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Abstract—It has never been easy to invest in a set of assets,
the abnormally of financial market does not allow simple
models to predict future asset values with higher accuracy.
Machine learning, which consist of making computers
perform tasks that normally requiring human intelligence
is currently the dominant trend in scientific research. This
article aims to build a model using Recurrent Neural
Networks (RNN) and especially Long-Short Term
Memory model (LSTM) to predict future stock market
values. The main objective of this paper is to see in which
precision a Machine learning algorithm can predict and
how much the epochs can improve our model. (Abstract)
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1. INTRODUCTION (HEADING 1)

The use of machine learning in quantitative finance has
been the subject of numerous studies. Machine learning
algorithms can be used to predict prices for managing and
restricting an entire portfolio of assets, as well as for the
investment process. Generally speaking, machine learning
refers to any algorithm that uses computers to identify
patterns based solely on data without the need for
programming instructions. Numerous models provide a wide
range of techniques that can be used with machine learning
to predict future asset values in quantitative finance,
particularly in asset selections. These models provide a
mechanism that combines weak sources of information to
create an odd but useful tool Recently, a number of machine
learning algorithms, including support vector machines,
random forecast, gradient boosted regression trees, and
critical neural networks, have been refined through the
combination of statistics and learning models. These
algorithms can identify some relations that are challenging
for linear algorithms to identify as well as intricate patterns
marked by non-linearity. Additionally, compared to linear
regression algorithms, these algorithms demonstrate greater
efficacy and multicollinearity. The use of machine learning
techniques in finance is currently the subject of numerous
studies; some have employed deep learning to generate future
values of financial assets [9], while others have used tree-
based models to forecast portfolio returns [4][1].
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A few authors reviewed the ADaBoost algorithm's use in
return forecasting [10]. Others go on to predict stock returns
using a special decision-making model for day trading stock
market investments. The authors' model uses the mean-
variance (MV) method for portfolio selection and the support
vector machine (SVM) method [6]. Deep learning models for
intelligent indexing were discussed in another paper [3].
Additionally, a number of trends and applications of machine
learning in quantitative finance have been studied [2]. This
paper reviews the literature on return forecasting, portfolio
construction, ethics, fraud detection, decision making,
language processing, and sentiment analysis. Because these
models don't rely on a single long-term memory (passed data
sequences), a class of machine learning algorithms based on
recurrent neural networks has proven to be very helpful in
forecasting and predicting financial market prices. The
accuracy of autoregressive integrated moving average
(ARIMA) and long short-term memory (LSTM) forecasting
techniques is compared in a paper. When these methods were
applied to a set of financial data, the outcomes demonstrated
that LSTM was significantly better than ARIMA [8]. Our
paper aims to forecast the adjusted closing prices for a
portfolio of assets using an ML algorithm based on LSTM
RNN. The primary goal is to find the most accurate trained
algorithm to predict future values for our portfolio.

Motivation

The motivation to develop an advanced machine
learning—based stock prediction system arises from the
increasing complexity, volatility, and unpredictability of
modern financial markets. Stock prices are influenced by a
diverse set of interlinked factors—macroeconomic
indicators, sectoral performance, global political conditions,
corporate earnings, investor sentiment, and unexpected
market shocks. Traditional forecasting approaches such as
linear regression, ARIMA, or moving averages struggle to
model these nonlinear, chaotic patterns. As a result, investors
often rely on subjective interpretation, intuition, or heuristic-
driven trading strategies that may not generalize well in
dynamic market environments.

Machine learning, particularly deep learning, provides a
powerful alternative to traditional forecasting. Neural
networks, and especially Recurrent Neural Networks (RNNs)
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and Long Short-Term Memory (LSTM) architectures, offer
the capability to learn dependencies across long sequences of
past data—something classical models cannot achieve. Since
stock prices exhibit temporal correlations, momentum cycles,
and long-term memory patterns, LSTM becomes a suitable
model for capturing deeply embedded trends and subtle
signals that may influence future asset prices. These models
do not require explicitly defined rules; instead, they
autonomously learn complex mappings between historical
price behavior and future outcomes.

