International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026
Available at wwwijsred.com

RESEARCH ARTICLE OPEN ACCESS

An Exploratory Study on Framework-Oriented AI Support for
Secure SDLC Practices

G Abin Roy*, Vaishnav A Nair**, Ajesh R*** John Merfin****, Govind H*****
Karthika R S¥%%%**

*(Computer Science & Engineering, St Thomas Institute for Science & Technology, APJ Abdul Kalam Technological University
(KTU), Trivandrum
Email: godvinroytl 6262@gmail.com)
** (Computer Science & Engineering, St Thomas Institute for Science & Technology, APJ Abdul Kalam Technological University
(KTU), Trivandrum
Email: vaishnavanair@gmail.com)
**%* (Computer Science & Engineering, St Thomas Institute for Science & Technology, APJ Abdul Kalam Technological University
(KTU), Trivandrum
Email: ajeshr004@gmail.com)
**%*% (Computer Science & Engineering, St Thomas Institute for Science & Technology, APJ Abdul Kalam Technological University
(KTU), Trivandrum
Email: johnmerfintvm@gmail.com)
*x&%x% (Computer Science & Engineering, St Thomas Institute for Science & Technology, APJ Abdul Kalam Technological University
(KTU), Trivandrum
Email: govind4936u@gmail.com)
*xkxx% (Computer Science & Engineering, St Thomas Institute for Science & Technology, APJ Abdul Kalam Technological University
(KTU), Trivandrum
Email: karthika.panicker88@gmail.com)

st sk sk skoske st st sk skt sk seoskoskeosieo st s skeoskoskeste sk sk sk

Abstract:

Modern software systems are becoming increasingly complex, while security issues continue to grow
across different stages of the Software Development Lifecycle (SDLC). In many development environments,
security and analytical support are often addressed late in the process, which increases risk and development
effort. Although artificial intelligence has shown promise in supporting software engineering activities, most
existing approaches focus on specific tasks or individual SDLC phases rather than the entire lifecycle.

This paper proposes a conceptual framework for Al-assisted support in the Secure Software
Development Lifecycle (Secure SDLC). The framework is developed through a review of existing research
studies, industry practices, and secure development standards. Instead of presenting a working system or
experimental results, the study focuses on defining high-level framework components and explaining their
conceptual roles across SDLC phases such as requirements, design, development, testing, deployment, and
maintenance. The proposed framework aims to support security awareness and decision-making without
disrupting existing development processes.

The main contribution of this work is an implementation-independent framework that connects
secure SDLC principles with Al-assisted analytical concepts. This study serves as a foundation for future
research, system development, and practical validation in real-world software engineering environments.

Keywords — Secure Software Development Lifecycle, Secure SDLC, Artificial Intelligence, Al-
Assisted Analysis, Software Engineering, Decision Support Framework, Conceptual Framework
sk sk sk s sk sk sk sk skeoske sk sk sfeoske steoskeoskeoskoske sk sk sk

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 803

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

I. INTRODUCTION

Software systems play a critical role in
modern society, supporting applications in finance,
healthcare, education, government, and industrial
sectors. As software systems grow in scale and
complexity, security threats have also increased in
frequency and sophistication. Security
vulnerabilities introduced during early development
stages often propagate throughout the lifecycle,
resulting in costly fixes, operational disruptions, and
reputational damage.

Traditional Software Development Lifecycle
(SDLC) models primarily focus on functionality,
performance, and delivery timelines. Security is
frequently treated as a secondary concern or
addressed only during testing or post-deployment
phases. This reactive approach increases
development costs and exposes organizations to
preventable security risks. To address these
challenges, the concept of Secure Software
Development Lifecycle (Secure SDLC) has been
introduced, integrating security practices across all
development phases.

Recent advancements in artificial
intelligence (AI) have demonstrated potential in
supporting complex decision-making processes in
software engineering. Al-assisted analysis can help
process large volumes of development artifacts,
identify risks, and provide contextual guidance.
However, existing Al applications in software
development often target isolated tasks and lack
lifecycle-wide integration.

