
International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov-Dec 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 3063

EDGE DETECTION AND IMAGE SMOOTHING USING SOBEL

FILTERING ON A ZYNQ SoC PLATFORM

A Arathi
Department of Electronics and Communication

Engineering

The Oxford College of engineering

Bangalore, India

arathiii24@gmail.com

Bhumika YH
Department of Electronics and Communication

Engineering

The Oxford College of engineering

Bangalore, India

bhumikayh05@gmail.com

Chandana ML
 Department of Electronics and Communication

Engineering

The Oxford College of engineering

Bangalore, India

ml.chandana02@gmail.com

Ganavi K
Department of Electronics and Communication

Engineering

The Oxford College of engineering

Bangalore, India

ganavi0202@gmail.com

SWATI KUMARI ROY
Assistant Professor,

Department of Electronics and Communication Engineering

The Oxford College of engineering

Bangalore, India

royn8417@gmail.com

--************************----------------------------------

Abstract:
 Real-time edge detection is a fundamental requirement in embedded vision applications such as

robotics, industrial inspection, surveillance, and autonomous systems Traditional software-based Sobel edge

detection methods are limited by sequential execution, leading to increased processing latency. To address

this issue, this work presents a hardware-accelerated Sobel edge detection system implemented on a Xilinx

Zynq System-on-Chip (SoC). The design leverages FPGA parallelism for high-speed, low-latency image

processing, while the ARM processor handles control and memory operations. Bitmap images stored in

DDR memory are transferred to the programmable logic using AXI DMA. A fully pipelined Verilog-based

accelerator performs Sobel convolution, gradient magnitude calculation, and thresholding, enabling

continuous pixel processing at one pixel per clock cycle. Experimental results obtained through simulation

and hardware validation using Vivado 2018.2 demonstrate significant performance improvement over CPU-

based execution, producing accurate real-time edge outputs. Although extended operation results in

increased device temperature, requiring thermal optimization, the proposed system remains efficient,

scalable, and suitable for real-time embedded image-processing applications.

Keywords— Sobel operator, FPGA acceleration, Zynq SoC, real-time image processing, AXI DMA,

Verilog HDL.

--************************----------------------------------

I. INTRODUCTION

Digital image processing has become a core

component of modern embedded systems, enabling

a wide range of applications such as autonomous

navigation, medical imaging, industrial inspection,

surveillance, and robotics [1], [6]. Among the

various operations involved in computer vision, edge

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov-Dec 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 3064

detection is one of the most fundamental tasks, as it

identifies object boundaries, structural features, and

regions of interest by detecting sharp intensity

variations within an image [2]. Accurate and real-

time edge extraction is particularly important for

systems that require fast and reliable decision-

making, including autonomous robots and safety-

critical monitoring platforms [3].

The Sobel operator is one of the most commonly

used edge detection techniques due to its simplicity,

low computational overhead, and effectiveness in

highlighting intensity gradients [8]. However,

implementing Sobel filtering on general-purpose

processors often fails to satisfy real-time constraints

because of sequential execution and the large

number of convolution operations involved [4].

Although GPUs offer improved parallel processing

capability, they are generally unsuitable for low-

power embedded platforms due to higher energy

consumption, increased memory bandwidth

requirements, and additional processing latency [5].

Previous research has demonstrated the benefits of

FPGA-based image processing through the use of

hardware convolution engines, optimized filtering

architectures, and hybrid processing pipelines [6],

[7]. These approaches have shown significant

improvements in execution speed and determinism

when compared to software-based implementations.

However, many existing works primarily focus on

individual processing modules and do not fully

address system-level challenges such as efficient

DDR memory access, DMA scheduling, processor-

to-logic communication, and continuous high-

resolution image streaming [8], [9].

These limitations highlight the need for a fully

integrated and optimized FPGA-based architecture

capable of performing real-time Sobel edge

detection with minimal processor intervention and

efficient memory management. The objective of this

work is to design and implement a fully pipelined

Sobel edge detection accelerator on a Xilinx Zynq

System-on-Chip (SoC). The proposed system

processes bitmap images directly from DDR

memory using AXI DMA streaming, combining the

flexibility of an ARM processor with the high

parallelism offered by FPGA logic [6], [10].