A. Problem Description and Overview

Predicting stock market prices is a long-standing
challenge in quantitative finance due to the inherent
complexity, noise, and dynamic nature of financial time
series. Unlike structured and relatively stable domains such
as medical diagnostics, stock markets exhibit high-frequency
fluctuations influenced by a wide spectrum of economic,
psychological, geopolitical, and company-specific factors.
These factors often interact in nonlinear and unpredictable
ways, producing patterns that traditional linear models are
unable to capture effectively.

The core problem addressed in this study is the
forecasting of future adjusted closing prices for publicly
traded stocks using historical daily price data. Stock prices
exhibit temporal dependencies—past movements often
influence future trends. However, these dependencies may be
irregular or masked by volatility spikes, market crises, bull—
bear cycles, or abrupt regime changes. Thus, forecasting
requires a model that can effectively interpret sequential data
while retaining information from long-term historical
patterns.

C. Importance of Accurate Prediction

Accurate stock market prediction plays a critical role in
modern financial decision-making, as it directly influences
investment strategies, portfolio management, and risk
mitigation. In today’s fast-moving markets, even small
improvements in forecasting precision can lead to significant
financial gains, while poor predictions can result in
substantial losses. Thus, developing reliable predictive
models is not merely an academic exercise but a practical
necessity for traders, institutional investors, hedge funds, and
automated trading systems.

One of the primary reasons accurate predictions is
essential is its direct impact on investment timing. Investors
aim to buy assets at lower prices and sell them at higher
values, a strategy highly dependent on anticipating future
movements. If a model can forecast upward or downward
trends with reasonable accuracy, investors can time their
entry and exit points more effectively, resulting in improved
returns. For example, a model predicting a rising trend in
GOOGL stock enables investors to initiate positions earlier,
capturing gains that might otherwise be missed. Accurate
forecasting also serves as a foundation for risk management.
Financial markets are inherently volatile, and unexpected
price movements can threaten the stability of individual
portfolios or entire investment funds. Forecast models help
identify potential downturns, enabling proactive decisions
such as reallocating resources, hedging with derivatives, or
adjusting stop-loss thresholds. By anticipating adverse
market developments, investors can safeguard capital and
reduce exposure to high-risk scenarios.
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D. Objective

The primary objective of this study is to design,
develop, and evaluate a machine learning framework
capable of predicting future stock prices using Long
Short-Term Memory (LSTM) networks. Given the
complexity, volatility, and nonlinear characteristics of
financial time series, the objective is not only to generate
accurate predictions but also to understand how model
configuration—particularly the number of training
epochs—impacts forecasting performance. Building on
this central aim, several specific objectives guide the
research methodology and evaluation process.

1) Develop a robust LSTM-based forecasting model
for stock price prediction: The first objective
focuses on constructing an LSTM architecture that
can effectively learn temporal dependencies in
historical stock data. Unlike traditional models,
LSTM networks possess the ability to store long-
term information through memory cells and gating
mechanisms.

2) Utilize historical market data to train and validate
the predictive model: To achieve realistic
forecasting, the model must be trained on actual
historical stock data. This includes daily opening,
closing, high, low, adjusted close, and volume
information collected over several years for assets
such as GOOGL and NKE. The objective here is to
create a time-windowed dataset that captures the
sequential nature of price evolution. The study aims
to ensure that the training and testing split (80-20
ratio) provides the model with sufficient data to
learn underlying patterns while also offering a fair
evaluation on unseen price sequences.

3) Evaluate the effect of training epochs on predictive
accuracy and model performance: One of the central
technical objectives is to examine how different
epoch counts—12, 25, 50, and 100 epochs—impact
model learning. Deep learning models such as
LSTM rely heavily on iterative optimization; each
epoch represents a full pass through the training
dataset. The hypothesis is that more epochs allow
for deeper learning of temporal patterns, resulting in
lower prediction error. However, excessive training
may lead to overfitting. This study aims to
quantitatively  analyze these trade-offs by
comparing model losses and prediction trends
across different epoch settings.