This paper addresses this gap by proposing a
conceptual Al-assisted framework for Secure SDLC,
focusing on high-level analytical support rather than
concrete implementation

II. BACKGROUND AND RELATED WORK

The Software Development Lifecycle
(SDLC) provides a structured approach for
designing, developing, testing, and maintaining
software systems; however, traditional SDLC
models often treat security as a secondary concern
addressed late in the development process. This
limitation has led to increased interest in the Secure
Software Development Lifecycle (Secure SDLC),

Available at wwwijsred.com

which integrates security practices such as secure
requirements, threat modeling, secure coding, and
security testing across all lifecycle phases. Previous
studies have shown that early incorporation of
security can significantly reduce vulnerabilities and
long-term remediation costs. In parallel, recent
research has explored the application of artificial
intelligence in software engineering to support tasks
such as defect prediction, documentation analysis,
and risk assessment. While these approaches
demonstrate the potential of Al-assisted analysis,
most existing solutions focus on isolated SDLC
activities and lack a unified, lifecycle-wide
perspective. Consequently, there remains a gap in
research for conceptual frameworks that
systematically align Al-assisted analytical support
with Secure SDLC principles, motivating the need
for high-level, implementation-independent models.

A. Secure Software Development Lifecycle

Secure SDLC extends traditional SDLC by
embedding security practices into each phase of
software development. These practices include
secure requirement identification, threat modeling,
secure coding standards, security testing, and
continuous monitoring. Secure SDLC emphasizes
early risk identification and proactive mitigation

rather than reactive patching.
Despite its advantages, Secure SDLC
adoption remains inconsistent, particularly in

environments with limited resources or tight delivery
schedules. Many organizations struggle to
operationalize security practices consistently across
development phases.

B. Artificial Intelligence in Software Engineering

Al has been applied to various software
engineering tasks, including defect prediction, test
automation, effort estimation, and documentation
analysis. Machine learning and natural language
processing techniques have enabled automated
analysis of code, requirements, and project artifacts.

However, most Al-based approaches focus
on specific development activities rather than
providing holistic lifecycle support. The lack of
unified conceptual models limits their adaptability
and long-term effectiveness.

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 804

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

C. Research Gap
Existing research highlights two major gaps:

e Limited integration between Secure SDLC
practices and Al-assisted analysis.

e Lack of lifecycle-wide, implementation-
independent frameworks that guide Al
support across SDLC phases.

This study aims to address these gaps by proposing
a conceptual framework that aligns Al-assisted
analysis with Secure SDLC principles.

III. RESEARCH MOTIVATION AND
OBJECTIVES

The increasing scale, complexity, and
security demands of modern software systems have
made software development a highly decision-
intensive process. Development teams are required
to balance functional requirements, security
considerations, regulatory compliance, time
constraints, and resource limitations across multiple
phases of the Software Development Lifecycle
(SDLC). In practice, these decisions are often made
with incomplete information, fragmented tools, and
limited visibility into security implications, which
can lead to inconsistent implementation of secure
development practices.

While the Secure Software Development
Lifecycle (Secure SDLC) promotes early and
continuous integration of security, its effective
adoption remains challenging in real-world
environments. Developers and project stakeholders
frequently lack contextual support that connects
security principles with day-to-day development
activities. At the same time, recent advancements in
artificial intelligence have highlighted opportunities
to assist complex analytical and decision-making
tasks by processing large volumes of software
artifacts and development-related information.
However, existing Al-driven approaches in software
engineering are typically narrow in scope and do not
provide cohesive lifecycle-wide support.

These challenges motivate the need for a
structured and conceptual approach that aligns Al-
assisted analytical support with Secure SDLC
practices. By defining clear objectives and scope,
this research aims to establish a foundation for

Available at wwwijsred.com

integrating intelligent support mechanisms into

secure software development processes in a
systematic and adaptable manner.
D. Research Motivation

Modern software development involves

complex decision-making across multiple phases of
the Software Development Lifecycle (SDLC), where
security, quality, cost, and delivery timelines must be
balanced simultaneously. In many development
environments, security considerations are still
introduced late in the lifecycle, leading to increased
vulnerabilities and higher remediation costs.
Although Secure Software Development Lifecycle
(Secure SDLC) practices aim to address this issue,
their consistent adoption remains challenging due to
fragmented processes, limited expertise, and
increasing system complexity. At the same time,
recent advances in artificial intelligence have
demonstrated the ability to analyze large volumes of
software-related information and provide contextual
insights to support human decision-making.
However, most Al-based solutions in software
engineering focus on narrow tasks or individual
lifecycle phases, offering limited support for end-to-
end Secure SDLC integration. This gap motivates
the need for a unified, high-level framework that
conceptually integrates Al-assisted analytical
support across the entire Secure SDLC without
imposing implementation constraints.

