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Abstract: 
Nanoparticles can help solve important issues related to traditional small molecules or bio macromolecules 

like DNA, RNA, and proteins used for diseases. They enable targeted delivery and can get past biological 

barriers. Recently silver nanoparticles have been used as delivery vehicles for therapeutic agents, such as 

anti-sense oligonucleotides and other small molecules. The toxicological evaluation of three common types 

of nanoparticles used in drug delivery. Metal, lipid and protein nanoparticles. It highlights the toxic effects 

associated with these nanoparticles. Metal based nanoparticles can increase oxidative stress and may enter 

the cell nucleus. Protein-based nanoparticles have been noted to cause liver and kidney toxicity. 

Nanoparticles are being used more in drug delivery, but there are rising concerns from regulatory authorities 

about their toxicity in living organisms. 

 

Introduction 
Silver Nanoparticles are tiny particles made of 

silver, containing between 20 and 15,000 silver 

atoms and are usually small then 100 nanometres. 

They have unique properties that make them 

different from larger silver materials, including 

biological, electronic, anti-bacterial, magnetic, 

chemical, and physical characteristics. Ag NP’s 

are increasingly used in biomedicine attracting a 

lot of research interest. Their performance in 

various applications, such as catalysis, thermal 

management and optics[1]. Silver nanoparticles 

are becoming important for their ability to fight 

germs that cause infections. They are found in 

many products, including healthcare items, fitness 

tools, cleaning supplies, food packaging, 

household goods, electronic gadgets and toys. 

Because these products are so common, there is 

higher chance that these nanoparticles could 

accidently spill into the environment, leading to 

more exposure to humans and other living 

things[2]. 

Many everyday products, like fabric, laundry food 

and medicine have been researched for their use of 

silver particles[3]. Various methods have been 

used to create silver nanoparticles (Ag NP’s) 

because of the different forms of silver and it’s 

compounds. There are natural methods to produce 

Ag NP’s. These processes are simple, safe, cost-

effective, and produce consistent results, making 

them suitable for use with sodium citrate or 

sodium borohydride in Ag NP production[4].  

Many medications affect how platelets and blood 

clotting work. They often enhance the natural 

blockage of blood clotting, especially involving 

thrombin and factor Xa. Most oral anticoagulants 

stop vitamin K, which is needed for creating 

important factors for clotting common oral 

anticoagulants include warfarin, dicoumarides, 

and phenindione (PID). Warfarin helps lower the 

risk of blood clots in people and atrial fibrillation. 

Although PID works similarly to warfarin, it is 

less used because it can cause serious side 

effects[5]. New silver nanoparticles were created 

as drug-delivery systems for treating thrombosis 

and for use in coating medical devices. [6,7-10] 

 

Why silver nanoparticles? 
Silver nanoparticles have garnered significant 

interest within the scientific community[11,12,13]. 

Silver has historically been used as an antiseptic 

and antimicrobial agent to combat diseases caused 

by both gram-positive and gram-negative 

bacteria[14,15,16]. Silver nanoparticles, have 

become popular in recent years as potential new 

antimicrobials. They are being explored due to 

their promising properties in fighting bacteria and 

other microbes. Researchers are interested in using 

them to create a new class of antimicrobial 

agents[17]. 
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Copper-based nanoparticles were found to have 

even higher antibacterial properties than silver 

nanoparticles[18]. 

Nanoparticles are classified into three categories:- 

Inorganic Nanoparticles :-  

Inorganic Nanoparticles do not contain carbon 

atoms and include matal oxide and metal-based 

nano-sized particles. 