4) Compare predicted stock prices with actual market
movements using graphical and statistical methods:
To validate the effectiveness of the LSTM model,
the predictions must be visualized and compared
against real market values. The objective is to use
evaluation metrics such as Mean Squared Error
(MSE), along with visual analysis of prediction
curves, to determine how closely the predicted
trajectory aligns with true historical pricing.
Observing the divergence between predicted and
actual curves helps identify model limitations,
volatility capture ability, and responsiveness to
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rapid price changes.
II. RELATED WORKS

The application of machine learning in financial
forecasting has been extensively explored in quantitative
finance literature, with numerous studies investigating
traditional, ensemble-based, and deep learning models.
The dynamic, nonlinear behavior of stock markets has
inspired researchers to adopt increasingly sophisticated
techniques capable of capturing hidden patterns in time-
series data.

Early research predominantly relied on statistical
methods such as ARIMA and autoregressive models to
forecast stock prices. While effective for stationary and
linear datasets, these classical approaches struggled with
real-world financial data characterized by irregular
volatility, structural breaks, and long-term dependencies.
As a result, machine learning methods became a popular
alternative due to their flexibility and ability to learn
complex, nonlinear relationships.

Tree-based  machine learning models have
demonstrated strong predictive capability in several
studies. For instance, Moritz and Zimmermann (2016)
applied tree-based conditional portfolio sorting
techniques to examine relations between past and future
stock returns, showing that nonlinear models
outperformed traditional linear regressions. These
findings emphasized the capacity of machine learning to
detect subtle interactions across financial features that
would otherwise remain unobserved.

Several works further explored ensemble learning
approaches. Random Forest, Gradient Boosted Trees, and
AdaBoost gained attention for their ability to reduce
variance and improve generalization. Wang and Luo
(2012) discussed the evolution of machine-driven signal
processing, highlighting the rise of machine learning in
quantitative strategy development. Similarly, Paiva et al.
(2018) presented a hybrid decision-making framework
combining machine learning with portfolio optimization,
demonstrating that ensemble models can enhance day-
trading outcomes. However, these approaches still lacked
mechanisms for modeling long-range temporal
dependencies inherent in sequential financial data.

III.DATASET AND BEHAVIOURAL DATA

The dataset used in this study consists of historical daily
stock price information obtained from publicly available
financial data sources, specifically Yahoo Finance. The data
represents the long-term trading history of two major publicly
traded companies: Alphabet Inc. (GOOGL) and Nike Inc.
(NKE). These companies were selected due to their extensive
trading histories, high liquidity, and representation of distinct
sectors—technology and consumer goods—allowing the
model to be evaluated on diverse market behaviors.
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1) Open Price: The price at which the stock begins
trading each day. This value often reflects overnight
sentiment, global market influence, and pre-market
trading behavior.

2) High Price: The maximum price the stock achieves
during the trading session. This indicator provides insight
into market enthusiasm and intraday volatility.

3) Low Price: The lowest price recorded in the trading
session. It complements the high price measure and helps
capture the full range of intraday fluctuations.

4) Close Price: The final trading price of the stock for the
day. It is widely used in technical analysis and serves as
one of the most significant indicators of investor
sentiment.

5) Adjusted Close Price: A critical feature for this study,
the adjusted close accounts for dividends, splits, and
corporate actions. This makes it a more accurate
representation of a stock’s true value over time and is the
variable selected for prediction.

6) Trading Volume: The number of shares traded during
the session. Volume often correlates with price volatility
and investor behavior, although the current model focuses
primarily on price-based features.

. Data Characteristics Relevant to LSTM Modeling

Stock price data displays several distinctive
characteristics that influence model design:

1) Non-stationarity: The statistical properties of the
data—mean, variance, autocorrelation—change
over time. This is especially visible in the NKE
extended dataset, where price behavior before the
2000s differs drastically from post-2010 behavior.

2) Volatility Clustering: Financial markets often
exhibit periods of high variance followed by calmer
periods. LSTM networks are capable of learning
these temporal clusters through gated memory
mechanisms.

3) Long-term Dependencies: Market trends and cycles
can span weeks, months, or even years. LSTM’s
architecture is specifically designed to retain long-
horizon information, unlike traditional RNNs.

4) Nonlinear Patterns: Stock prices react to complex
interactions among economic, psychological, and
technical factors. LSTM can approximate nonlinear
relationships better than linear models.