E. Research Objective

The primary objectives of this research are to
identify the key factors influencing the subject under
study and to analyze their impacts in a systematic
manner. Additionally, the research aims to provide
evidence-based insights that can inform future
practice and decision-making.

e To analyze existing Secure SDLC practices
and Al-assisted approaches in software
engineering.

e To propose a conceptual, implementation-
independent framework for Al-assisted
support in Secure SDLC.

e To map the roles of Al-assisted analytical
support across different SDLC phases.

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 805

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

e To establish a foundational model that can
guide future empirical studies, system
implementations, and industry validation.

IV. PROPOSED CONCEPTUAL
FRAMEWORK

In response to the limitations observed in
existing Secure Software Development Lifecycle
(Secure SDLC) practices and the fragmented
adoption of Al-assisted techniques within software
engineering, this study introduces a conceptual
framework aimed at providing structured analytical
support across the SDLC. The framework is
positioned as a complementary layer that enhances
security-oriented reasoning and decision-making
without disrupting established development
methodologies or organizational workflows.

The proposed framework is deliberately
designed to be technology-agnostic and
implementation-independent, focusing on abstract
functional roles rather than concrete system
architectures. This design choice ensures broad
applicability across varying project contexts,
development models, and organizational maturity
levels. By emphasizing logical structure over
operational detail, the framework facilitates
conceptual alignment between Al-assisted analytical
capabilities and Secure SDLC activities, enabling
consistent integration of security considerations
throughout the lifecycle.

This section establishes the conceptual basis
and scope of the proposed framework, serving as a
precursor to the detailed presentation of its overall
structure and constituent components in the
following subsections.

A. Framework Overview

The proposed framework represents a high-
level analytical support layer designed to
complement and enhance existing Secure Software
Development Lifecycle (Secure SDLC) practices.
Rather than defining a concrete system or technical
implementation, the framework is formulated as a
logical and conceptual model, allowing it to remain
independent of specific technologies, platforms, or
development tools. This abstraction ensures that the

Available at wwwijsred.com

framework can be adapted across diverse
development environments, organizational
structures, and software engineering methodologies.
The primary objective of the framework is to
support informed decision-making by improving
security awareness and risk comprehension
throughout the SDLC. It provides a structured
conceptual approach for integrating analytical
reasoning into each lifecycle phase, enabling
stakeholders to better understand potential security
implications associated with design choices,
development activities, and operational decisions.
By maintaining a lifecycle-wide perspective, the
framework promotes consistency in security
consideration and encourages proactive risk
identification rather than reactive mitigation.

B. Framework Components

The proposed conceptual framework is
composed of a set of logical and interrelated
components, each representing a distinct analytical
role within the Secure Software Development
Lifecycle (Secure SDLC). These components are not
intended to denote physical modules or system
implementations; instead, they define abstract
functional layers that collectively support security-
aware decision-making across the software lifecycle.

Knowledge Layer:

The Knowledge Layer serves as the
foundational component of the framework,
encapsulating domain knowledge related to software
engineering principles, secure development
standards, regulatory guidelines, and established
best practices. This layer is derived from academic
literature, industry frameworks, and recognized
security standards, providing a structured knowledge
base that informs analytical and decision-support
activities throughout the SDLC.

Analysis Layer:

The Analysis Layer is responsible for the
conceptual examination of software development
artifacts, processes, and lifecycle activities. It
facilitates the identification of potential security
risks, design inconsistencies, and process-level
weaknesses by applying analytical reasoning to

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 806

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

contextual development information. This layer
supports stakeholders in understanding security
implications without relying on specific analytical
techniques or tools.

