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Abstract: 
            Real-time edge detection is a fundamental requirement in embedded vision applications such as 

robotics, industrial inspection, surveillance, and autonomous systems Traditional software-based Sobel edge 

detection methods are limited by sequential execution, leading to increased processing latency. To address 

this issue, this work presents a hardware-accelerated Sobel edge detection system implemented on a Xilinx 

Zynq System-on-Chip (SoC). The design leverages FPGA parallelism for high-speed, low-latency image 

processing, while the ARM processor handles control and memory operations. Bitmap images stored in 

DDR memory are transferred to the programmable logic using AXI DMA. A fully pipelined Verilog-based 

accelerator performs Sobel convolution, gradient magnitude calculation, and thresholding, enabling 

continuous pixel processing at one pixel per clock cycle. Experimental results obtained through simulation 

and hardware validation using Vivado 2018.2 demonstrate significant performance improvement over CPU-

based execution, producing accurate real-time edge outputs. Although extended operation results in 

increased device temperature, requiring thermal optimization, the proposed system remains efficient, 

scalable, and suitable for real-time embedded image-processing applications. 

 

Keywords— Sobel operator, FPGA acceleration, Zynq SoC, real-time image processing, AXI DMA, 

Verilog HDL. 

----------------------------------------************************----------------------------------

I.     INTRODUCTION 

Digital image processing has become a core 

component of modern embedded systems, enabling 

a wide range of applications such as autonomous 

navigation, medical imaging, industrial inspection, 

surveillance, and robotics [1], [6]. Among the 

various operations involved in computer vision, edge 
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detection is one of the most fundamental tasks, as it 

identifies object boundaries, structural features, and 

regions of interest by detecting sharp intensity 

variations within an image [2]. Accurate and real-

time edge extraction is particularly important for 

systems that require fast and reliable decision-

making, including autonomous robots and safety-

critical monitoring platforms [3]. 

 

The Sobel operator is one of the most commonly 

used edge detection techniques due to its simplicity, 

low computational overhead, and effectiveness in 

highlighting intensity gradients [8]. However, 

implementing Sobel filtering on general-purpose 

processors often fails to satisfy real-time constraints 

because of sequential execution and the large 

number of convolution operations involved [4]. 

Although GPUs offer improved parallel processing 

capability, they are generally unsuitable for low-

power embedded platforms due to higher energy 

consumption, increased memory bandwidth 

requirements, and additional processing latency [5]. 

Previous research has demonstrated the benefits of 

FPGA-based image processing through the use of 

hardware convolution engines, optimized filtering 

architectures, and hybrid processing pipelines [6], 

[7]. These approaches have shown significant 

improvements in execution speed and determinism 

when compared to software-based implementations. 

However, many existing works primarily focus on 

individual processing modules and do not fully 

address system-level challenges such as efficient 

DDR memory access, DMA scheduling, processor-

to-logic communication, and continuous high-

resolution image streaming [8], [9]. 

 

These limitations highlight the need for a fully 

integrated and optimized FPGA-based architecture 

capable of performing real-time Sobel edge 

detection with minimal processor intervention and 

efficient memory management. The objective of this 

work is to design and implement a fully pipelined 

Sobel edge detection accelerator on a Xilinx Zynq 

System-on-Chip (SoC). The proposed system 

processes bitmap images directly from DDR 

memory using AXI DMA streaming, combining the 

flexibility of an ARM processor with the high 

parallelism offered by FPGA logic [6], [10]. 

The key contributions of this work are summarized 

as follows: 

1. A hardware–software co-design that 

integrates ARM-based system control with 

FPGA-based pixel-level processing. 

2. A fully pipelined Sobel operator 

implemented in Verilog HDL, achieving one 

pixel per clock cycle throughput. 

3. Direct processing of BMP images from DDR 

memory without intermediate format 

conversion. 

4. Complete system validation through 

simulation and real-time hardware execution. 

5. Performance evaluation demonstrating 

significant improvements in speed, latency, 

and computational efficiency compared to 

software-based implementations. 

 

Overall, this work demonstrates that a carefully 

optimized FPGA pipeline can provide deterministic, 

scalable, and high-performance edge detection, 

making it well suited for real-time embedded vision 

applications [7], [10]. 
 

