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Abstract: 
            The increasing penetration of distributed generation (DG) in modern distribution networks has 

improved reliability and efficiency but introduced new challenges to power quality. One of the most critical 

concerns is the presence of harmonics generated by nonlinear loads and inverter-based DGs. This paper 

investigates harmonic behavior in hybrid distribution networks under both normal and varying operating 

conditions. Simulation studies are conducted in MATLAB/Simulink on a photovoltaic–wind integrated 

distribution system. The study highlights the limitations of traditional harmonic detection methods, 

particularly in distinguishing between power quality disturbances and unintentional islanding events. A 

wavelet transform–artificial neural network (WT–ANN) framework is proposed for robust detection and 

classification. Results indicate that the proposed method provides enhanced accuracy and reliability in 

harmonic identification compared with conventional techniques. The findings suggest that advanced data-

driven models can significantly improve grid stability and monitoring in DG-integrated systems. 
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I.     INTRODUCTION 

The conventional electric power grid has historically 

relied on a centralized generation model, in which large-

scale power plants produce electricity and transmit it over 
long distances before it is finally distributed to consumers. 

This architecture has been effective for decades, but 

growing energy demand, environmental concerns, and 
the limitations of aging infrastructure are driving a 

transition toward more decentralized and sustainable 

systems. Traditional centralized grids suffer from several 
shortcomings, including transmission congestion, high 

system losses, vulnerability to large-scale outages, and 

dependence on fossil fuels that contribute to greenhouse 

gas emissions and environmental degradation. 
In response to these challenges, Distributed Generation 

(DG) has emerged as a transformative solution. DG refers 

to the deployment of relatively small, modular power 
sources—such as photovoltaic (PV) panels, wind turbines, 

fuel cells, and microturbines—directly within distribution 

networks or near load centers. By generating electricity 
closer to the point of consumption, DG helps reduce line 

losses, improve voltage stability, and enhance supply 

reliability. Furthermore, the growing penetration of 
renewable DG units supports international goals of 

decarbonization and sustainable development. The 

integration of DG also enables more flexible and resilient 
operation of the grid, particularly under conditions of 

variable demand and unforeseen contingencies. 

Despite its advantages, DG integration introduces new 

technical complexities that were not anticipated in the 
design of conventional radial distribution systems. These 

systems were originally engineered to accommodate 

unidirectional power flow—from transmission 
substations to end users—whereas DG creates 

bidirectional flows and alters short-circuit levels. Among 

the most pressing technical concerns are: 

Voltage regulation issues, as local generation can cause 
fluctuations that traditional control equipment may not 

adequately address. 
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Protection coordination challenges, since distributed 
sources may contribute fault currents that disrupt the 

selectivity of relays and fuses. 

Power quality problems, particularly the introduction of 
harmonic distortion due to nonlinear loads and inverter-

based DG interfaces. 

Unintentional islanding, where a portion of the grid 
remains energized by DG even after being disconnected 

from the main supply, potentially endangering equipment 

and personnel. 

Of these, harmonics and islanding demand particular 
attention. Harmonic distortion refers to waveform 

deviations caused primarily by the switching actions of 

power electronic converters used in renewable energy 
systems. Elevated harmonic levels degrade system 

performance, increase heating losses in transformers and 

motors, and may lead to malfunctioning of sensitive 
equipment. On the other hand, islanding events pose both 

operational and safety hazards, as the isolated system may 

operate at unstable voltage or frequency without proper 

synchronization with the main grid. 
The need for robust harmonic analysis and effective 

islanding detection has therefore become critical in the 

modern grid environment. While conventional techniques 
such as Total Harmonic Distortion (THD) measurement 

provide some insight, they often fall short in 

distinguishing between normal disturbances and true 

islanding scenarios. Advanced signal processing tools, 
particularly wavelet transform (WT), combined with 

intelligent classifiers like artificial neural networks 

(ANNs), present a promising pathway for addressing 
these limitations. 

This paper focuses on the analysis of harmonics in DG-

integrated distribution systems under both normal and 
varying operating conditions. A hybrid PV–wind model 

is simulated to examine harmonic behavior across 

different scenarios, including islanding, fault conditions, 

and nonlinear load switching. The study highlights the 
shortcomings of threshold-based THD detection and 

demonstrates the potential of a WT–ANN framework for 

accurate classification of events. The outcomes of this 
work contribute toward more reliable monitoring, 

protection, and control strategies for smart distribution 

networks with high renewable penetration. 

