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Abstract—It has never been easy to invest in a set of assets, 

the abnormally of financial market does not allow simple 

models to predict future asset values with higher accuracy. 

Machine learning, which consist of making computers 

perform tasks that normally requiring human intelligence 

is currently the dominant trend in scientific research. This 

article aims to build a model using Recurrent Neural 

Networks (RNN) and especially Long-Short Term 

Memory model (LSTM) to predict future stock market 

values. The main objective of this paper is to see in which 

precision a Machine learning algorithm can predict and 

how much the epochs can improve our model. (Abstract) 
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I. INTRODUCTION (HEADING 1) 

The use of machine learning in quantitative finance has 
been the subject of numerous studies. Machine learning 
algorithms can be used to predict prices for managing and 
restricting an entire portfolio of assets, as well as for the 
investment process. Generally speaking, machine learning 
refers to any algorithm that uses computers to identify 
patterns based solely on data without the need for 
programming instructions. Numerous models provide a wide 
range of techniques that can be used with machine learning 
to predict future asset values in quantitative finance, 
particularly in asset selections. These models provide a 
mechanism that combines weak sources of information to 
create an odd but useful tool Recently, a number of machine 
learning algorithms, including support vector machines, 
random forecast, gradient boosted regression trees, and 
critical neural networks, have been refined through the 
combination of statistics and learning models. These 
algorithms can identify some relations that are challenging 
for linear algorithms to identify as well as intricate patterns 
marked by non-linearity. Additionally, compared to linear 
regression algorithms, these algorithms demonstrate greater 
efficacy and multicollinearity. The use of machine learning 
techniques in finance is currently the subject of numerous 
studies; some have employed deep learning to generate future 
values of financial assets [9], while others have used tree-
based models to forecast portfolio returns [4][1]. 
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A few authors reviewed the ADaBoost algorithm's use in 
return forecasting [10]. Others go on to predict stock returns 
using a special decision-making model for day trading stock 
market investments. The authors' model uses the mean-
variance (MV) method for portfolio selection and the support 
vector machine (SVM) method [6]. Deep learning models for 
intelligent indexing were discussed in another paper [3]. 
Additionally, a number of trends and applications of machine 
learning in quantitative finance have been studied [2]. This 
paper reviews the literature on return forecasting, portfolio 
construction, ethics, fraud detection, decision making, 
language processing, and sentiment analysis. Because these 
models don't rely on a single long-term memory (passed data 
sequences), a class of machine learning algorithms based on 
recurrent neural networks has proven to be very helpful in 
forecasting and predicting financial market prices. The 
accuracy of autoregressive integrated moving average 
(ARIMA) and long short-term memory (LSTM) forecasting 
techniques is compared in a paper. When these methods were 
applied to a set of financial data, the outcomes demonstrated 
that LSTM was significantly better than ARIMA [8]. Our 
paper aims to forecast the adjusted closing prices for a 
portfolio of assets using an ML algorithm based on LSTM 
RNN. The primary goal is to find the most accurate trained 
algorithm to predict future values for our portfolio. 

Motivation 

The motivation to develop an advanced machine 
learning–based stock prediction system arises from the 
increasing complexity, volatility, and unpredictability of 
modern financial markets. Stock prices are influenced by a 
diverse set of interlinked factors—macroeconomic 
indicators, sectoral performance, global political conditions, 
corporate earnings, investor sentiment, and unexpected 
market shocks. Traditional forecasting approaches such as 
linear regression, ARIMA, or moving averages struggle to 
model these nonlinear, chaotic patterns. As a result, investors 
often rely on subjective interpretation, intuition, or heuristic-
driven trading strategies that may not generalize well in 
dynamic market environments. 

Machine learning, particularly deep learning, provides a 
powerful alternative to traditional forecasting. Neural 
networks, and especially Recurrent Neural Networks (RNNs) 
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and Long Short-Term Memory (LSTM) architectures, offer 
the capability to learn dependencies across long sequences of 
past data—something classical models cannot achieve. Since 
stock prices exhibit temporal correlations, momentum cycles, 
and long-term memory patterns, LSTM becomes a suitable 
model for capturing deeply embedded trends and subtle 
signals that may influence future asset prices. These models 
do not require explicitly defined rules; instead, they 
autonomously learn complex mappings between historical 
price behavior and future outcomes. 