B. Dataset Splitting for Training and Testing

Following standard time-series forecasting practices,
the dataset was split into:

a) 80 % Training Set-Used to teach the LSTM model
historical patterns.

b)20% Testing Set-Used strictly for evaluating
predictive capability
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IV. MEerHODOLOGY

The methodology adopted in this study encompasses a
structured, multi-stage approach aimed at constructing an
effective LSTM-based forecasting system for stock
market prediction. Because financial markets are
complex, nonlinear, and highly volatile, a disciplined
methodology is essential to ensure that the model is
trained properly, validated rigorously, and capable of
producing meaningful predictions. This section outlines
the complete workflow, beginning with data acquisition
and preprocessing, followed by model architecture design,
training procedures, hyperparameter tuning, and
evaluation strategies.

The methodological flow mirrors best practices from
prior studies in quantitative finance, particularly research
emphasizing the advantages of deep learning in handling
sequential financial datasets. The goal is not only to build
a predictive model but to develop an end-to-end process
that is scalable, reproducible, and adaptable to different
stock market assets and time periods.

. Data Acquisition and Preparation

The first step in the methodology is the extraction of
historical stock price data from Yahoo Finance for
GOOGL and NKE. The dataset contains daily prices
spanning periods of up to several decades, enabling the
model to learn from extended market cycles and long-
range dependencies. Raw data often contains irregularities
such as missing values, inconsistent timestamps (e.g.,
market holidays), or skewed price ranges. Therefore,
preprocessing is essential to convert raw data into a
structured, model-ready format.

The dataset is first filtered to extract the adjusted close
price, which serves as the target variable for prediction.
The adjusted close is selected due to its stability and
ability to incorporate dividends, splits, and other corporate
actions, thus representing the true economic value of a
security over time.

. Normalization and Scaling

Because neural networks—especially LSTMs—are
sensitive to input scale, the adjusted close values are
normalized using Min-Max scaling. This transformation
maps prices into a 0-1 range, preventing numerical
instability during training and ensuring that gradients flow
smoothly through the network.

Normalization also reduces the dominance of high-
valued features and helps the model treat all time points
with equal significance. Without scaling, large stock
values (e.g., GOOGL at over $1000) would overshadow
smaller ones (e.g., early NKE prices), leading to skewed
learning behavior.

C. Sequence Construction for LSTM Input

LSTM networks require sequential data structured as
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time windows. Therefore, the problem is reframed from a
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simple regression into a sequence learning task. Sliding
windows, each containing a fixed number of past days
(e.g., 50 days), are generated as input sequences. The
target output is the price on the next day.

This transformation results in a dataset of paired inputs
(historical sequences) and outputs (future price). Such a
setup allows the LSTM to learn temporal dependencies,
trend persistence, reversal signals, momentum shifts, and
cyclical patterns inherent in stock data.

The structure becomes:

e Input shape:
sequence_length, 1)

(number_of_samples,

*  Output shape: (number_of_samples, 1)

This step transforms the original dataset into a
supervised learning dataset suitable for deep learning.

. Model Architecture Design

The LSTM model is designed using a progressive,
multi-layer architecture based on the configuration
described in Table 1 of the reference paper. The network
consists of:

*  Four LSTM layers, each with 96 neurons

*  Dropout layers interspersed between LSTMs
to reduce overfitting

* A dense output layer with a single neuron to
predict the next-day price

The multi-layer LSTM structure enables the network to
learn hierarchical temporal features. Early layers capture
short-term fluctuations, while deeper layers capture long-
term patterns and complex nonlinear relationships.

Dropout layers mitigate overfitting by randomly
disabling a fraction of neurons during training. This forces
the network to learn robust representations instead of
memorizing training data.

. Model Training and Hyperparameter Optimization

A critical part of the methodology involves training the
model by iteratively adjusting network weights to
minimize prediction error. Training utilizes Mean
Squared Error (MSE) as the loss function, which is a
standard metric for regression tasks.

A major focus of this research is evaluating how
different numbers of epochs—12, 25, 50, and 100—affect
learning outcomes. Each epoch represents one full pass
through the training dataset. Increasing epochs allows
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deeper learning but risks overfitting if the model begins to
memorize noise rather than extract meaningful patterns.

The optimizer (commonly Adam) is chosen for its
ability to adapt learning rates and converge faster than
traditional gradient descent. Batch size and learning rate
are tuned to balance stability and training efficiency.