Metal Nanoparticles:- 

Metals like cadmium,[20] aluminium,[19] 

copper,[21] and others are common in this 

category. These Nanoparticles have unique 

properties due to their size and characteristics such 

as expanded surface area and shape environmental 

factors like air and sunlight can affect these 

properties.[22] 

Metal oxide Nanoparticles:- 

Metal oxides offer enhanced characteristics, such 

as iron oxide formed from iron and oxygen, 

making them more reactive.[23] 

E.g. includes titanic oxide, silicon oxide, zinc 

oxide, showing superior properties compared to 

metal nanoparticles. [24,25,26,27,28] 

Organic based Nanoparticles:- 

It is known as Nano capsules include ferritin, 

liposomes, micelles and dendrimers. These eco-

friendly particles are sensitive to light and heat, 

making them ideal for drug delivery. [29]Their 

stability and ability to carry and release drugs 

effectively enhance targeted delivery.[30] 

Carbon-based Nanoparticles:- 

It is made entirely from carbon and include types 

like graphene, fullerenes, carbon nanofibers, 

carbon nanotubes, black carbon and activated 

carbon.[31] 

 

Synthesis Of Silver Nanoparticles 
Nanoparticles can be made using two main 

methods:  

Top-down 

The top-down method creates nanoparticles from 

larger materials using physical forces such as 

mechanical, electrical or thermal energy. 

Techniques like ball milling and laser ablation are 

used, producing nanoparticles that are usually 

between 10 & 100nm in size. This method 

typically results in pure nanomaterials because it 

doesn’t use chemical additives. The nanoparticles 

made this way often have a uniform size and high 

purity, but preventing them form clumping 

together poses a challenge as no stabilizing agents 

are used in this process. 

 

Bottom-up 

The bottom-up approach is used to create complex 

clusters and obtain nanoparticles from molecular 

components though nucleation and growth 

processes. It includes two main methods achieve 

Nanoparticles by reducing precursor salts. 

Chemical synthesis can be enhanced using 

alternatives energies like photochemical, 

electrochemical, microwave-assisted and sono 

chemical methods. This method can produce 

various nanoparticles shapes quickly but may use 

harmful chemicals that limit medical applications. 

To address this issue, the biological method is 

considered an alternative option. The text 

discusses different methods for creating silver 

nanoparticles [32,33,34]These method fall into 

three main categories: 

 

Physical Method: 

The synthesis of silver nanoparticles (AgNP’s) 

involves mechanical and vapor-based processes to 

reduce particle size. Mechanical energy, like ball 

milling, uses high-speed collisions for grinding 

metal into fine powders. Electrical energy in the 

arc-discharge method uses an arc-discharge device 

under direct current power with electrodes in 

dielectric liquids. Other methods include using 

light energy for laser ablation and thermal energy 

for physical vapor deposition.[35,36,37,38,39,40] 

 

Chemical Method: 

Chemical synthesis is the most common way to 

create silver nanoparticles involving the reduction 

of silver ions via electron transfer. [41]This 

process typically uses reducing agents like sodium 

borohydride or sodium citrate and can be 

combined with energy sources such as 

photochemical, electrochemical, microwave-

assisted and sonochemical methods. This synthesis 

process includes two main stages: nucleation & 

growth.[42,43] 

 

Characterization of Silver Nanoparticles 

The solution changing from yellow to brown is the 

first sign of successful Silver Nanoparticles 

synthesis. Various techniques are used for 

characterization nanoparticles focusing on aspects 
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like size & shape. These methods include UV-

Visible Spectrophotometry, FT-IR, SEM, TEM, 

AFM, XRD, DLS and Zeta-Potential 

measurements. 

• UV-Visible Spectrophotometry 

 It is simple and reliable technique for analyzing 

nanoparticles. It measures how metal 

nanoparticles absorb or scatter UV and visible 

light, resulting in a strong absorption band called 

surface plasmon resonance (SPR) in the 400-

500nm range, caused by light interacting with the 

mobile surface electrons of AgNP’s .[44,45,46] 

• Scanning Electron Microscopy Analysis 

 Scanning Electron Microscopy is a common 

method to study nanoparticle shapes and surface 

structures. It works by directing an electron beam 

at a sample, causing interaction that emit 

secondary electrons influenced by the sample’s 

surface and makeup.[47,48,49] 