The key contributions of this work are summarized

as follows:

1. A hardware–software co-design that

integrates ARM-based system control with

FPGA-based pixel-level processing.

2. A fully pipelined Sobel operator

implemented in Verilog HDL, achieving one

pixel per clock cycle throughput.

3. Direct processing of BMP images from DDR

memory without intermediate format

conversion.

4. Complete system validation through

simulation and real-time hardware execution.

5. Performance evaluation demonstrating

significant improvements in speed, latency,

and computational efficiency compared to

software-based implementations.

Overall, this work demonstrates that a carefully

optimized FPGA pipeline can provide deterministic,

scalable, and high-performance edge detection,

making it well suited for real-time embedded vision

applications [7], [10].

II. LITERATURE SURVEY

An Digital image processing has received

considerable attention in fields such as medical

diagnostics, object recognition, and autonomous

systems, where retaining key structural information

like edges and textures is crucial. Numerous

approaches have been developed to improve image

quality without compromising real-time

performance. Among these, classical edge detection

techniques such as the Laplacian of Gaussian (LoG)

and Sobel operators remain widely used. The LoG

method is particularly effective in emphasizing fine

structural details, making it suitable for feature

extraction tasks [1]. In contrast, while the Canny edge

detector offers high detection accuracy, its

computational complexity limits its suitability for

real-time embedded applications [2].

To overcome the constraints of software-based

implementations, researchers have increasingly

turned to hardware-accelerated solutions. FPGA-

based Sobel edge detection architectures have

demonstrated notable improvements in processing

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov-Dec 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 3065

speed and throughput compared to CPU-based

approaches, especially in applications such as vehicle

detection and object identification [3]. Optimized

two-dimensional convolution architectures for FPGA

platforms have further contributed to reduced

processing latency and faster image computation [4].

In addition, FPGA-based eye-gaze tracking systems

highlight the effectiveness of hardware acceleration

for real-time vision-driven human–machine

interaction [5].

As the demand for high-speed and low-latency image

processing continues to grow, hardware–software co-

design approaches using FPGA platforms have

gained widespread interest. Configurable image

processing systems developed using Verilog HDL on

FPGA devices have shown the ability to deliver

reliable real-time performance, particularly in

medical and clinical imaging applications [6].

Furthermore, hybrid filtering techniques that

combine edge detection with noise reduction have

been successfully implemented on FPGA, achieving

deterministic operation with high throughput [7].

Recent studies have also focused on improving

design efficiency and system-level integration.

FPGA–Simulink-based accelerated image processing

frameworks have been proposed to simplify

development while preserving real-time performance

[8]. Gaussian filtering implemented on FPGA has

proven effective for image pre-processing and noise

suppression in real-time environments [9].

Additionally, Verilog-based FPGA systems designed

for medical image enhancement further demonstrate

the advantages of hardware acceleration in achieving

efficient and dependable image processing solutions

[10].

Overall, existing research strongly indicates that

FPGA-based architectures offer substantial benefits

in terms of processing speed, determinism, and real-

time capability, making them highly suitable for

implementing edge detection and image processing

algorithms in modern embedded vision systems.

III. METHODOLOGY

A. System Design

The proposed system is implemented on a Xilinx

Zynq System-on-Chip (SoC), which combines an

ARM-based Processing System (PS) with

programmable FPGA logic (PL) to enable real-time

hardware acceleration for Sobel edge detection. The

input image is used directly in bitmap (BMP) format,

allowing raw pixel values to be accessed without

compression or decoding, thereby simplifying the

data flow and reducing processing overhead. The

image is stored in external DDR memory connected

to the PS, from where an AXI DMA controller

streams the pixel data to the custom image-

processing hardware in the PL using the AXI4-

Stream interface.