II.     LITERATURE SURVEY 

An Digital image processing has received 

considerable attention in fields such as medical 

diagnostics, object recognition, and autonomous 

systems, where retaining key structural information 

like edges and textures is crucial. Numerous 

approaches have been developed to improve image 

quality without compromising real-time 

performance. Among these, classical edge detection 

techniques such as the Laplacian of Gaussian (LoG) 

and Sobel operators remain widely used. The LoG 

method is particularly effective in emphasizing fine 

structural details, making it suitable for feature 

extraction tasks [1]. In contrast, while the Canny edge 

detector offers high detection accuracy, its 

computational complexity limits its suitability for 

real-time embedded applications [2]. 

 

To overcome the constraints of software-based 

implementations, researchers have increasingly 

turned to hardware-accelerated solutions. FPGA-

based Sobel edge detection architectures have 

demonstrated notable improvements in processing 
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speed and throughput compared to CPU-based 

approaches, especially in applications such as vehicle 

detection and object identification [3]. Optimized 

two-dimensional convolution architectures for FPGA 

platforms have further contributed to reduced 

processing latency and faster image computation [4]. 

In addition, FPGA-based eye-gaze tracking systems 

highlight the effectiveness of hardware acceleration 

for real-time vision-driven human–machine 

interaction [5]. 

 

As the demand for high-speed and low-latency image 

processing continues to grow, hardware–software co-

design approaches using FPGA platforms have 

gained widespread interest. Configurable image 

processing systems developed using Verilog HDL on 

FPGA devices have shown the ability to deliver 

reliable real-time performance, particularly in 

medical and clinical imaging applications [6]. 

Furthermore, hybrid filtering techniques that 

combine edge detection with noise reduction have 

been successfully implemented on FPGA, achieving 

deterministic operation with high throughput [7]. 

 

Recent studies have also focused on improving 

design efficiency and system-level integration. 

FPGA–Simulink-based accelerated image processing 

frameworks have been proposed to simplify 

development while preserving real-time performance 

[8]. Gaussian filtering implemented on FPGA has 

proven effective for image pre-processing and noise 

suppression in real-time environments [9]. 

Additionally, Verilog-based FPGA systems designed 

for medical image enhancement further demonstrate 

the advantages of hardware acceleration in achieving 

efficient and dependable image processing solutions 

[10]. 

Overall, existing research strongly indicates that 

FPGA-based architectures offer substantial benefits 

in terms of processing speed, determinism, and real-

time capability, making them highly suitable for 

implementing edge detection and image processing 

algorithms in modern embedded vision systems. 

III. METHODOLOGY 

A. System Design 

The proposed system is implemented on a Xilinx 

Zynq System-on-Chip (SoC), which combines an 

ARM-based Processing System (PS) with 

programmable FPGA logic (PL) to enable real-time 

hardware acceleration for Sobel edge detection. The 

input image is used directly in bitmap (BMP) format, 

allowing raw pixel values to be accessed without 

compression or decoding, thereby simplifying the 

data flow and reducing processing overhead. The 

image is stored in external DDR memory connected 

to the PS, from where an AXI DMA controller 

streams the pixel data to the custom image-

processing hardware in the PL using the AXI4-

Stream interface. 

 

The programmable logic includes dedicated 

hardware blocks such as line buffers, convolution 

units, gradient computation modules, and magnitude 

calculation circuits to implement the Sobel filter in a 

fully pipelined manner. As pixels stream through the 

hardware, edge detection is performed continuously 

in real time. The processed output is transferred back 

to DDR memory through the DMA, and completion 

interrupts are sent to the PS for further display, 

analysis, or storage. Proper clock management 

ensures synchronization between the PS and PL 

domains. This architecture achieves low-latency and 

high-throughput edge detection by effectively 

combining software control with FPGA parallelism, 

making it suitable for real-time embedded image-

processing applications. 
 

 
Fig -1: Zynq SoC Architecture 
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B. Algorithms 

 

The Sobel operator is a classical edge detection technique that 

calculates the spatial gradient of an image to highlight regions 

with rapid intensity variations, typically corresponding to 

object boundaries. It uses two orthogonal 3 × 3 convolution 
masks, as illustrated in Fig-2, where one kernel detects 

horizontal transitions and the other identifies vertical intensity 

changes. By convolving the input grayscale image with these 

masks, the horizontal and vertical gradient components, 

denoted as Gx and Gy, respectively, are obtained.  