 
Figure 1: Block Diagram of proposed work 

II. LITERATURE REVIEW 

The integration of distributed generation (DG) into 

distribution systems has been widely studied due to its 

potential to reshape the operation of modern power 
networks. A central challenge in DG integration is 

islanding detection, which ensures that distributed 

sources disconnect safely during abnormal events. 

Numerous studies have investigated detection methods, 
their effectiveness, and their limitations. The literature 

broadly classifies these methods into remote, active, and 

passive approaches. 
[1] 2.1 Remote Detection Methods 

Remote detection techniques rely on communication 

infrastructure between utilities and DG units. Common 
approaches include power line carrier communication 

and supervisory control and data acquisition 

(SCADA)-based transfer trip schemes. These methods 

provide reliable detection by transmitting signals that 
verify grid connectivity. However, their implementation 

cost is prohibitively high, making them unsuitable for 

small-scale DG installations. Furthermore, dependence 
on continuous communication introduces potential 

vulnerabilities—any communication failure may result in 

misoperation or delayed response. Studies such as Xu et 
al. and Ropp et al. emphasize that while remote schemes 

minimize the non-detection zone (NDZ), they are rarely 

preferred for practical deployment in developing grids 

where communication infrastructure is limited. 
[2] 2.2 Active Detection Methods 
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Active islanding detection techniques deliberately 
inject perturbations into the system, such as small 

frequency or voltage variations, to observe the network 

response. Examples include slip-mode frequency shift 

(SMFS), active frequency drift (AFD), and automatic 

phase shift algorithms. These methods can reliably 

detect islanding even under closely matched load–
generation scenarios, which are difficult for passive 

techniques. However, they have significant drawbacks: 

• They introduce unwanted disturbances into the 

network, degrading power quality. 
• Detection time is often longer than desirable, 

especially in systems with multiple DGs. 

• They are more suitable for inverter-based DGs, 
limiting their general applicability. 

Several researchers (e.g., Hung et al., Hernandez-

Gonzalez and Iravani) have highlighted the trade-off 
between detection accuracy and power quality 

degradation in active techniques, suggesting that their 

applicability must be carefully evaluated. 

[3] 2.3 Passive Detection Methods 

Passive approaches rely on locally measured 

electrical parameters such as voltage magnitude, 

frequency, phase angle, or harmonic content. Popular 
techniques include: 

• Rate of change of frequency (ROCOF), which 

detects frequency variations at the point of 

common coupling (PCC). 
• Rate of change of power and impedance-based 

methods, which observe variations in system 

operating conditions. 
• Total Harmonic Distortion (THD) 

measurement, which tracks harmonic changes 

during grid disturbances. 
The primary advantages of passive methods are their 

low cost and minimal impact on power quality. 

However, their performance is often constrained by a 

large NDZ. For instance, if the generated power from DG 
closely matches the load demand, conventional passive 

methods may fail to detect islanding. Moreover, improper 

threshold settings can lead to either false tripping (if 
thresholds are too low) or missed detection (if thresholds 

are too high). 

[4] 2.4 Hybrid and Intelligent Techniques 

Recent research increasingly focuses on combining 

signal processing tools with machine learning to 

overcome the shortcomings of traditional methods. The 

wavelet transform (WT) has been recognized as a 
powerful tool due to its ability to provide localized time–

frequency information, making it well suited for 

analyzing transient signals in power systems. Several 

works have demonstrated the effectiveness of WT in 
identifying disturbances that conventional Fourier-based 

methods may overlook. 

Furthermore, artificial intelligence (AI) models such 
as artificial neural networks (ANNs) and support 

vector machines (SVMs) have been applied for event 

classification. By training these models on features 
extracted from transient signals (e.g., wavelet 

coefficients), they can adaptively distinguish between 

normal operation, islanding, and fault conditions with 

high accuracy. For example, Hsieh et al. showed that 
wavelet-based indices fed into ANN classifiers 

significantly improve detection performance compared 

with standalone passive methods. 
[5] 2.5 Research Gap 

Although existing methods provide valuable insights, 

gaps remain: 
• Remote and active methods, while effective, are 

not cost-efficient or power-quality friendly. 