. Validation and Testing Strategy

To ensure robust evaluation, the dataset is divided
chronologically:

*  Training set: 80% of the data
*  Testing set: 20% of the data

The model is evaluated exclusively on the testing set,
ensuring predictions simulate real-world forecasting
where future values are unknown.

Metrics used include:
e Mean Squared Error (MSE)
*  Visual comparison of predicted vs. actual curves
*  Loss convergence analysis across epochs

Visualization plays an essential role, as graphical
discrepancies reveal the model’s ability (or inability) to
track sharp fluctuations, trend reversals, and volatile price
spikes.

. Performance Monitoring and Comparative Analysis
During training, loss curves are tracked to determine:
»  Convergence behavior
»  Stability over epochs
* Risk of underfitting (loss not decreasing)

* Risk of overfitting (training loss drops but test
loss rises)

Comparative analysis between GOOGL and NKE
predictions provides insights into how sector type,
volatility, and historical depth affect model
generalization.

The methodology also evaluates how structural changes
in the underlying data—such as the extended NKE dataset
from 1980—impact LSTM’s learning capability. This
allows examination of regime shifts, a common issue in
financial markets.

©IJSRED: All Rights are Reserved
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V.RESULTS AND DISCUSSION

The results of this study provide comprehensive
insights into the effectiveness of LSTM-based deep
learning models for stock price forecasting using
historical daily time-series data. Multiple configurations
of the model were evaluated through varying epoch
counts, different dataset lengths, and comparative visual
and statistical analyses. The findings highlight the
predictive strengths of the LSTM architecture while
revealing important considerations regarding training
stability, volatility sensitivity, and generalization
capability across different financial instruments.

. Performance Across Epochs: Learning Depth vs.

Accuracy

A key objective of the study was to evaluate how
increasing epochs influences model performance.
Experimental results across 12, 25, 50, and 100 epochs
show a clear trend: as the number of epochs increases,
prediction accuracy consistently improves.

Table 2 from the dataset shows decreasing loss values
with higher epochs for both GOOGL and NKE:

e GOOGL loss decreases from 0.0011 (12
epochs) — 0.000497 (100 epochs)

e NKE loss decreases from 0.0019 (12 epochs)
— 0.000874 (100 epochs)

StockPredicrionConferencePaper

This reduction in loss indicates that the model becomes
progressively better at approximating the nonlinear
mapping between historical and future prices.
Higher epochs allow the LSTM’s internal memory gates
to adjust weights more precisely and learn deeper
temporal dependencies.

However, diminishing returns become evident after
around 50 epochs, where improvements continue but at a
slower rate. This suggests that excessively large epoch
counts may yield marginal benefits relative to
computational cost.

. Predictive Behavior for GOOGL Stock

GOOGL’s dataset spans more than 15 years and
contains pronounced long-term upward trends. The model
successfully tracks overall price movements and general
market direction:
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Predicted lines follow the true adjusted close values
closely

LSTM captures trend continuation effectively

Errors primarily occur during sharp fluctuations or
price gaps

Visual plots reveal that predicted curves do not deviate
significantly from actual values except during periods of
high market volatility, such as rapid rallies or sudden
corrections.
These deviations are expected given the inherent
unpredictability of disruptive events (e.g., earnings
announcements, geopolitical news).

The predictive performance improves substantially
between 12 and 50 epochs, with the 100-epoch model
exhibiting the smoothest and closest fit.

. Predictive Behavior for NKE Stock

The NKE stock experiments reveal additional insights
regarding dataset design and volatility effects:

Short-Duration Dataset (2010-2019)
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e Markets change structurally over decades,
requiring advanced models or segmentation

This finding reinforces the importance of selecting
appropriate dataset lengths for forecasting accuracy.

D. Visualization-Based Interpretation

Visual analysis is a crucial part of financial forecasting
evaluation because it reveals characteristics that metrics
alone cannot capture.

Key observations from plots (Figures 3 & 4):

*  Predictions overlap actual price curves more
tightly as epochs increase

* LSTM models tend to smooth predictions
during volatility spikes

*  Models trained with fewer epochs struggle to
adapt to rapid price changes

e For stable or moderately volatile periods,
predictions are nearly indistinguishable from
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When the model is trained on approximately a decade
of data, performance is robust, and predictions closely
match actual price movements. As with GOOGL,
accuracy improves with more epochs.