The programmable logic includes dedicated

hardware blocks such as line buffers, convolution

units, gradient computation modules, and magnitude

calculation circuits to implement the Sobel filter in a

fully pipelined manner. As pixels stream through the

hardware, edge detection is performed continuously

in real time. The processed output is transferred back

to DDR memory through the DMA, and completion

interrupts are sent to the PS for further display,

analysis, or storage. Proper clock management

ensures synchronization between the PS and PL

domains. This architecture achieves low-latency and

high-throughput edge detection by effectively

combining software control with FPGA parallelism,

making it suitable for real-time embedded image-

processing applications.

Fig -1: Zynq SoC Architecture

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov-Dec 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 3066

B. Algorithms

The Sobel operator is a classical edge detection technique that

calculates the spatial gradient of an image to highlight regions

with rapid intensity variations, typically corresponding to

object boundaries. It uses two orthogonal 3 × 3 convolution
masks, as illustrated in Fig-2, where one kernel detects

horizontal transitions and the other identifies vertical intensity

changes. By convolving the input grayscale image with these

masks, the horizontal and vertical gradient components,

denoted as Gx and Gy, respectively, are obtained.

The gradient magnitude at each pixel is then computed using

the standard expression,

However, for real-time or hardware-based implementations, a

simplified form such as,

G(x,y) = |Gx| + |Gy| …..equation(2)

is frequently adopted reduce computational complexity 3 to

while retaining acceptable detection performance.

The direction of the edge can also be calculated using

tan⁻¹(Gy/Gx), although many applications focus solely on the

magnitude of the output for visualization and post-processing.

The kernels shown in Figure 2 inherently perform smoothing

owing to their larger size compared to operators such as t he

Roberts Cross. This smoothing effect results in a higher noise

tolerance, making Sobel filters suitable for real-world images.

However, it also causes the edges to appear thicker. To improve

computational efficiency, a pseudo-convolution
implementation, such as the kernel arrangement shown in

Figure 3, can be used, enabling a fast estimation of the gradient

magnitude in a single pass.

Fig-3: Pseudo-convolution kernels are applied to achieve rapid

approximation of the gradient magnitude.

Using this kernel the approximate magnitude is given by:

|G|=|(P1+2×P2+P3)-(P7+2×P8+P9)|+|(P3+2×P6+P9)-

(P1+2×P4+P7) …...equation(3)

A related method, the Prewitt operator, shown in equation(3),

uses similar masks but offers reduced isotropy and slightly

poorer edge localization than the Canny operator. Nevertheless,

the Sobel operator remains widely adopted because of its

simplicity, computational efficiency, and suitability for FPGA-

based acceleration and embedded real-time vision systems.

Steps for FPGA-Based Sobel Filtering:

1. Import the BMP image and store it in external DDR

memory connected to the Zynq PS.

2. Initialize the AXI DMA for high-speed data transfer

between DDR and PL.

3. Configure the custom spatial filter IP in PL via AXI4-

Lite registers.

4. Stream pixel data from DDR to PL through AXI4-

Stream using DMA (MM2S).
5. Use line buffers in PL to create a 3×3 sliding window

for convolution.

6. Apply Sobel or spatial filter kernels with MAC units

to compute intensity values.

7. Transfer processed data back to DDR via DMA

(S2MM).

8. Generate an interrupt (IRQ_F2P) to signal frame

completion.

9. Read and display, store, or transmit the processed

image from DDR.

10. Validate output visually and through simulation for

correctness, latency, throughput, and resource usage.

The experimental setup is based on implementing spatial

filtering and Sobel edge detection hardware on the Xilinx

platform, where the input BMP image is loaded into external

DDR memory and processed in real time by a custom

accelerator implemented in the Programmable Logic.

Fig-4: Target System Architecture

The design was developed and implemented using Xilinx

Vivado 18.2, which was used for block design, RTL

development, synthesis, implementation, and IP integration.