Recommendation Layer:

The Recommendation Layer provides high-
level guidance and security-oriented suggestions that
are aligned with individual SDLC phases. Rather
than enforcing prescriptive actions, this layer offers
contextual recommendations intended to assist
developers and decision-makers in selecting
appropriate security practices and mitigating
identified risks in a flexible and adaptable manner.

Feedback Layer:

The Feedback Layer supports continuous
improvement by conceptually integrating insights
and lessons learned across different stages of the
SDLC. By enabling iterative reflection on past
decisions and outcomes, this layer contributes to the
refinement of security awareness and analytical
understanding over time, reinforcing the lifecycle-
wide applicability of the framework.

V. MAPPING THE FRAMEWORK TO
SECURE SDLC PHASES

The conceptual framework supports Secure

SDLC phases as follows:
TABLE I
Al-Assisted Security Roles Across the SDLC
SDLC Phase Conceptual Al-Assisted
Role
. Security awareness and
Requirements . S
requirement validation
Desien Threat identification and
g architectural risk analysis
Secure coding guidance
Development and consistency check
Testing Vulnerability prioritization
support
Deployment Configuration and

Available at wwwijsred.com

compliance awareness

Continuous security

Maintenance . .
monitoring guidance

This mapping demonstrates how Al-assisted
concepts can enhance Secure SDLC practices
without altering existing workflows.

VI. DISCUSSION

The proposed conceptual framework places
strong emphasis on clarity, adaptability, and
generalizability, which are essential characteristics
for supporting Secure Software Development
Lifecycle (Secure SDLC) practices across diverse
development environments. By maintaining an
implementation-agnostic design, the framework
avoids reliance on specific technologies,
programming paradigms, or analytical tools. This
design choice enhances its applicability across
organizations with varying technical infrastructures,
resource availability, and security maturity levels,
enabling flexible adoption without imposing rigid
implementation constraints.

Rather than functioning as a replacement for
developers, architects, or security professionals, the
framework is positioned as a supportive decision-
assistance construct. It aims to augment human
judgment by promoting structured analytical
reasoning and continuous security awareness
throughout the SDLC. By encouraging consistent
consideration of security implications at each
lifecycle phase, the framework helps reduce
fragmented or reactive security practices and
supports a more proactive and informed
development approach.

Furthermore, the conceptual nature of the
framework allows it to evolve alongside emerging
technologies, development methodologies, and
organizational practices. This adaptability positions
the framework as a foundational reference model
that can guide future empirical studies, system
implementations, and industry-driven refinements,
contributing to the advancement of secure and
intelligence-aware software engineering practices.

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 807

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

VII. LIMITATIONS

This study is purely conceptual and does not
include system implementation, datasets, or
experimental validation. The framework has not
been empirically evaluated in real-world
development environments. As a result, its practical
effectiveness remains to be validated through future
research.

VIII. FUTURE WORK

While this study establishes a conceptual
foundation for Al-assisted support in the Secure
Software Development Lifecycle (Secure SDLC),
several directions remain open for future
investigation. One potential extension of this work
involves the implementation of the proposed
conceptual framework as a software-based system,
enabling practical exploration of its analytical and
decision-support capabilities within real
development environments.

Future research may also focus on empirical
validation through controlled experiments,
longitudinal studies, or industry case analyses to
assess the framework’s effectiveness in improving
security awareness, decision quality, and lifecycle
consistency. Evaluating the framework across
organizations with varying sizes, domains, and
security maturity levels would provide deeper
insight into its adaptability and practical relevance.

Additionally, subsequent studies could
explore the integration of quantitative metrics and
automated analytical techniques to support objective
evaluation of security risks and development
outcomes. Such extensions would enhance the
framework’s analytical rigor and facilitate
measurable assessment, thereby strengthening its
applicability for both academic research and
industrial adoption.