The gradient magnitude at each pixel is then computed using 

the standard expression,  

 
However, for real-time or hardware-based implementations, a 

simplified form such as, 

 

G(x,y) = |Gx| + |Gy|                                …..equation(2)                

 
is frequently adopted reduce computational complexity 3 to 

while retaining acceptable detection performance. 

 

The direction of the edge can also be calculated using 

tan⁻¹(Gy/Gx), although many applications focus solely on the 

magnitude of the output for visualization and post-processing. 

The kernels shown in Figure 2 inherently perform smoothing 

owing to their larger size compared to operators such as t he 

Roberts Cross. This smoothing effect results in a higher noise 

tolerance, making Sobel filters suitable for real-world images. 

However, it also causes the edges to appear thicker. To improve 

computational efficiency, a pseudo-convolution 
implementation, such as the kernel arrangement shown in 

Figure 3, can be used, enabling a fast estimation of the gradient 

magnitude in a single pass. 

     

 

  

 

 

 

Fig-3: Pseudo-convolution kernels are applied to achieve rapid 

approximation of the gradient magnitude. 
 

Using this kernel the approximate magnitude is given by: 

 

|G|=|(P1+2×P2+P3)-(P7+2×P8+P9)|+|(P3+2×P6+P9)-

(P1+2×P4+P7)                                …...equation(3)  

    

A related method, the Prewitt operator, shown in equation(3), 

uses similar masks but offers reduced isotropy and slightly 

poorer edge localization than the Canny operator. Nevertheless, 

the Sobel operator remains widely adopted because of its 

simplicity, computational efficiency, and suitability for FPGA-

based acceleration and embedded real-time vision systems.         
 

Steps for FPGA-Based Sobel Filtering: 

 

1. Import the BMP image and store it in external DDR 

memory connected to the Zynq PS. 

2. Initialize the AXI DMA for high-speed data transfer 

between DDR and PL. 

3. Configure the custom spatial filter IP in PL via AXI4-

Lite registers. 

4. Stream pixel data from DDR to PL through AXI4-

Stream using DMA (MM2S). 
5. Use line buffers in PL to create a 3×3 sliding window 

for convolution. 

6. Apply Sobel or spatial filter kernels with MAC units 

to compute intensity values. 

7. Transfer processed data back to DDR via DMA 

(S2MM). 

8. Generate an interrupt (IRQ_F2P) to signal frame 

completion. 

9. Read and display, store, or transmit the processed 

image from DDR. 

10. Validate output visually and through simulation for 

correctness, latency, throughput, and resource usage. 
 

The experimental setup is based on implementing spatial 

filtering and Sobel edge detection hardware on the Xilinx 

platform, where the input BMP image is loaded into external 

DDR memory and processed in real time by a custom 

accelerator implemented in the Programmable Logic.    

 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

Fig-4: Target System Architecture 

 
The design was developed and implemented using Xilinx 

Vivado 18.2, which was used for block design, RTL 

development, synthesis, implementation, and IP integration. 

Vitis/SDK was used to write and execute the embedded 

software required for DMA configuration, interrupt handling, 

and system control. The hardware platform includes DDR 
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memory, AXI interconnects for communication between the PS 

and PL, and an interrupt mechanism to signal frame 

completion. 

 

Simulation and verification were conducted within the Vivado 

environment, and real-time testing was performed using test 
images provided by a host system. This setup enabled the 

evaluation of the system in terms of throughput, latency, 

filtering accuracy, and FPGA resource utilization. 

 

IV. IMPLEMENTATION 
 

The proposed Sobel edge detection system was 

implemented on a Xilinx Zynq SoC (system on chip) 

platform using a hardware/software co-design 

approach. The programmable logic (PL) performs 

real-time spatial filtering and gradient computation, 

whereas the processing system (PS) handles system 

configuration, memory management, and control 

flow. The following subsections describe the 

hardware and software platforms used, Verilog HDL 

development flow, Vivado toolchain workflow, and 

experimental setup used for validating the system. 
 