Vitis/SDK was used to write and execute the embedded

software required for DMA configuration, interrupt handling,

and system control. The hardware platform includes DDR

P1 P2 P3

P4 P5 P6

P7 P8 P9

DDR

Zynq

PS

Intr

DMA

controller

Image

processing

 IP

AXI

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov-Dec 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 3067

memory, AXI interconnects for communication between the PS

and PL, and an interrupt mechanism to signal frame

completion.

Simulation and verification were conducted within the Vivado

environment, and real-time testing was performed using test
images provided by a host system. This setup enabled the

evaluation of the system in terms of throughput, latency,

filtering accuracy, and FPGA resource utilization.

IV. IMPLEMENTATION

The proposed Sobel edge detection system was

implemented on a Xilinx Zynq SoC (system on chip)

platform using a hardware/software co-design

approach. The programmable logic (PL) performs

real-time spatial filtering and gradient computation,

whereas the processing system (PS) handles system

configuration, memory management, and control

flow. The following subsections describe the

hardware and software platforms used, Verilog HDL

development flow, Vivado toolchain workflow, and

experimental setup used for validating the system.

A. Hardware and Software.

The proposed system was implemented on the Xilinx Zynq

System-on-Chip (SoC), which combines a dual-core ARM

Cortex-A9 processor with FPGA programmable logic on a

single platform. This heterogeneous architecture enables

compute-intensive Sobel edge detection to be executed in

hardware, while system configuration and data management are

handled by the ARM processor through DMA control.

Xilinx Vivado 2018.2 was used as the development

environment, providing an integrated flow for design entry,

synthesis, IP integration, simulation, and hardware debugging.

The IP Integrator simplified system-level integration, while the

Vivado Logic Analyzer supported real-time signal observation

during hardware execution.

The Sobel accelerator was developed using Verilog HDL at the

RTL level, allowing efficient parallel computation and low-

latency processing. AXI interfaces were employed for system
communication, with AXI4-Lite used for control and AXI-

Stream for high-speed pixel data transfer between DDR

memory, DMA, and the custom hardware core. External DDR

memory was used to store image frames, supporting high-

resolution processing without FPGA memory constraints.

B. Verilog HDL Design Flow

The Verilog design follows a structured hierarchical

methodology to ensure reusability, modularity, and synthesis

efficiency. The expandable architecture divides the system into

well-defined blocks that communicate through standardized

signals and generate outputs in a continuous streaming format.

Fig-5: Line Buffer

At the lowest level, line buffer modules store three consecutive

image rows to enable 3×3 window-based Sobel processing,

using shift registers and block RAM to support continuous

high-speed data flow. As pixels stream in, a nine-pixel window

is generated and passed to the convolution stage, where

horizontal and vertical Sobel kernels are applied in parallel to

compute the gradient components Gx and Gy within a single
clock cycle. The resulting edge magnitude is then calculated

using either an exact or approximate method, with scaling and

saturation logic to prevent overflow and preserve contrast.

Finite state machines control data flow and synchronization

between modules, and the final processed pixel stream is

transmitted through the AXI-Stream output interface.

Functional correctness was validated through simulation prior

to synthesis and hardware deployment.

C. Vivado Workflow

The FPGA design was developed using Xilinx Vivado 2018.2

following a structured workflow. System components such as

the Zynq Processing System, AXI DMA, interconnects, GPIO,

and the custom Sobel IP were integrated using the IP Integrator,

allowing graphical configuration of clocks, resets, and AXI

interfaces.

The Verilog RTL design was then synthesized, where Vivado

mapped logic to FPGA resources and reported timing and

utilization. This was followed by placement and routing, during
which timing constraints were analyzed and optimized to

achieve timing closure at the target clock frequency. After

successful implementation, the FPGA bitstream was generated

and programmed onto the device.

Finally, hardware validation was performed using ARM-based

software to initialize DDR memory, configure DMA, and

control data transfer through memory-mapped I/O, ensuring

efficient and continuous image processing with minimal CPU

involvement.