A. Problem Description and Overview 

Predicting stock market prices is a long-standing 
challenge in quantitative finance due to the inherent 
complexity, noise, and dynamic nature of financial time 
series. Unlike structured and relatively stable domains such 
as medical diagnostics, stock markets exhibit high-frequency 
fluctuations influenced by a wide spectrum of economic, 
psychological, geopolitical, and company-specific factors. 
These factors often interact in nonlinear and unpredictable 
ways, producing patterns that traditional linear models are 
unable to capture effectively. 

The core problem addressed in this study is the 
forecasting of future adjusted closing prices for publicly 
traded stocks using historical daily price data. Stock prices 
exhibit temporal dependencies—past movements often 
influence future trends. However, these dependencies may be 
irregular or masked by volatility spikes, market crises, bull–
bear cycles, or abrupt regime changes. Thus, forecasting 
requires a model that can effectively interpret sequential data 
while retaining information from long-term historical 
patterns. 

C. Importance of Accurate Prediction 

Accurate stock market prediction plays a critical role in 
modern financial decision-making, as it directly influences 
investment strategies, portfolio management, and risk 
mitigation. In today’s fast-moving markets, even small 
improvements in forecasting precision can lead to significant 
financial gains, while poor predictions can result in 
substantial losses. Thus, developing reliable predictive 
models is not merely an academic exercise but a practical 
necessity for traders, institutional investors, hedge funds, and 
automated trading systems. 

One of the primary reasons accurate predictions is 
essential is its direct impact on investment timing. Investors 
aim to buy assets at lower prices and sell them at higher 
values, a strategy highly dependent on anticipating future 
movements. If a model can forecast upward or downward 
trends with reasonable accuracy, investors can time their 
entry and exit points more effectively, resulting in improved 
returns. For example, a model predicting a rising trend in 
GOOGL stock enables investors to initiate positions earlier, 
capturing gains that might otherwise be missed. Accurate 
forecasting also serves as a foundation for risk management. 
Financial markets are inherently volatile, and unexpected 
price movements can threaten the stability of individual 
portfolios or entire investment funds. Forecast models help 
identify potential downturns, enabling proactive decisions 
such as reallocating resources, hedging with derivatives, or 
adjusting stop-loss thresholds. By anticipating adverse 
market developments, investors can safeguard capital and 
reduce exposure to high-risk scenarios. 

D. Objective 

The primary objective of this study is to design, 

develop, and evaluate a machine learning framework 

capable of predicting future stock prices using Long 
Short-Term Memory (LSTM) networks. Given the 

complexity, volatility, and nonlinear characteristics of 

financial time series, the objective is not only to generate 

accurate predictions but also to understand how model 
configuration—particularly the number of training 

epochs—impacts forecasting performance. Building on 

this central aim, several specific objectives guide the 
research methodology and evaluation process. 

1) Develop a robust LSTM-based forecasting model 
for stock price prediction: The first objective 

focuses on constructing an LSTM architecture that 

can effectively learn temporal dependencies in 

historical stock data. Unlike traditional models, 
LSTM networks possess the ability to store long-

term information through memory cells and gating 

mechanisms. 

2) Utilize historical market data to train and validate 

the predictive model: To achieve realistic 

forecasting, the model must be trained on actual 
historical stock data. This includes daily opening, 

closing, high, low, adjusted close, and volume 

information collected over several years for assets 
such as GOOGL and NKE. The objective here is to 

create a time-windowed dataset that captures the 

sequential nature of price evolution. The study aims 

to ensure that the training and testing split (80–20 
ratio) provides the model with sufficient data to 

learn underlying patterns while also offering a fair 

evaluation on unseen price sequences. 

3) Evaluate the effect of training epochs on predictive 

accuracy and model performance: One of the central 

technical objectives is to examine how different 
epoch counts—12, 25, 50, and 100 epochs—impact 

model learning. Deep learning models such as 

LSTM rely heavily on iterative optimization; each 
epoch represents a full pass through the training 

dataset. The hypothesis is that more epochs allow 

for deeper learning of temporal patterns, resulting in 
lower prediction error. However, excessive training 

may lead to overfitting. This study aims to 

quantitatively analyze these trade-offs by 

comparing model losses and prediction trends 
across different epoch settings. 

4) Compare predicted stock prices with actual market 
movements using graphical and statistical methods: 

To validate the effectiveness of the LSTM model, 

the predictions must be visualized and compared 

against real market values. The objective is to use 
evaluation metrics such as Mean Squared Error 

(MSE), along with visual analysis of prediction 

curves, to determine how closely the predicted 
trajectory aligns with true historical pricing. 