IX. CONCLUSION

This paper presented a conceptual
framework for Al-assisted support in the Secure
Software Development Lifecycle. By aligning Al-
assisted analytical concepts with Secure SDLC
practices, the framework addresses gaps in existing

Available at wwwijsred.com

research and provides a structured foundation for
future development. The proposed model
emphasizes security awareness, decision support,
and lifecycle consistency while remaining
implementation-independent. This work contributes
to advancing secure and intelligence-aware software
development practices.

ACKNOWLEDGMENT

We would like to express our heartfelt
gratitude to God Almighty for granting us the
strength, wisdom, and perseverance to successfully
complete this work.

We sincerely thank Dr. A. G. Mathew,
Principal of St. Thomas Institute for Science and
Technology, for his constant encouragement and for
providing a supportive academic environment that
enabled the successful completion of this research.
We also extend our gratitude to Mr. Anup Mathew
Abraham, Head of the Department of Computer
Science and Engineering, for his valuable guidance
and continuous support throughout this project.

We are especially thankful to Ms. Pooja P.
Raj, Project Coordinator, for her constructive
suggestions, academic supervision, and timely
assistance, which were instrumental in shaping this
work. We also acknowledge the faculty members of

the Department of Computer Science and

Engineering for their encouragement and

cooperation.

REFERENCES

[1 I. Sommerville, Software Engineering, 10th ed., Pearson Education,
2016.

[2] B. Boehm, “A Spiral Model of Software Development and

Enhancement,” I[EEE Computer, vol. 21, no. 5, pp. 61-72, 1988.

[3] K. Schwaber and J. Sutherland, The Scrum Guide, Scrum.org, 2020.

[4] M. V. Zelkowitz and D. R. Wallace, “Experimental Models for
Validating Technology,” IEEE Computer, vol. 31, no. 5, pp. 23-31,
1998.

[5] T. Menzies and B. Cukic, “When to Test Less,” IEEE Software, vol.
17, no. 5, pp. 107112, 2000.

[6] J. Bosch, “Continuous Software Engineering: An Introduction,” /EEE
Sofitware, vol. 31, no. 6, pp. 15-18, 2014.

[7] F.Palomba et al., “Crowdsourcing-Based Code Smell Detection,” /EEE
Transactions on Sofiware Engineering, vol. 45, no. 6, pp. 599-615,
2019.

[8] T.Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
Proceedings of the 22nd ACM SIGKDD, pp. 785-794, 2016.

[9] S. Amershi et al., “Software Engineering for Machine Learning: A Case

Study,” Proceedings of ICSE, IEEE, 2019.

A. Aurum and C. Wohlin, Engineering and Managing Software

Requirements, Springer, 2005.

[10]

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 808

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

[11] B.Kitchenham and S. Charters, “Guidelines for Performing Systematic
Literature Reviews in Software Engineering,” EBSE Technical Report,
Keele University, 2007.

[12] T. Menzies, Z. Milton, B. Turhan, B. Cukic, and Y. Jiang, “Defect
Prediction from Static Code Features,” I[EEE Transactions on Sofiware
Engineering, vol. 33, no. 1, pp. 2-22, 2007.

[13] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the Reverse
Engineering of UML Sequence Diagrams,” /EEE Transactions on
Software Engineering, vol. 32, no. 9, pp. 642-663, 2006.

— Supports SDLC traceability and modeling.

[14] P. Bourque and R. E. Fairley, Guide to the Sofiware Engineering Body
of Knowledge (SWEBOK), IEEE Computer Society, 2014.

[15] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, “Search-Based
Software Engineering,” Information and Software Technology, vol. 54,
no. 10, pp. 1045-1061, 2012.

[16] E. Chollet, Deep Learning with Python, Manning Publications, 2018.

[17] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed., Morgan Kaufmann, 2011.

[18] A. Abran et al., “Software Engineering Measurement,” /EEE Software,
vol. 19, no. 6, pp. 23-28, 2002.

[19] L. Breiman, “Random Forests,” Machine Learning, vol. 45, pp. 5-32,
2001.

[20] T. Mitchell, Machine Learning, McGraw-Hill, 1997.

[21] P. Jalote, An Integrated Approach to Software Engineering, Springer,
2005.

[22] R. Pressman and B. Maxim, Software Engineering: A Practitioner’s
Approach, 8th ed., McGraw-Hill, 2014.