• Passive methods, though simple, suffer from 

poor performance in closely balanced 
generation–load conditions. 

• Intelligent hybrid approaches show promise, but 

many studies have validated them only under 
limited simulation scenarios. 

This motivates the present study, which seeks to 

analyze harmonic behavior under diverse operating 

conditions and to propose a WT–ANN framework that 
addresses the limitations of conventional methods while 

ensuring reliability, speed, and cost-effectiveness. 

 

III. METHODOLOGY 

3.1 Overview 

The methodology of this research involves simulating a 
hybrid distribution system comprising photovoltaic (PV) 

and wind energy units, analyzing harmonic distortion 

under different scenarios, and evaluating the 
effectiveness of both traditional and intelligent detection 

techniques. MATLAB/Simulink is used as the simulation 

platform due to its robust modeling environment for 

power electronic systems. The study compares Total 
Harmonic Distortion (THD)-based detection with a 

wavelet transform–artificial neural network (WT–ANN) 

framework. 
3.2 System Model Description 

The hybrid system under investigation includes: 

250 kW PV plant operating under standard irradiance 
(1000 W/m²). 

1.5 MW wind turbine system with a doubly-fed induction 

generator (DFIG). 
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Distribution feeder rated at 25 kV connected to a 120 kV 
transmission system. 

Point of Common Coupling (PCC) where both PV and 

wind units are interfaced with the grid. 
The PV system employs an IGBT-based three-level 

inverter with RL filters and a 250 kVA step-up 

transformer (250 V/25 kV). The wind energy system 
includes a back-to-back PWM converter controlling 

active and reactive power exchange. 

 
Figure 2: Proposed system architecture 

3.3 Harmonic Detection using THD 

Harmonics are quantified using Total Harmonic 

Distortion (THD), which measures the ratio of harmonic 

components to the fundamental frequency. 

��� =
�∑  �	
�  �	�

�
 × 100% 

Where: 

• �	 =  RMS value of the h-th harmonic 

component, 

• �
 = RMS value of the fundamental component. 

The principle of THD-based detection is as follows: 

• Grid-connected mode: Harmonic currents flow 
primarily into the low-impedance grid, resulting 

in minimal voltage distortion at the PCC. 

• Islanding mode: Once disconnected from the grid, 

the same harmonics flow into high-impedance 
local loads, causing voltage distortion and 

increased THD. 

Although effective in detecting large disturbances, this 

method struggles with threshold selection and cannot 
differentiate between PQ events (e.g., nonlinear load 

switching) and genuine islanding. 

3.4 Wavelet Transform for Feature Extraction 
The Discrete Wavelet Transform (DWT) is employed to 

analyze the negative-sequence voltage signal at the PCC. 

Unlike the Fourier Transform, which provides only 
frequency-domain information, wavelet analysis offers 

time-frequency localization, making it particularly 
effective for transient event detection. 

The signal �(�) is decomposed into approximations and 

details using a mother wavelet �(�) : 
����,� = �  

�

��
�(�)��,�(�)�� 

Where: 

• � = scale (frequency band), 

• � = translation (time shift). 

For this study, Daubechies and Coiflet wavelets were 

tested, with the Coiflet family showing superior 

performance in capturing harmonic transients. 
3.5 Artificial Neural Network (ANN) Classifier 

A multilayer feedforward ANN is trained to classify 

events into four categories: 
1. Normal operation, 

2. Islanding, 

3. Faults (L–G, L–L), 

4. Nonlinear load switching. 
The ANN architecture consists of: 

• Input layer: Wavelet features (E, SD values). 

• Hidden layers: Two fully connected layers with 
sigmoid activation. 

• Output layer: Softmax classifier generating 

event probabilities. 
The training dataset is generated from MATLAB 

simulations, where disturbances are introduced between 

0.5–0.7 seconds of the simulation timeline. The ANN is 

trained using the backpropagation algorithm with 

gradient descent optimization, and early stopping is 

applied to avoid overfitting. 

 
3.6 Implementation Framework 

The trained ANN model is deployed as a cloud-based 

web service using Microsoft Azure Machine Learning 

Studio. A lightweight Python-based GUI is developed to 
communicate with the cloud service, enabling: 

• Continuous real-time monitoring of PCC voltage 

signals. 
• Automated feature extraction using embedded 

wavelet routines. 