Observing the divergence between predicted and 

actual curves helps identify model limitations, 

volatility capture ability, and responsiveness to 
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rapid price changes. 

II. RELATED WORKS 

The application of machine learning in financial 
forecasting has been extensively explored in quantitative 

finance literature, with numerous studies investigating 
traditional, ensemble-based, and deep learning models. 

The dynamic, nonlinear behavior of stock markets has 

inspired researchers to adopt increasingly sophisticated 

techniques capable of capturing hidden patterns in time-
series data. 

Early research predominantly relied on statistical 

methods such as ARIMA and autoregressive models to 

forecast stock prices. While effective for stationary and 
linear datasets, these classical approaches struggled with 

real-world financial data characterized by irregular 

volatility, structural breaks, and long-term dependencies. 

As a result, machine learning methods became a popular 
alternative due to their flexibility and ability to learn 

complex, nonlinear relationships. 

Tree-based machine learning models have 

demonstrated strong predictive capability in several 
studies. For instance, Moritz and Zimmermann (2016) 

applied tree-based conditional portfolio sorting 

techniques to examine relations between past and future 
stock returns, showing that nonlinear models 

outperformed traditional linear regressions. These 

findings emphasized the capacity of machine learning to 

detect subtle interactions across financial features that 
would otherwise remain unobserved. 

Several works further explored ensemble learning 

approaches. Random Forest, Gradient Boosted Trees, and 

AdaBoost gained attention for their ability to reduce 
variance and improve generalization. Wang and Luo 

(2012) discussed the evolution of machine-driven signal 

processing, highlighting the rise of machine learning in 

quantitative strategy development. Similarly, Paiva et al. 
(2018) presented a hybrid decision-making framework 

combining machine learning with portfolio optimization, 

demonstrating that ensemble models can enhance day-
trading outcomes. However, these approaches still lacked 

mechanisms for modeling long-range temporal 

dependencies inherent in sequential financial data. 

 

 

III. DATASET AND BEHAVIOURAL DATA 

 
The dataset used in this study consists of historical daily 

stock price information obtained from publicly available 
financial data sources, specifically Yahoo Finance. The data 
represents the long-term trading history of two major publicly 
traded companies: Alphabet Inc. (GOOGL) and Nike Inc. 
(NKE). These companies were selected due to their extensive 
trading histories, high liquidity, and representation of distinct 
sectors—technology and consumer goods—allowing the 
model to be evaluated on diverse market behaviors. 

1) Open Price: The price at which the stock begins 
trading each day. This value often reflects overnight 
sentiment, global market influence, and pre-market 
trading behavior. 
2) High Price: The maximum price the stock achieves 
during the trading session. This indicator provides insight 
into market enthusiasm and intraday volatility. 
3) Low Price: The lowest price recorded in the trading 
session. It complements the high price measure and helps 
capture the full range of intraday fluctuations. 
4) Close Price: The final trading price of the stock for the 
day. It is widely used in technical analysis and serves as 
one of the most significant indicators of investor 
sentiment. 
5) Adjusted Close Price: A critical feature for this study, 
the adjusted close accounts for dividends, splits, and 
corporate actions. This makes it a more accurate 
representation of a stock’s true value over time and is the 
variable selected for prediction. 
6) Trading Volume: The number of shares traded during 
the session. Volume often correlates with price volatility 
and investor behavior, although the current model focuses 
primarily on price-based features. 

 

A. Data Characteristics Relevant to LSTM Modeling 

Stock price data displays several distinctive 
characteristics that influence model design: 

1) Non-stationarity: The statistical properties of the 

data—mean, variance, autocorrelation—change 
over time. This is especially visible in the NKE 

extended dataset, where price behavior before the 

2000s differs drastically from post-2010 behavior. 

2) Volatility Clustering: Financial markets often 

exhibit periods of high variance followed by calmer 

periods. LSTM networks are capable of learning 
these temporal clusters through gated memory 

mechanisms. 

3) Long-term Dependencies: Market trends and cycles 
can span weeks, months, or even years. LSTM’s 

architecture is specifically designed to retain long-

horizon information, unlike traditional RNNs. 

4) Nonlinear Patterns: Stock prices react to complex 

interactions among economic, psychological, and 
technical factors. LSTM can approximate nonlinear 

relationships better than linear models. 

