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Abstract: 
FinSecure: A Privacy-Preserving Federated Learning Framework for Financial Fraud Detection, The rapid 
digitalization of the financial sector has led to a significant rise in transaction volumes. At the same time, it 
has created new vulnerabilities for financial fraud. Traditional fraud detection systems rely on centralized 
machine learning models that need to pool sensitive customer data into a single server. This method raises 
important privacy concerns, data security risks, and regulatory compliance issues, such as GDPR and 
CCPA.  
This paper proposes FinSecure, a decentralized fraud detection framework based on Federated Learning 
(FL). Unlike centralized systems, FinSecure allows multiple financial institutions to collaboratively train a 
global fraud detection model without sharing raw transaction data. The system uses a Client-Server 
architecture where a central server collects model updates (gradients) from participating clients (banks) 
while keeping the actual data local and private.  
We implemented the system using FastAPI for the aggregation server, React for the dashboard, and 
TensorFlow for local model training. Our results show that FinSecure achieves accuracy similar to 
centralized models while ensuring complete data privacy.  
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I.     INTRODUCTION 

Financial fraud is a major problem for the global 
economy, costing billions of dollars each year. As 
banking shifts online, fraud patterns have become 
more complex. This complexity requires effective 
Machine Learning (ML) solutions to identify 
unusual activity. The success of these ML models 
relies on the amount and variety of data used for 
training. Currently, banks operate in "data silos." 
Bank A cannot share its fraud data with Bank B 
because of strict data privacy laws and competitive 
concerns. This restriction makes it hard for the 
industry to create a strong fraud detection model. A 
centralized system, where all banks upload data to a 
central cloud, poses a huge security risk. A single 
breach could put millions of sensitive financial 

records at risk. To solve this issue, we present 
FinSecure, a platform that uses Federated Learning 
(FL). FL is a distributed machine learning method 
that allows training on separate data. In our system, 
the model goes to the data instead of the data coming 
to the model. Each bank trains a local model on its 
private data and shares only the mathematical 
updates, known as gradients, with the FinSecure 
server. This way, raw data stays in the bank's secure 
environment. 

II.     PROBLEM STATEMENT  

1. The Ideal State   
In a perfect financial ecosystem, institutions 

should be able to use the combined knowledge of the 
entire industry to spot complex fraud patterns. A 
strong fraud detection system needs varied, large 
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datasets to train machine learning models that can 
quickly detect changing criminal tactics. 

 
2. The Reality: "Data Silos"   
Right now, financial institutions work in isolation 

due to: 
 
Privacy Regulations. Strict laws like GDPR, 

CCPA, and the Digital Personal Data Protection Act 
(DPDP) prevent organizations from sharing raw 
customer transaction data. 

 
Competitive Barriers. Banks hesitate to share 

internal data that could expose business strategies or 
customer behaviors to their competitors. 

 
Security Risks. Gathering data from multiple 

banks into one master server creates a high-risk 
single point of failure, attracting cyberattacks. 

 
3. The Consequences   
As a result, fraud detection models are trained on 

limited, local datasets. This fragmentation leads to: 
 
Low Accuracy. Models struggle to recognize 

global fraud trends that haven't emerged in a specific 
bank's local data. 

 
Vulnerability of Smaller Players. Smaller financial 

institutions, with less data for training, are much 
more exposed to sophisticated fraud. 

 
Innovation Stagnation. The industry cannot 

improve fraud detection efficiency without 
compromising the basic right to data privacy. 

 
4. The FinSecure Objective   
The goal of this project is to create FinSecure, a 

decentralized framework that uses Federated 
Learning to bridge these data silos. FinSecure aims 
to allow collaborative model training by sharing only 
mathematical gradients instead of raw sensitive data, 
improving fraud detection accuracy while ensuring 
complete data privacy and meeting regulatory 
standards. 