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov-Dec 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 3068

D. Experimental Setup

The system was validated using grayscale bitmap images stored

directly in external DDR memory, removing the need for

intermediate conversion and minimizing latency. Images are

loaded into DDR via JTAG, SD card, or external
communication, while the ARM processor configures the AXI

DMA engine to stream pixel data directly to the Sobel hardware

accelerator. The programmable logic performs real-time edge

detection on a pixel-per-cycle basis using line buffers, and the

processed output is returned via DMA to DDR memory for

storage or display. This setup allows results to be compared

with software implementations in terms of edge sharpness,

gradient clarity, noise suppression, and processing speed.

Hardware acceleration with DMA significantly reduces

processor workload, enabling the ARM core to handle

supervisory tasks instead of pixel-level processing. The

combination of Verilog RTL design, Vivado implementation,

and the Zynq SoC’s parallel architecture provides low-latency,

deterministic performance suitable for embedded vision

applications. Additionally, the system maintains flexibility for

future enhancements, including threshold adaptation, multi-
kernel support, and chained image processing stages, while

achieving real-time Sobel edge detection efficiently.

V. RESULTS AND ANALYSIS

The proposed Sobel-based edge detection
architecture was successfully implemented on a
Xilinx Zynq SoC platform using Verilog HDL and
Vivado 2018.2 software. The system was verified at
multiple stages, including simulations, software–
hardware integration, and real-time hardware
execution.

A. Simulation Results

Fig-6: Simulation Output of Sobel Filter

Before hardware testing, each unit of the design was validated

through functional simulations using the Vivado Simulator.

Test benches were created to evaluate the following:-

The simulation waveforms confirmed that the architecture

produced accurate gradient values for each pixel stream. After

pipeline filling, the system processes one pixel per clock cycle,

demonstrating a fully parallel and pipelined hardware

execution. The control logic and DMA signalling were verified

to ensure a proper data handshake between the Processing

System (PS) and Programmable Logic (PL).

Fig-7: Input Image & Output Image of Edge Detection

The design was synthesized, implemented, and deployed on a

Zynq-7000 FPGA. Images in bitmap format were transferred

through the AXI DMA from the DDR memory to the custom

Sobel accelerator and written back after processing.

The results demonstrate that the Sobel filter implementation

effectively identifies edges across diverse image types,
preserving critical boundary information while maintaining

computational efficiency.

B. Resource Utilization

The implementation results generated in Vivado 2018.2 show

moderate usage of FPGA resources. The main resource

contributions come from:

• LUTs and registers used for pixel datapaths and
pipeline staging.

• DSP units used for multiply–accumulate operations

• BRAM blocks used to implement the three- line

buffer.

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov-Dec 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 3069

Fig-8: Utilization Report of Sobel Filter

The moderate utilization leaves sufficient programmable logic

further enhancements such as multi-filter support, noise

reduction, or more advanced algorithms like Canny or

Laplacian filtering.

C. Power Report

Fig-9: On-Chip Power Report of Sobel Filter

The on-chip power analysis shows that the total power

consumption is dominated by dynamic power, which accounts

for approximately 94% of the overall power usage, while static

device power contributes only 6%. Among the dynamic
components, signal activity is the major contributor at 65%,

followed by logic power at 27%, indicating high switching

activity due to continuous pixel processing. I/O power accounts

for 7%, reflecting data movement through AXI interfaces,

whereas BRAM power consumption is minimal at 1%, showing

efficient memory utilization. This power distribution confirms

that the design effectively exploits FPGA parallelism but also

highlights the need for thermal management during prolonged

operation.

D. Comparison with Conventional Methods

Parameter
CPU-Based

Sobel

FPGA-Based Sobel

(Proposed)

Execution Style
Sequential
processing

Parallel and pipelined
processing

Parameter
CPU-Based

Sobel

FPGA-Based Sobel

(Proposed)

Throughput Low to moderate
High (one pixel per clock

cycle)

Latency High Very low

Real-Time
Capability

Limited Yes (real-time)

Processor Load
High CPU
utilization

Minimal processor
involvement

Power Efficiency Lower Higher (energy efficient)