 

B. Dataset Splitting for Training and Testing 

Following standard time-series forecasting practices, 
the dataset was split into: 

a)  80 % Training Set-Used to teach the LSTM model 
historical patterns. 

b) 20% Testing Set-Used strictly for evaluating 
predictive capability 
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IV. METHODOLOGY  

The methodology adopted in this study encompasses a 

structured, multi-stage approach aimed at constructing an 

effective LSTM-based forecasting system for stock 
market prediction. Because financial markets are 

complex, nonlinear, and highly volatile, a disciplined 

methodology is essential to ensure that the model is 
trained properly, validated rigorously, and capable of 

producing meaningful predictions. This section outlines 

the complete workflow, beginning with data acquisition 

and preprocessing, followed by model architecture design, 
training procedures, hyperparameter tuning, and 

evaluation strategies. 

The methodological flow mirrors best practices from 

prior studies in quantitative finance, particularly research 
emphasizing the advantages of deep learning in handling 

sequential financial datasets. The goal is not only to build 

a predictive model but to develop an end-to-end process 
that is scalable, reproducible, and adaptable to different 

stock market assets and time periods. 

A. Data Acquisition and Preparation 

The first step in the methodology is the extraction of 

historical stock price data from Yahoo Finance for 

GOOGL and NKE. The dataset contains daily prices 
spanning periods of up to several decades, enabling the 

model to learn from extended market cycles and long-

range dependencies. Raw data often contains irregularities 
such as missing values, inconsistent timestamps (e.g., 

market holidays), or skewed price ranges. Therefore, 

preprocessing is essential to convert raw data into a 
structured, model-ready format. 

The dataset is first filtered to extract the adjusted close 

price, which serves as the target variable for prediction. 

The adjusted close is selected due to its stability and 

ability to incorporate dividends, splits, and other corporate 
actions, thus representing the true economic value of a 

security over time. 

B. Normalization and Scaling 

Because neural networks—especially LSTMs—are 

sensitive to input scale, the adjusted close values are 
normalized using Min-Max scaling. This transformation 

maps prices into a 0–1 range, preventing numerical 

instability during training and ensuring that gradients flow 
smoothly through the network. 

Normalization also reduces the dominance of high-

valued features and helps the model treat all time points 

with equal significance. Without scaling, large stock 

values (e.g., GOOGL at over $1000) would overshadow 
smaller ones (e.g., early NKE prices), leading to skewed 

learning behavior. 

C. Sequence Construction for LSTM Input 

LSTM networks require sequential data structured as 

time windows. Therefore, the problem is reframed from a 

simple regression into a sequence learning task. Sliding 
windows, each containing a fixed number of past days 

(e.g., 50 days), are generated as input sequences. The 

target output is the price on the next day. 

This transformation results in a dataset of paired inputs 

(historical sequences) and outputs (future price). Such a 
setup allows the LSTM to learn temporal dependencies, 

trend persistence, reversal signals, momentum shifts, and 

cyclical patterns inherent in stock data. 

The structure becomes: 

• Input shape: (number_of_samples, 

sequence_length, 1) 

• Output shape: (number_of_samples, 1) 

This step transforms the original dataset into a 

supervised learning dataset suitable for deep learning. 

D. Model Architecture Design 

The LSTM model is designed using a progressive, 

multi-layer architecture based on the configuration 
described in Table 1 of the reference paper. The network 

consists of: 

• Four LSTM layers, each with 96 neurons 

• Dropout layers interspersed between LSTMs 

to reduce overfitting 

• A dense output layer with a single neuron to 

predict the next-day price 

The multi-layer LSTM structure enables the network to 

learn hierarchical temporal features. Early layers capture 

short-term fluctuations, while deeper layers capture long-

term patterns and complex nonlinear relationships. 

Dropout layers mitigate overfitting by randomly 

disabling a fraction of neurons during training. This forces 

the network to learn robust representations instead of 

memorizing training data. 

 

E. Model Training and Hyperparameter Optimization 

A critical part of the methodology involves training the 

model by iteratively adjusting network weights to 
minimize prediction error. Training utilizes Mean 

Squared Error (MSE) as the loss function, which is a 

standard metric for regression tasks. 

A major focus of this research is evaluating how 

different numbers of epochs—12, 25, 50, and 100—affect 

learning outcomes. Each epoch represents one full pass 

through the training dataset. Increasing epochs allows 
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deeper learning but risks overfitting if the model begins to 

memorize noise rather than extract meaningful patterns. 

The optimizer (commonly Adam) is chosen for its 

ability to adapt learning rates and converge faster than 

traditional gradient descent. Batch size and learning rate 

are tuned to balance stability and training efficiency. 

