 www.ekascloud.com.