 
 
 

III. OBJECTIVES 
The main goal of the FinSecure project is to create, 

implement, and assess a decentralized framework 
that protects privacy and allows financial institutions 
to train shared fraud detection models. The detailed 
objectives are as follows: 

 
3.1 Framework Architecture & Orchestration 
 
- Design a Hub-and-Spoke Topology: Create a 

scalable network where a central FastAPI aggregator 
manages global model states while independent 
"Spoke" nodes (banks) keep local data control. 

- Implement Secure Communication Protocols: 
Set up encrypted channels for sending model 
gradients to ensure that interceptors cannot piece 
together sensitive financial data during 
synchronization. 

- Develop a Global Orchestrator: Build a central 
server that handles client registration, chooses active 
participants for each training round, and manages 
global weight versions. 

 
3.2 Machine Learning & Algorithmic Goals 
 
- Implement the FedAvg Algorithm: Use the 

Federated Averaging algorithm as the main 
optimization method. This ensures global updates 
are calculated as the weighted average of local model 
weights:  

$$W_G^{t+1} = \frac{1}{N} \sum_{k=1}^{N} 
W_k$$ 

- Address Data Imbalance (Class Distribution): 
Integrate methods like SMOTE (Synthetic Minority 
Over-sampling Technique) or cost-sensitive learning 
within local nodes to manage the extreme lack of 
fraudulent transactions ($<1\%$). 

- Optimize Local Convergence: Set local 
TensorFlow training parameters (learning rate, 
epochs, and batch size) for quick local learning 
without causing the global model to diverge. 

 
3.3 Privacy and Regulatory Compliance 
 
- Enforce Zero-Data Sharing: Stick to a strict "raw 

data stays local" policy to ensure the system meets 
the rules of DPDP (India), GDPR (EU), and CCPA 
(USA). 
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- Prevent Gradient Leakage: Explore the 
feasibility of adding Differential Privacy (DP) by 
injecting calibrated noise into local gradients to 
reduce the risk of "Membership Inference Attacks," 
where an attacker tries to determine if a specific 
record was part of the training set. 

 
3.4 System Monitoring & UX 
 
- Develop a Real-Time Analytical Dashboard: 

Create a React interface that shows administrators 
live visualizations of:  

  - Training loss and accuracy curves per round.  
  - The geographic or logical distribution of 

participating institutions.  
  - System health metrics (latency and 

communication overhead). 
- Implement Auditability: Keep a secure log of 

model updates and participation history for forensic 
review on how the global model changed over time. 

 
3.5 Evaluation and Validation 
 
- Perform Accuracy Benchmarking: Compare the 

performance (Precision, Recall, F1-Score) of the 
FinSecure federated model against a baseline 
Centralized Model trained on the same data in a 
single repository. 

- Measure Communication Efficiency: Analyze 
the balance between the number of communication 
rounds and the model's accuracy to reduce the 
bandwidth needed for bank-to-server updates. 

  

IV. LITERATURE REVIEW 
  Traditional fraud detection relies on Rule-Based 

Systems or centralized ML models like Random 
Forest, SVM, and Neural Networks. While these 
methods are effective, they have high false-positive 
rates and struggle to keep up with new fraud patterns 
seen by other institutions. 

 
In 2017, Google introduced Federated Learning 

mainly for mobile keyboard prediction. Later 
research has applied Federated Learning to 
healthcare and IoT, but its use in Fintech is still 
emerging. Yang et al. proposed FATE, a secure 
computing framework in 2019; however, it lacks a 

user-friendly interface for managing multiple 
participants. 

 
FinSecure addresses this issue by offering a 

complete, full-stack solution, including Backend, 
Frontend, and Client Script. It is specifically 
designed to help financial institutions collaborate 
easily. 

 

V.          METHODOLOGY 
FinSecure follows a Hub-and-Spoke network 

topology. Central Aggregator (Server): This is 
hosted on a cloud platform, such as Render or AWS. 
It manages the global model, coordinates training 
rounds, and combines weights. Participating Clients 
(Banks): These are independent entities running the 
FinSecure Client Script. They store the private 
transaction data. Administrator Dashboard: This is a 
React-based web interface for tracking training 
progress, accuracy metrics, and participating 
companies.   