[23] M. Fowler and J. Highsmith, “The Agile Manifesto,” Software
Development Magazine, 2001.

[24] A. Mockus, D. Weiss, and P. Zhang, “Understanding and Predicting
Effort in Software Projects,” IEEE Software, vol. 20, no. 6, pp. 53-60,
2003.

[25] S. McConnell, Sofiware Estimation: Demystifving the Black Art,
Microsoft Press, 2006.

[26] 1. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software
Development Process, Addison-Wesley, 1999.

[27] B. W.Boehm et al., Software Cost Estimation with COCOMO 11, Prentice
Hall, 2000.

[28] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed., Addison-Wesley, 2013.

[29] M. Lehman and L. Belady, Program Evolution: Processes of Software
Change, Academic Press, 1985.

[30] P. Bourque, R. E. Fairley, and 1. Society, SWEBOK Guide V3.0, IEEE
Computer Society, 2014.

[31] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications, Wiley, 2009.

[32] D. L. Parnas, “On the Criteria to Be Used in Decomposing Systems into
Modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053-1058,
1972.

[33] G. J. Myers, C. Sandler, and T. Badgett, The Art of Sofiware Testing, 3rd
ed., Wiley, 2011.

[34] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict
Component Failures,” Proceedings of ICSE, IEEE, 2006.

[35] H. Kagdi, M. L. Collard, and J. 1. Maletic, “A Survey and Taxonomy of
Approaches for Mining Software Repositories,” Journal of Sofiware
Maintenance and Evolution, vol. 19, no. 2, pp. 77-131, 2007.

[36] T. Mens and S. Demeyer, Software Evolution, Springer, 2008.

[37] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation, Addison-
Wesley, 2011.

[38] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science of Lean
Sofitware and DevOps, 1T Revolution Press, 2018.

[39] S. McConnell, Code Complete, 2nd ed., Microsoft Press, 2004.

[40] T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams,
3rd ed., Addison-Wesley, 2013.

[41] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley,
1994.

[42] R. C. Martin, Clean Code: A Handbook of Agile Sofiware Craftsmanship,
Prentice Hall, 2008.

[43] A. S. Tanenbaum and H. Bos, Modern Operating Systems, 4th ed.,
Pearson, 2015.

Available at wwwijsred.com

[44] J. R. Koza et al., Genetic Programming IlI: Darwinian Invention and
Problem Solving, Morgan Kaufmann, 1999.

[45] K. Beck et al., Extreme Programming Explained: Embrace Change, 2nd
ed., Addison-Wesley, 2004.

[46] A. Mockus, R. T. Fielding, and J. Herbsleb, “Two Case Studies of Open
Source Software Development: Apache and Mozilla,” ACM
Transactions on Software Engineering and Methodology, vol. 11, no. 3,
pp. 309-346, 2002.

[47] N. Fenton and M. Neil, Risk Assessment and Decision Analysis with
Bayesian Networks, CRC Press, 2012.

[48] A. Meneely, B. Smith, and L. Williams, “Validating Software Metrics: A
Bayesian Approach,” Proceedings of ESEM, ACM/IEEE, 2011.

[49] Y. Kamei et al., “A Large-Scale Empirical Study of Just-in-Time Quality
Assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757-773,2013.

[50] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding Copy-Paste
and Related Bugs in Large-Scale Software Code,” IEEE Transactions
on Software Engineering, vol. 32, no. 3, pp. 176-192, 2006.

[51] R. K. Yin, Case Study Research: Design and Methods, 5th ed., Sage
Publications, 2014.

[52] S. Kim, E. J. Whitehead Jr., and Y. Zhang, “Classifying Software
Changes: Clean or Buggy?” I[EEE Transactions on Software
Engineering, vol. 34, no. 2, pp. 181-196, 2008.

[53] I. Sommerville and P. Sawyer, Requirements Engineering: A Good
Practice Guide, John Wiley & Sons, 1997.

[54] M. G. Lanza and R. Marinescu, Object-Oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve the
Design of Object-Oriented Systems, Springer, 2006.

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 809