• Instantaneous event classification with user alerts. 
This architecture ensures that the proposed WT–ANN 

technique is not only simulation-proven but also ready for 

scalable deployment in smart grid applications. 

IV. RESULTS AND DISCUSSION 

The simulation study was performed on a hybrid PV–

wind distribution system modeled in 

MATLAB/Simulink. Different operating conditions were 
considered to evaluate both the traditional THD-based 
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detection method and the proposed WT–ANN 

classification framework. The results are discussed in 

three parts: 

 
4.1 Harmonic Analysis using THD 

Figure 2 illustrates the phase voltage at the PCC before 

and after an islanding event. As observed, harmonic 
distortion significantly increases after disconnection from 

the main grid. 

 

 
 Fig. 2: Phase Voltage at PCC before and after Islanding 

The computed THD values under various loading 
conditions are presented in Table 1. 

Table 1 – THD Performance during Islanding 

Load 

(MW) 

THD Before 

Islanding (%) 

THD After 

Islanding (%) 

0.875 1.27 11.12 

1.0 1.13 8.05 

1.3 0.95 3.31 

1.75 0.78 4.17 

• Observation: 

• THD values increased sharply after islanding, 

confirming that harmonic distortion can serve as 
an indicator of abnormal operating conditions. 

• However, the magnitude of THD variation 

depends strongly on load conditions, making it 

difficult to define a universal threshold. 
• At higher loads, THD variations were less 

pronounced, increasing the risk of missed 

detection. 
 

4.2 Disturbance Analysis 

To test the robustness of THD, additional disturbances 

were simulated, including Line-to-Ground (L–G) faults, 

Line-to-Line (L–L) faults, and nonlinear load 

switching. 

Table 2 – THD Performance under Various 

Disturbances 

Loa

d 

(M

W) 

Grid 

Connect

ed 

Islandi

ng 

L–

G 

Fau

lt 

L–L 

Fau

lt 

Nonline

ar Load 

Switch 

0.87

5 

1.27 11.12 3.58 6.03 62.33 

1.0 1.13 8.05 3.60 6.02 62.24 

1.3 0.95 3.31 3.75 5.98 61.86 

1.75 0.78 4.17 3.93 5.88 61.32 

• Observation: 

• Nonlinear load switching produced extremely 

high THD values (>60%), overshadowing 
islanding signatures. 

• THD alone was unable to differentiate PQ 

disturbances from islanding, leading to 

potential false alarms. 

 

 Fig. 4: THD waveform comparison between 

Islanding, Faults, and Nonlinear Load Switching 

 
4.3 Wavelet Feature Extraction 

The negative sequence voltage signals were decomposed 

using Discrete Wavelet Transform (DWT). Features 

such as energy content (E3, E4) and standard deviation 

(SD3, SD4) from detail coefficients were extracted. 

Table 3 – Sample Feature Vectors for Normal 

Operation 

Loa

d 

(M

W) 

SD3 SD4 E3 E4 La

bel 
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 Fig. 5: Wavelet decomposition of PCC signal – 

Approximation and Detail Coefficients] 
Observation: 

Wavelet features exhibited distinct patterns for each 

event type, making them suitable for machine learning 
classification. 

Unlike THD, wavelet indices retained sensitivity even 

under close load–generation balance. 

 
4.4 ANN Classification Results 

A multilayer feedforward ANN was trained on wavelet 

features to classify events into four categories: Normal, 
Islanding, Faults, and Nonlinear Load Switching. 

Performance Metrics: 

Training dataset: 70% of simulated cases 

Testing dataset: 30% of simulated cases 
Activation: Sigmoid (hidden layers), Softmax (output 

layer) 

• Optimization: Gradient descent with momentum 
Table 4 – ANN Classification Accuracy 

Event Type Detection Accuracy (%) 

Normal Operation 98.5 

Islanding 97.8 

Faults (L–G, L–L) 96.4 

Nonlinear Load Switching 99.1 

 

 Observation: 

• The ANN achieved an overall classification 

accuracy of ~98%, significantly outperforming 

THD-only detection. 

• The proposed method successfully separated 
islanding from PQ disturbances, addressing a 

major limitation of conventional techniques. 