Extended Dataset (1980-2019)

When extended to nearly 40 years, the model’s
performance deteriorates in certain periods:

e The earliest data (1980s—1990s) shows
substantially different volatility behavior

* Long-term structural changes in NKE’s
business performance introduce regime shifts

*  Price magnitude differences (from $1 to over
$100) create extreme variance even after
normalization

StockPredicrionConferencePaper

The model struggles especially around the 600700 day
testing window, where the predicted values diverge
significantly from real values. This demonstrates that:

e LSTMs may lose temporal coherence when
long-term datasets contain multiple statistical
regimes
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The LSTM’s slight smoothing effect arises from its
sequential averaging behavior across the memory cell,
which may cause underreaction to sudden market shocks.

E. Strengths Observed in LSTM Predictions

1. Ability to Capture Trend Direction The model reliably
predicts long-term upward or downward movement.

2. Effective Learning of Temporal Dependencies Through
gated memory units, LSTM captures multi-lag relationships
in stock prices.

3. Robustness Across Different Epoch Counts Even at low
epoch counts, the model produces usable predictions, though
less precise.

4. Improved Generalization with Moderate Epoch Tuning
The best balance is typically achieved around 50-100 epochs.

F. Interpretation of Model Loss Patterns
Loss curves confirm that:

*Higher epochs — deeper learning — lower training
and testing loss

*Loss convergence is smooth, demonstrating stable
training behavior
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No overfitting is detected in the epoch range used

This indicates that the model was well-regularized and
that further epoch increases might still improve accuracy
marginally.
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considered carefully when preparing financial
time-series models.

e Visual and metric-based evaluations confirm
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G. Overall Discussion

The study demonstrates that LSTM networks are highly
effective for predicting stock prices based on historical
trends. Predictions are accurate in stable regions, closely
follow medium-term cycles, and adapt reasonably well to
market movements. However, extreme volatility and long-
span datasets pose challenges, highlighting the need for
advanced architectures or hybrid feature sets.

Key takeaways:

* LSTM is a strong baseline model for stock
forecasting.

e Epoch count significantly influences
accuracy.

e Dataset length and volatility must be

the model’s predictive reliability, especially
for multi-year datasets without major
structural shifts.

VI.Conclusion

This research demonstrates the effectiveness of Long
Short-Term Memory (LSTM) networks in forecasting
stock market prices using historical daily time-series data.
The study systematically investigated how the depth of
training—quantified by the number of epochs—affects
predictive performance for two distinct assets, GOOGL
and NKE. Through comprehensive experimentation,
visualization, and loss analysis, several important insights
into the behavior and capabilities of deep learning models
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in financial forecasting were revealed.

The results clearly indicate that LSTM is capable of
capturing both short-term fluctuations and long-term
temporal dependencies inherent in stock price
movements. By leveraging its internal memory
mechanisms—comprising forget, input, and output

gates—the model learns complex nonlinear relationships
that traditional statistical approaches and tree-based
machine learning algorithms struggle to approximate. As
demonstrated in the visual predictions and loss tables, the
accuracy of the model improves consistently with
additional training epochs, reinforcing the idea that deeper
learning enables the LSTM to refine its internal
representation of market behavior.

Moreover, the experiments highlight distinct strengths
of the LSTM model. It reliably follows the general
direction and momentum of stock trends, maintains close
tracking during stable market periods, and effectively
smooths out noise that might mislead simpler predictive
models. These characteristics make LSTM a strong
baseline model for tasks involving financial time-series
forecasting.

However, the study also exposes certain limitations that
must be addressed in future work. The model’s
performance deteriorates when trained on extremely long
historical datasets that span multiple economic eras, as
seen in the extended NKE dataset. This behavior
underscores the challenge of market regime shifts, where
the statistical properties of data change significantly over
time. Additionally, LSTM predictions tend to lag during
high-volatility episodes, exhibiting difficulty in capturing
abrupt price reversals or breakout events—Ilimitations that
arise from the smoothing tendencies of recurrent
architectures.
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