• Transmission Electron Microscopy Analysis 

Transmission Electron Microscopy is a high-

resolution method to analyse the shape, size, and 

distribution of nanoparticles. It works by 

transmitting an electron beam through metal 

nanoparticles to produce an image. Both scanning 

electron microscopy and TEM study nanoparticle 

topography and surface morphology. [50] 

 

Important applications of silver nanoparticles 

Chemical reduction with different organic and 

inorganic reducing agents is a popular way to 

produce silver are still being improved, facing 

challenges like the stability and clumping of 

particles. It remains hard to extract and purify the 

particles for future use. [51]The availability of 

silver nanoparticles has ensured a rapid adoption 

in medical practice. Their application can small 

proportion of burn patients who received ionic 

silver treatment. Some in-vitro studies suggest that 

nanoparticles may harm certain cell lines, with 

smaller particles showing more toxicity. However, 

other studies indicate that silver nanoparticles are 

relatively non-toxic. Silver nanoparticles are the 

most promising nanomaterials for current 

commercial uses. They are used as coatings for 

cardiovascular implants and in central venous and 

neuro-signal catheters. Silver nanoparticles are 

also applied in latex membrane as a biomaterial 

for skin regeneration treatment and to monitor the 

delivery rate of nanoparticles in these membranes. 

Silver nanoparticles, are used in biosensors for 

detecting biological tags. They can also be found 

in various products such as clothing, shoes, paints, 

wound dressings, appliances, cosmetics and 

plastics, silver nanoparticles enhance conductivity 

in timing and are part of composite materials.[52] 

In optical applications, they help with better 

collection and improved spectroscopy techniques, 

including metal fluorescence and surface-

enhanced Raman scattering. There figures 

showing the different applications of silver 

nanoparticles and their advantages & 

disadvantages. 

 

Antimicrobial activity of silver nanoparticles  

Silver nanoparticles, are known for their strong 

ability to kill microbes like staphylococcus 

aureus[53]and important uses in medicine for 

treating bacterial and viral infections, including 

those caused by hard-to-treat germs. Silver 

nanoparticles are more effective than regular silver 

because their larger surface area allows them to 

better enter bacterial cells and cause harm. Once 

inside, they can damage DNA and disrupt cell 

functions. Silver nanoparticles also interact with 

proteins, damaging bacterial cell walls and 

interfering with protein production. Silver has a 

long history as an antimicrobial agent, and its 

nanoparticle forms are more effective and 

compatible with living organisms. Extensive 

research has been conducted to understand the 

antimicrobial potential of nano silver and its 

compounds. This research highlights the possible 

future use of silver nanoparticles in addressing 

microbial diseases, overcoming the limitations of 

traditional antimicrobial treatments, fighting drug-

resistant pathogens, and establishing a combined 

approach in drug development. 

Silver nanoparticles can be made using plant 

extracts, resulting in stable, eco-friendly particles. 

These particles have strong combined effects of 

the Nano silver and natural compounds in the 

plants that also fight microbes.  

A study by Loo et al. [54]found that silver 

nanoparticles synthesized from pu-erh tea leaves 

exhibited strong antimicrobial activity against 

gram-negative food-borne pathogens such as 

salmonella enteritidis, Klebsiella pneumonia, 

Escherichia coli, and Salmonella typhimurium, 

with MIC values of 3.9, 3.9, 7.8, 3.9 ml, 
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respectively. Garibo et al. also synthesized silver 

nanoparticles using lysiloma acapulcensis extract 

and found them to be effective antimicrobials. 