A. Hardware and Software. 

 

The proposed system was implemented on the Xilinx Zynq 

System-on-Chip (SoC), which combines a dual-core ARM 

Cortex-A9 processor with FPGA programmable logic on a 

single platform. This heterogeneous architecture enables 

compute-intensive Sobel edge detection to be executed in 

hardware, while system configuration and data management are 

handled by the ARM processor through DMA control. 
 

Xilinx Vivado 2018.2 was used as the development 

environment, providing an integrated flow for design entry, 

synthesis, IP integration, simulation, and hardware debugging. 

The IP Integrator simplified system-level integration, while the 

Vivado Logic Analyzer supported real-time signal observation 

during hardware execution. 

 

The Sobel accelerator was developed using Verilog HDL at the 

RTL level, allowing efficient parallel computation and low-

latency processing. AXI interfaces were employed for system 
communication, with AXI4-Lite used for control and AXI-

Stream for high-speed pixel data transfer between DDR 

memory, DMA, and the custom hardware core. External DDR 

memory was used to store image frames, supporting high-

resolution processing without FPGA memory constraints. 

 

B. Verilog HDL Design Flow 

 

The Verilog design follows a structured hierarchical 

methodology to ensure reusability, modularity, and synthesis 

efficiency. The expandable architecture divides the system into 

well-defined blocks that communicate through standardized 

signals and generate outputs in a continuous streaming format. 

 
Fig-5: Line Buffer 

 

At the lowest level, line buffer modules store three consecutive 

image rows to enable 3×3 window-based Sobel processing, 

using shift registers and block RAM to support continuous 

high-speed data flow. As pixels stream in, a nine-pixel window 

is generated and passed to the convolution stage, where 

horizontal and vertical Sobel kernels are applied in parallel to 

compute the gradient components Gx and Gy within a single 
clock cycle. The resulting edge magnitude is then calculated 

using either an exact or approximate method, with scaling and 

saturation logic to prevent overflow and preserve contrast. 

Finite state machines control data flow and synchronization 

between modules, and the final processed pixel stream is 

transmitted through the AXI-Stream output interface. 

Functional correctness was validated through simulation prior 

to synthesis and hardware deployment. 

 

C. Vivado Workflow 

The FPGA design was developed using Xilinx Vivado 2018.2 

following a structured workflow. System components such as 

the Zynq Processing System, AXI DMA, interconnects, GPIO, 

and the custom Sobel IP were integrated using the IP Integrator, 

allowing graphical configuration of clocks, resets, and AXI 

interfaces. 

The Verilog RTL design was then synthesized, where Vivado 

mapped logic to FPGA resources and reported timing and 

utilization. This was followed by placement and routing, during 
which timing constraints were analyzed and optimized to 

achieve timing closure at the target clock frequency. After 

successful implementation, the FPGA bitstream was generated 

and programmed onto the device. 

Finally, hardware validation was performed using ARM-based 

software to initialize DDR memory, configure DMA, and 

control data transfer through memory-mapped I/O, ensuring 

efficient and continuous image processing with minimal CPU 

involvement. 
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D. Experimental Setup  

The system was validated using grayscale bitmap images stored 

directly in external DDR memory, removing the need for 

intermediate conversion and minimizing latency. Images are 

loaded into DDR via JTAG, SD card, or external 
communication, while the ARM processor configures the AXI 

DMA engine to stream pixel data directly to the Sobel hardware 

accelerator. The programmable logic performs real-time edge 

detection on a pixel-per-cycle basis using line buffers, and the 

processed output is returned via DMA to DDR memory for 

storage or display. This setup allows results to be compared 

with software implementations in terms of edge sharpness, 

gradient clarity, noise suppression, and processing speed. 

Hardware acceleration with DMA significantly reduces 

processor workload, enabling the ARM core to handle 

supervisory tasks instead of pixel-level processing. The 

combination of Verilog RTL design, Vivado implementation, 

and the Zynq SoC’s parallel architecture provides low-latency, 

deterministic performance suitable for embedded vision 

applications. Additionally, the system maintains flexibility for 

future enhancements, including threshold adaptation, multi-
kernel support, and chained image processing stages, while 

achieving real-time Sobel edge detection efficiently. 

V. RESULTS AND ANALYSIS 

The proposed Sobel-based edge detection 
architecture was successfully implemented on a 
Xilinx Zynq SoC platform using Verilog HDL and 
Vivado 2018.2 software. The system was verified at 
multiple stages, including simulations, software– 
hardware integration, and real-time hardware 
execution. 