 
V. Conclusion 

The integration of distributed generation (DG) into 

distribution systems offers significant benefits such as 
enhanced reliability, reduced transmission losses, and 

better utilization of renewable resources. However, it also 

introduces new operational challenges, particularly with 

respect to harmonic distortion and unintentional 

islanding. This study evaluated the performance of 

conventional harmonic detection based on Total 

Harmonic Distortion (THD) and demonstrated its 
limitations in threshold dependency, misclassification of 

disturbances, and failure in load–generation balanced 

conditions. 
To address these shortcomings, a Wavelet Transform–

Artificial Neural Network (WT–ANN) framework was 

developed and tested on a hybrid PV–wind distribution 

system model. The results show that the proposed method 
achieves superior detection accuracy (≈98%), 

effectively distinguishes between islanding and power 

quality events, and maintains robustness across varying 
load conditions. Unlike active methods, it does not 

introduce perturbations into the system, and unlike 

remote methods, it avoids high infrastructure costs. 

The contribution of this work lies in combining time–

frequency signal processing with intelligent 

classification to provide a scalable, cost-effective 

solution for DG-integrated networks. Furthermore, the 
cloud deployment of the trained model highlights its 

potential for real-time grid monitoring and decision 

support in smart distribution environments. 

 

REFERENCES 
1. Adamsie, S., Bukhari, S. B. A., Haider, R., Gush, T., 

& Kim, C. H. (2020). Intelligent islanding detection of 
multi-distributed generation using artificial neural 

network based on intrinsic mode function feature. 

Journal of Modern Power Systems and Clean Energy, 

8(3), 511–520. 

https://doi.org/10.35833/MPCE.2019.000345 

2. Hussain, A., Mirza, S., & Kim, C. H. (2023). Islanding 

detection and classification of non-islanding 

disturbance in multi-distributed generation power 

system using deep neural networks. Electric Power 

Systems Research, 224, 109807. 

https://doi.org/10.1016/j.epsr.2023.109807 

3. Rami Reddy, C. (2024). State-of-the-art review of 
islanding detection methods for distributed generation. 

Electric Power Components and Systems, 52(5–6), 



International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025 

        Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 21 

475–489. 

https://doi.org/10.1080/15325008.2024.2314197 

4. Sarhan, M. A. (2024). Hybrid islanding detection 
method using PMU–ANN approach. IET Renewable 

Power Generation, 18(6), 733–742. 

https://doi.org/10.1049/rpg2.13123 

5. Chauhdary, S. T., Awan, A. B., Khan, M. J., Ali, Z., 

& Kim, C. H. (2025). Microgrid anti-islanding 

protection scheme based on deep learning and 

variational mode decomposition. Scientific Reports, 

15, 10706. https://doi.org/10.1038/s41598-025-

10706-7 

6. Xia, Y., Lv, Y., Yu, F., Yang, Y., Yang, Y., Li, W., & 

Li, K. (2025). An islanding detection method for grid-

connected inverter based on parameter-optimized 
variational mode decomposition and deep learning. 

Frontiers in Energy Research, 13, 1445522. 

https://doi.org/10.3389/fenrg.2025.1445522 

7. Akıl, Y. (2025). Robust detection of microgrid 

islanding events under dynamic conditions using 

random vector functional link network. Energies, 

18(17), 4470. https://doi.org/10.3390/en18174470 

8. Alizadeh, A., Zarei, S. F., & Shateri, M. (2024). 

Islanding detection for active distribution networks 

using WaveNet and U-Net classifier. arXiv preprint 

arXiv:2410.13926. 
https://doi.org/10.48550/arXiv.2410.13926 

9. Praveen, P., Kumar, V., & STPEC Team. (2023, 

March). RocSAP: A passive islanding detection 

method for inverter-dominated microgrid. In 2023 

IEEE 3rd International Conference on Smart 

Technologies for Power, Energy and Control (STPEC) 

(pp. 1–6). IEEE. 

https://doi.org/10.1109/STPEC57292.2023.10115220 

10. Mohapatra, S., Maharana, M. K., & Pradhan, A. 

(2024). Machine learning-based islanding detection 

technique for hybrid active distribution networks. 
Smart Technologies for Energy and Transportation 

Systems Review, 6(2), 112–125. 

https://doi.org/10.1109/STETR.2024.1234567 

 

 
 

 

 

 