Selim et al. reported that chemically synthesized 

silver nanoparticles of approximately 50nm 

inhibited Mycobacterium tuberculosis and 

Mycobacterium bovis, with MIC values ranging 

from 1 to 32 ml for various strains. [54] 

 

Toxicity mechanisms of Ag NPs 

The toxicity of silver nanoparticles (Ag NPs) is 

primarily due to their release of a large amount of 

reactive oxygen species (ROS), which can damage 

cell membranes and cause cell death.[55] Ag NPs 

easily oxidize, producing more ROS, leading to 

oxidative stress.[56] They disrupt endoplasmic 

reticulum (ER) homeostasis, affecting protein 

folding and causing excessive ER stress. This 

stress is a protective mechanism to prevent protein 

clumping. Ag NPs can also damage mitochondrial 

functions through non-ROS pathways.[57] These 

findings highlight three main toxicity mechanisms 

of Ag NPs: oxidative stress, ER stress, and 

mitochondrial damage through non-ROS 

pathways. 

 

Oxidative stress 

Oxidative stress occurs when there’s an imbalance 

between creating and removing oxygen free 

radicals in cells, causing ROS and RONS 

accumulation and damage.[58] 

Studies have shown that the toxicity of silver 

nanoparticles is connected to the silver ions they 

produce. Ag NPs are oxidized by oxygen and 

other molecules in organisms, resulting in Ag+ 

ions.[59] These ions form stable bonds with 

sulphur and nitrogen, interacting with sulphur-

containing proteins and peptides like glutathione, 

thioredoxin, and superoxide dismutase.[60] The 

interaction changes functional proteins, affecting 

their ability to resist damage from reactive oxygen 

species (ROS), and leads to iron release and 

alteration of sulphur-hydrogen residues in 

proteins.[61] Additionally, antioxidant levels 

decrease significantly. Toxic reactive oxygen and 

nitrogen species (RONS) like peroxy nitrite and 

hydroxyl may contribute significantly to 

toxicity.[62]Ag NPs can also penetrate liver cell 

membranes, triggering the production of ROS, 

leading to lipid and protein oxidation and DNA 

damage, which harms cellular components and 

function.[63]  

 

Endoplasmic Reticulum stress 

The endoplasmic reticulum is a biosynthesis site 

for lipids, membrane proteins, and secreted 

proteins. Disruptions in its homeostasis can lead to 

accumulation of unfolded and misfolded proteins, 

which cause ER stress.[64] This stress response 

aims to reduce unfolded protein concentrations 

and prevent aggregation. However, excessive 

stress damages cells and organs. Three stress-

sensing proteins- IRE1, PERK, and ATF-6 are 

regulated by GRP78/BIP during ER stress, 

activating genes to manage stress. Silver 

nanoparticles can effect these proteins and 

endoplasmic reticulum, leading to increased stress 

markers like CHOP, associated with apoptosis. 

This process also involves changes in stress-

related proteins like PERK, eIF-2, and others, 

further disrupting ER homeostasis and increasing 

damage.[65] 

 

Mitochondrial Damage 

Mitochondria are crucial for aerobic respiration, 

oxidative phosphorylation, and producing ATP, 

which provides energy for cells, thus earning the 

nickname “cell power factories”.[66] Studies 

show mitochondria are sensitive to silver 

nanoparticles toxicity.[67] Ag NPs can interfere 

with mitochondrial functions, penetrate 

membranes, cause swelling, and damage 

structures. This affects mitochondrial fusion and 

fission by influencing proteins like Drp1, Mito 

fusin 1, and OPA1, and inhibiting PGC-1. Drp1 

dephosphorylation induced by Ag NPs triggers 

mitochondrial fission.[68] 

 

Toxicity assessments techniques 

Transmission electron microscopy  

Transmission electron microscopy (TEM) is 

widely used to characterize nanoparticle (NP) size 

and shape. TEM images are taken in brightfield 

mode and analysed with software to determine 

particle size and shape uniformity. However, the 

analysis is limited by small sample sizes and 

variability in sample preparation, which involves 

casting and drying NP solutions onto polymer-

coated grids. 
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Dynamic light scattering 

Dynamic light scattering (DLS) measures particle 

size in solution analysing light scattering and 

Brownian motion. It calculates the hydrodynamic 

radius, often yielding larger values than 

transmission electron microscopy (TEM) due to 

organic surface coating and aggregations.  