A. Simulation Results 

 

Fig-6: Simulation Output of Sobel Filter 

 

Before hardware testing, each unit of the design was validated 

through functional simulations using the Vivado Simulator.  
 

Test benches were created to evaluate the following:- 

 

The simulation waveforms confirmed that the architecture 

produced accurate gradient values for each pixel stream. After 

pipeline filling, the system processes one pixel per clock cycle, 

demonstrating a fully parallel and pipelined hardware 

execution. The control logic and DMA signalling were verified 

to ensure a proper data handshake between the Processing 

System (PS) and Programmable Logic (PL).  

 

 

 
 

Fig-7: Input Image & Output Image of Edge Detection 

 

The design was synthesized, implemented, and deployed on a 

Zynq-7000 FPGA. Images in bitmap format were transferred 

through the AXI DMA from the DDR memory to the custom 

Sobel accelerator and written back after processing. 

 

The results demonstrate that the Sobel filter implementation 

effectively identifies edges across diverse image types, 
preserving critical boundary information while maintaining 

computational efficiency. 

 

B. Resource Utilization 

 
The implementation results generated in Vivado 2018.2 show 

moderate usage of FPGA resources. The main resource 

contributions come from:  

• LUTs and registers used for pixel datapaths and 
pipeline staging. 

• DSP units used for multiply–accumulate operations  

• BRAM blocks used to implement the three- line 

buffer. 
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Fig-8: Utilization Report of Sobel Filter 

 

The moderate utilization leaves sufficient programmable logic 

further enhancements such as multi-filter support, noise 

reduction, or more advanced algorithms like Canny or 

Laplacian filtering. 

 

C. Power Report 

 

 
Fig-9: On-Chip Power Report of Sobel Filter 

The on-chip power analysis shows that the total power 

consumption is dominated by dynamic power, which accounts 

for approximately 94% of the overall power usage, while static 

device power contributes only 6%. Among the dynamic 
components, signal activity is the major contributor at 65%, 

followed by logic power at 27%, indicating high switching 

activity due to continuous pixel processing. I/O power accounts 

for 7%, reflecting data movement through AXI interfaces, 

whereas BRAM power consumption is minimal at 1%, showing 

efficient memory utilization. This power distribution confirms 

that the design effectively exploits FPGA parallelism but also 

highlights the need for thermal management during prolonged 

operation. 

 

D. Comparison with Conventional Methods 

 

Parameter 
CPU-Based 

Sobel 

FPGA-Based Sobel 

(Proposed) 

Execution Style 
Sequential 
processing 

Parallel and pipelined 
processing 

Parameter 
CPU-Based 

Sobel 

FPGA-Based Sobel 

(Proposed) 

Throughput Low to moderate 
High (one pixel per clock 

cycle) 

Latency High Very low 

Real-Time 
Capability 

Limited Yes (real-time) 

Processor Load 
High CPU 
utilization 

Minimal processor 
involvement 

Power Efficiency Lower Higher (energy efficient) 

Noise Handling Moderate 
Better due to stable hardware 
timing 

 
Table -1: Comparison of CPU based & FPGA-Based Sobel Filter 

 

VI. CONCLUSIONS 
 

This work presents a Sobel edge detection 

accelerator implemented on the Xilinx Zynq SoC, 

featuring DMA-based streaming, AXI memory 

communication, and a fully pipelined Verilog engine 

achieving one pixel per clock cycle. Hardware 

validation confirms accurate edge extraction across 

various image features. Prolonged operation causes 

notable temperature rise, highlighting the need for 

thermal management and power optimization in 

future designs. Overall, the system delivers low-

latency, high-throughput edge detection, reducing 

processor load while preserving FPGA resources for 

additional processing stages. 

 

Future Scope : 

 

Future enhancements could improve performance, 

flexibility, and reliability. Thermal management 

strategies, algorithmic upgrades like Gaussian 

smoothing and non-max suppression, and support for 

multiple edge operators selectable at runtime can 

boost efficiency and edge quality. Dynamic 

frequency scaling and direct integration with MIPI 

or CSI-2 cameras would enable live image 

acquisition while reducing processor load. These 

improvements would make the system more robust, 

scalable, and suitable for diverse real-time embedded 

vision applications. 
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