 
B. The Federated Averaging (FedAvg) Algorithm   
We use the FedAvg algorithm to combine model 

updates. The process for one training round is as 
follows:   

 
- Initialization: The server starts with a global 

Neural Network model ($W_G$).   
- Distribution: The server sends the current model 

weights ($W_G$) to selected clients.   
- Local Training: Client $k$ trains the model on its 

local data $D_k$ for $E$ epochs to get local weights 
$W_k$.   

- Upload: Client $k$ sends only the updated 
weights ($W_k$) to the server.   

- Aggregation: The server averages the weights 
from all clients to update the global model:   

$$W_{G}^{t+1} = \frac{1}{N} 
\sum_{k=1}^{N} W_k$$   

- Iteration: Steps 2-5 repeat until the model 
achieves the desired accuracy. 

 
MATERIALS   

• Frontend: React.js with Tailwind 
CSS for the admin dashboard. 



International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026  
                                                                                                 Available at wwwijsred.com               

ISSN: 2581-7175                                     ©IJSRED: All Rights are Reserved                                     Page 813 

• Backend: Python FastAPI for high-
performance asynchronous request handling. 
• Database: MongoDB (Motor async 
driver) for storing company profiles, model 
versions, and training logs. 

 
VI. PROCEDURE 

Data Preprocessing and Partitioning   
Since the main value of FinSecure is training on 
decentralized data, we simulate a multi-bank  
environment using a standard financial fraud 
dataset, such as the Kaggle Credit Card Fraud 
dataset.   
 
Normalization: All transaction amounts and 
numerical features are scaled with a 
StandardScaler. This ensures uniform gradient 
descent across different client nodes.   
 
Addressing Class Imbalance: Fraudulent 
transactions usually make up less than 0.2% of the 
data. We apply SMOTE (Synthetic Minority 
Over-sampling Technique) on each local client 
node. This helps local models effectively learn 
fraud patterns.   
 
Data Partitioning: The dataset is divided into N 
non-overlapping subsets (shards) to simulate 
independent banks. We distribute the data in a 
non-IID (Independent and Identically 
Distributed) way. This reflects real-world 
situations where different banks have different 
customer demographics.  

 

 
Fig. 1  Sample of interface. 

 
Fig. 2 User interface with details. 
System Implementation and Integration   
The system is designed as a distributed 
application with separate roles for the server and 
the clients.   
 
Step 1: Aggregator (Server) Initialization:   
A FastAPI application acts as the central hub. It 
initializes the global model using 
TensorFlow/Keras with a set architecture, such as 
an MLP featuring Dropout layers to prevent 
overfitting.   
 
Step 2: Client Node Configuration:   
Each "Bank" node runs a Python script that 
connects to the server through WebSockets or 
REST endpoints. These nodes are set up with 
their local database connection strings and local 
training hyperparameters (E epochs, B batch 
size).   
 
Step 3: Administrative Control:   
The React Dashboard connects to the server’s 
/metrics endpoint. This allows us to visualize loss 
and accuracy in real-time. 
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 Federated Training Workflow (Execution)  

 
Fig. 3 Global Model Metrics over federated Rounds 

Fig. 4 Sample of confusion matrix 

 
Fig. 5 Sample of confusion matrix(2) 
 
The training process occurs in distinct 
"Communication Rounds." Each round follows 
this procedure:   
 
Broadcast: The FastAPI server sends the current 
global model weights W_G^t to all active bank 
clients.   

 
Local Training: Each bank receives the weights, 
loads them into their local TensorFlow model, 
and trains on its local shard for 5 epochs.   
 
Weight Extraction: After training, the client script 
extracts only the trainable variables (weights and 
biases). It does not touch or move any raw 
transaction records.   
 
Submission: Clients return the updated weights 
(W_k) to the server using a POST request.   
 