 
 

F. Validation and Testing Strategy 

To ensure robust evaluation, the dataset is divided 

chronologically: 

• Training set: 80% of the data 

• Testing set: 20% of the data 

The model is evaluated exclusively on the testing set, 

ensuring predictions simulate real-world forecasting 

where future values are unknown. 

Metrics used include: 

• Mean Squared Error (MSE) 

• Visual comparison of predicted vs. actual curves 

• Loss convergence analysis across epochs 

Visualization plays an essential role, as graphical 

discrepancies reveal the model’s ability (or inability) to 
track sharp fluctuations, trend reversals, and volatile price 

spikes. 

G. Performance Monitoring and Comparative Analysis 

During training, loss curves are tracked to determine: 

• Convergence behavior 

• Stability over epochs 

• Risk of underfitting (loss not decreasing) 

• Risk of overfitting (training loss drops but test 

loss rises) 

Comparative analysis between GOOGL and NKE 

predictions provides insights into how sector type, 

volatility, and historical depth affect model 

generalization. 

The methodology also evaluates how structural changes 

in the underlying data—such as the extended NKE dataset 
from 1980—impact LSTM’s learning capability. This 

allows examination of regime shifts, a common issue in 

financial markets. 

 

 

 

 

V. RESULTS AND DISCUSSION 

The results of this study provide comprehensive 
insights into the effectiveness of LSTM-based deep 

learning models for stock price forecasting using 

historical daily time-series data. Multiple configurations 
of the model were evaluated through varying epoch 

counts, different dataset lengths, and comparative visual 

and statistical analyses. The findings highlight the 
predictive strengths of the LSTM architecture while 

revealing important considerations regarding training 

stability, volatility sensitivity, and generalization 

capability across different financial instruments. 

A. Performance Across Epochs: Learning Depth vs. 

Accuracy 

A key objective of the study was to evaluate how 
increasing epochs influences model performance. 

Experimental results across 12, 25, 50, and 100 epochs 

show a clear trend: as the number of epochs increases, 
prediction accuracy consistently improves. 

Table 2 from the dataset shows decreasing loss values 

with higher epochs for both GOOGL and NKE: 

• GOOGL loss decreases from 0.0011 (12 

epochs) → 0.000497 (100 epochs) 

• NKE loss decreases from 0.0019 (12 epochs) 

→ 0.000874 (100 epochs) 

StockPredicrionConferencePaper 

This reduction in loss indicates that the model becomes 

progressively better at approximating the nonlinear 

mapping between historical and future prices. 

Higher epochs allow the LSTM’s internal memory gates 
to adjust weights more precisely and learn deeper 

temporal dependencies. 

However, diminishing returns become evident after 

around 50 epochs, where improvements continue but at a 
slower rate. This suggests that excessively large epoch 

counts may yield marginal benefits relative to 

computational cost. 

B. Predictive Behavior for GOOGL Stock 

GOOGL’s dataset spans more than 15 years and 
contains pronounced long-term upward trends. The model 

successfully tracks overall price movements and general 

market direction: 
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Predicted lines follow the true adjusted close values 

closely 

LSTM captures trend continuation effectively 

Errors primarily occur during sharp fluctuations or 

price gaps 

Visual plots reveal that predicted curves do not deviate 

significantly from actual values except during periods of 

high market volatility, such as rapid rallies or sudden 

corrections. 
These deviations are expected given the inherent 

unpredictability of disruptive events (e.g., earnings 

announcements, geopolitical news). 

The predictive performance improves substantially 

between 12 and 50 epochs, with the 100-epoch model 

exhibiting the smoothest and closest fit. 

C. Predictive Behavior for NKE Stock 

The NKE stock experiments reveal additional insights 

regarding dataset design and volatility effects: 

Short-Duration Dataset (2010–2019) 

When the model is trained on approximately a decade 

of data, performance is robust, and predictions closely 

match actual price movements. As with GOOGL, 

accuracy improves with more epochs. 

Extended Dataset (1980–2019) 

When extended to nearly 40 years, the model’s 

performance deteriorates in certain periods: 

• The earliest data (1980s–1990s) shows 

substantially different volatility behavior 

• Long-term structural changes in NKE’s 

business performance introduce regime shifts 

• Price magnitude differences (from $1 to over 

$100) create extreme variance even after 
normalization 

StockPredicrionConferencePaper 

The model struggles especially around the 600–700 day 

testing window, where the predicted values diverge 

significantly from real values. This demonstrates that: 

• LSTMs may lose temporal coherence when 

long-term datasets contain multiple statistical 
regimes 

• Markets change structurally over decades, 

requiring advanced models or segmentation 

This finding reinforces the importance of selecting 

appropriate dataset lengths for forecasting accuracy. 