 

Atomic force microscopy 

Scanning probe microscopies, like atomic force 

microscopy, are used to analyse the size and 

surface of nanoparticles on substrates in liquids 

and air. Nano meter-sized probes on cantilevers 

move across samples to record force changes. 

Although the lateral resolution is lower than TEM, 

the technique is highly sensitive in the z-direction, 

making it excellent for depth profiling at Nano 

meter resolution.[69] 

 

Anticoagulant activity 

Venous thromboembolism is a leading cause of 

death due to cardiovascular issues worldwide, 

following closely behind heart attacks and strokes. 

() This condition affects patients of all ages, 

including children, in different settings. The most 

common type of venous thromboembolism is deep 

vein thrombosis, which can progress to a severe 

form called acute pulmonary thromboembolism. 

The main treatment for both situations is fully 

anticoagulant therapy to reduce the risk of venous 

thromboembolism happening again. The body’s 

way of stopping ongoing bleeding after injury is 

called coagulation. This involves the interaction of 

platelets, plasma clotting factors, and damaged 

tissue. The fibrinolytic cascade helps break down 

fibrin and fibrinogen, preventing too much 

thrombus formation, balancing the coagulation 

process. Coagulation, fibrinolysis, and platelet 

function work together to achieve normal clotting 

and hemostasis.[70] Anticoagulant prevent blood 

clotting by blocking vitamin K-dependent clotting 

factors II, VII, IX and X. Warfarin acts 8-12 hours 

after being taken. Their main use is to stop blood 

clots, which cause thromboembolic disorders. 

Experiments used platelet-poor plasma; PID 

showed no coagulation. PID was tested for its 

coagulant ability and showed no coagulation, 

indicating it can cause prolonged bleeding, a 

serious risk. The intrinsic biological activity of 

substance is studied in vivo and ex vivo using 

functionality active isolated tissues. The ex vivo 

method assesses new compounds and drugs on 

tissues responsive to stimuli. [1,11-14] 

SM cells, known for maintaining active tension 

outside the body, were chosen for studying 

contractility.[71,72] Many internal organs mainly 

contain SM tissues, which shows bioelectrical and 

contractile activities, measurable isometrically, 

and related to stomach motor function. Smooth 

muscle mainly contracts and can keep its elasticity 

for up to 10hours outside the body, showing 

changes in tone and contractions when exposed to 

certain drugs. The isolated tissue bath experiment 

is a traditional method used by pharmacologists 

and physiologists to study concentration response 

relationships in various tissues because its 

versatile and reliable. Maximum tonic relation 

occurs around 10.47 minutes and lasts for 6hours. 

The Ach response stays the same after PID 

administration, showing the neurotransmitter 

pathway is unaffected, unlike with Ag NP’s. 

Indane and its analogous have anticoagulant 

activity and impact smooth muscles.[73] 

 

Conclusion 

The number of applications for Ag NPs is 

expected to grow, but understanding their 

environmental fate, accumulation, and long-term 

effects on humans and organisms is still lacking. 

Studies show their release is increasing, with 

unclear transport, migration into food chains, and 

health impacts. 

At the cellular level, Ag NP toxicity includes ROS 

generation, DNA damage, and cytokine induction, 

as shown in vitro studies. Few in vivo studies 

suggest potential adverse effects on circulatory, 

respiratory, nervous, hepatic, and dermal systems. 

More research is needed to understand bio 

distribution and toxicity using in vivo system, 

including assessing Ag NPs from textiles. 

Monitoring physicochemical properties during 

studies is essential to evaluate changes affecting 

NP uptake and bioavailability. 

This text discusses the self-referencing micro 

sensors for real-time physiological sensing and 

new imaging techniques using Ag NPs strong 

Plasmon resonances for label-free tracking. These 

tools can be added to experiments to improve risk 

assessment quality for Ag NPs. 
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