Noise Handling Moderate
Better due to stable hardware
timing

Table -1: Comparison of CPU based & FPGA-Based Sobel Filter

VI. CONCLUSIONS

This work presents a Sobel edge detection

accelerator implemented on the Xilinx Zynq SoC,

featuring DMA-based streaming, AXI memory

communication, and a fully pipelined Verilog engine

achieving one pixel per clock cycle. Hardware

validation confirms accurate edge extraction across

various image features. Prolonged operation causes

notable temperature rise, highlighting the need for

thermal management and power optimization in

future designs. Overall, the system delivers low-

latency, high-throughput edge detection, reducing

processor load while preserving FPGA resources for

additional processing stages.

Future Scope :

Future enhancements could improve performance,

flexibility, and reliability. Thermal management

strategies, algorithmic upgrades like Gaussian

smoothing and non-max suppression, and support for

multiple edge operators selectable at runtime can

boost efficiency and edge quality. Dynamic

frequency scaling and direct integration with MIPI

or CSI-2 cameras would enable live image

acquisition while reducing processor load. These

improvements would make the system more robust,

scalable, and suitable for diverse real-time embedded

vision applications.

REFERENCES
[1] Y. Cao, N. Wei, X. Zhu and J. Ma, "Image Processing

Algorithm Design for Low-Light EBCMOS Devices

Based on FPGA," 2023 3rd International Conference

Information Engineering on and Electronic Computer

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov-Dec 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 3070

Communication (EIECC), Wuhan, China, 2023, pp. 1-6,

doi: 10.1109/EIECC60864.2023.10456650.

[2] I. Chiuchisan, "An approach to the Verilog based system

for medical image enhancement," 2022 E-Health and

Bioengineering Conference (EHB), Iasi, Romania, 2022,

pp. 1-4, doi: 10.1109/EHB.2022.7391461.
[3] V. S. Seleznev, E. O. Antonova, A. V. Iluhin, R. A.

Gematudinov and L. Y. Isaeva, "Implementation on Sobel

Field-Programmable Gate Array Detector for

Identification of Vehicles," 2021 Intelligent Technologies

and Electronic Devices in Vehicle and Road Transport

Complex (TIRVED), Moscow, Russia, 2021,

10.1109/TIRVED53476.2021.9639132. pp.

[4] C. T. Hai, O. C. Pun and T. W. Haw, "Accelerating video

and image processing design for FPGA using HDL coder

and Simulink," 2015 IEEE Conference on Sustainable

Utilization And Development In Engineering and
Technology (CSUDET), Selangor, Malaysia, 2021, pp. 1-

5, doi: 10.1109/CSUDET.2021.7446221.

[5] D. A. Padilla et al., "Implementation of eye gaze tracking

technique on FPGA-based on-screen keyboard system

using Verilog and MATLAB," TENCON 2020 - 2020

IEEE Region 10 Conference, Penang, Malaysia, 2020, pp.

2771 2776, doi: 10.1109/TENCON.2017.8228333.

[6] M. Sreenivasulu and T. Meenpal, "Efficient Hardware

Implementation of 2D Convolution on FPGA for Image

Processing Application," 2019 IEEE ICECCT,

Coimbatore, India, 2019, pp. 1-5, doi:

10.1109/ICECCT.2019.8869347.
[7] Sankaranarayanan, V. et al. (2018). Real-time edge

detection and noise reduction using hybrid filters on

FPGA. Journal of Real-Time Image Processing, 17(5),

1531-1545.

[8] Aparna, S. et al. (2017). FPGA-based real-time edge

detection. International Journal of Computer Science and

Engineering, 5(3), 113–120.

[9] Zhou, S. et al. (2015). FPGA-based Gaussian filter for real-

time image processing. IEEE Transactions on Circuits and

Systems for Video Technology, 25(3), 428–436.

[10] Chiuchisan, "An approach to the Verilog based system for
medical image enhancement," 2015 E-Health and

Bioengineering Conference (EHB), Iasi, Romania, 2015,

pp. 1-4, doi: 10.1109/EHB.2015.7391461.