 

D. Visualization-Based Interpretation 

Visual analysis is a crucial part of financial forecasting 

evaluation because it reveals characteristics that metrics 
alone cannot capture. 

Key observations from plots (Figures 3 & 4): 

• Predictions overlap actual price curves more 

tightly as epochs increase 

• LSTM models tend to smooth predictions 

during volatility spikes 

• Models trained with fewer epochs struggle to 

adapt to rapid price changes 

• For stable or moderately volatile periods, 

predictions are nearly indistinguishable from 

real data 

The LSTM’s slight smoothing effect arises from its 

sequential averaging behavior across the memory cell, 

which may cause underreaction to sudden market shocks. 

 

E. Strengths Observed in LSTM Predictions 

1. Ability to Capture Trend Direction The model reliably 
predicts long-term upward or downward movement. 

2. Effective Learning of Temporal Dependencies Through 
gated memory units, LSTM captures multi-lag relationships 
in stock prices. 

3. Robustness Across Different Epoch Counts Even at low 
epoch counts, the model produces usable predictions, though 
less precise. 

4. Improved Generalization with Moderate Epoch Tuning 

The best balance is typically achieved around 50–100 epochs. 

 

F. Interpretation of Model Loss Patterns 

Loss curves confirm that: 

•Higher epochs → deeper learning → lower training 
and testing loss 

•Loss convergence is smooth, demonstrating stable 
training behavior 

Epochs NKE NKE zomed view 

25 Epochs 
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No overfitting is detected in the epoch range used 

This indicates that the model was well-regularized and 
that further epoch increases might still improve accuracy 
marginally. 

 

G. Overall Discussion 

The study demonstrates that LSTM networks are highly 
effective for predicting stock prices based on historical 
trends. Predictions are accurate in stable regions, closely 
follow medium-term cycles, and adapt reasonably well to 
market movements. However, extreme volatility and long-
span datasets pose challenges, highlighting the need for 
advanced architectures or hybrid feature sets. 

Key takeaways: 

• LSTM is a strong baseline model for stock 
forecasting. 

• Epoch count significantly influences 

accuracy. 

• Dataset length and volatility must be 

considered carefully when preparing financial 

time-series models. 

• Visual and metric-based evaluations confirm 

the model’s predictive reliability, especially 
for multi-year datasets without major 

structural shifts. 

 

 

VI. Conclusion 

This research demonstrates the effectiveness of Long 
Short-Term Memory (LSTM) networks in forecasting 

stock market prices using historical daily time-series data. 
The study systematically investigated how the depth of 

training—quantified by the number of epochs—affects 

predictive performance for two distinct assets, GOOGL 

and NKE. Through comprehensive experimentation, 
visualization, and loss analysis, several important insights 

into the behavior and capabilities of deep learning models 
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in financial forecasting were revealed. 

The results clearly indicate that LSTM is capable of 

capturing both short-term fluctuations and long-term 
temporal dependencies inherent in stock price 

movements. By leveraging its internal memory 

mechanisms—comprising forget, input, and output  

gates—the model learns complex nonlinear relationships 

that traditional statistical approaches and tree-based 
machine learning algorithms struggle to approximate. As 

demonstrated in the visual predictions and loss tables, the 

accuracy of the model improves consistently with 
additional training epochs, reinforcing the idea that deeper 

learning enables the LSTM to refine its internal 

representation of market behavior. 

Moreover, the experiments highlight distinct strengths 

of the LSTM model. It reliably follows the general 
direction and momentum of stock trends, maintains close 

tracking during stable market periods, and effectively 

smooths out noise that might mislead simpler predictive 
models. These characteristics make LSTM a strong 

baseline model for tasks involving financial time-series 

forecasting. 

However, the study also exposes certain limitations that 

must be addressed in future work. The model’s 
performance deteriorates when trained on extremely long 

historical datasets that span multiple economic eras, as 

seen in the extended NKE dataset. This behavior 
underscores the challenge of market regime shifts, where 

the statistical properties of data change significantly over 

time. Additionally, LSTM predictions tend to lag during 

high-volatility episodes, exhibiting difficulty in capturing 
abrupt price reversals or breakout events—limitations that 

arise from the smoothing tendencies of recurrent 

architectures. 
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