Aggregation: The server waits for updates from at 
least a minimum quorum of clients. Once 
received, it applies the FedAvg algorithm:   
$$W_{G}^{t+1} = \sum_{k=1}^{N} 
\frac{n_k}{n} W_k$$   
(Here, n_k is the number of samples at client k, 
and n is the total number of samples across all 
clients.)   
 
Evaluation: The server assesses the new global 
model against a held-out validation set and logs 
the results to the React dashboard.   
 
Evaluation Metrics   
To validate the process, we track the following for 
each round:   
 
Precision and Recall: Both are crucial for fraud 
detection since missing a single fraudulent 
transaction (low recall) can be expensive.   
 
F1-Score: This helps us find a balance between 
false alarms and detected fraud.   
 
Communication Overhead: We measure the size 
of the weight payloads to ensure the system 
remains lightweight.   
The development of FinSecure tackles one of the 
biggest challenges in today's financial world: the 
"Data Silo" problem. By using Federated 
Learning, this framework shows that 
collaborative intelligence can exist without 
sacrificing consumer privacy or following 
regulations. Our implementation, which includes 
FastAPI, TensorFlow, and React, successfully 
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connects different financial entities. The results 
show that the FedAvg algorithm allows the global 
model to achieve high fraud detection accuracy, 
similar to centralized training methods, while 
ensuring that 100% of raw transaction data stays 
within the originating bank's secure system. 
FinSecure effectively reduces the risks of large 
data breaches and offers a scalable, secure, and 
compliant alternative to traditional data pooling. 
 
Future Work 
While FinSecure provides a strong base for 
privacy-preserving AI, there are several paths for 
further improvement and strengthening in the 
industry: 
 
Enhanced Privacy Layers 
- Differential Privacy (DP): Future versions will 
focus on adding controlled mathematical "noise" 
to the local gradients before they are sent. This 
prevents possible "Inversion Attacks," where a 
malicious actor might try to reconstruct data from 
the model updates.  
- Secure Multi-Party Computation (SMPC): 
Adding SMPC could allow for combining 
weights without the central server ever seeing the 
individual gradients. 
 
Security and Trust 
- Blockchain Integration: To stop "Poisoning 
Attacks," where a malicious client sends false 
weights to disrupt the global model, a blockchain-
based ledger could be used to track and verify the 
reputation of participating banks.  
- Byzantine Fault Tolerance: We need to create 
stronger aggregation algorithms that can 
automatically identify and exclude unusual or 
harmful updates from participating nodes. 
 
Technical Scalability 
- Asynchronous Federated Learning: Right now, 
the server waits for all clients to finish. Switching 
to an asynchronous method would let the model 
update as soon as the first few banks submit their 
gradients, greatly cutting down training time.  
- Incentivization Models: We will explore reward 
systems to encourage smaller financial 

institutions to participate and provide high-
quality data to the network. 
 

VII. CONCLUSION AND FUTURE WORK 
  The development of FinSecure tackles one of 
the biggest challenges in today's financial world: 
the "Data Silo" problem. By using Federated 
Learning, this framework shows that 
collaborative intelligence can exist without 
sacrificing consumer privacy or following 
regulations. Our implementation, which includes 
FastAPI, TensorFlow, and React, successfully 
connects different financial entities. The results 
show that the FedAvg algorithm allows the global 
model to achieve high fraud detection accuracy, 
similar to centralized training methods, while 
ensuring that 100% of raw transaction data stays 
within the originating bank's secure system. 
FinSecure effectively reduces the risks of large 
data breaches and offers a scalable, secure, and 
compliant alternative to traditional data pooling. 
 
Future Work 
While FinSecure provides a strong base for 
privacy-preserving AI, there are several paths for 
further improvement and strengthening in the 
industry: 
 
Enhanced Privacy Layers 
- Differential Privacy (DP): Future versions will 
focus on adding controlled mathematical "noise" 
to the local gradients before they are sent. This 
prevents possible "Inversion Attacks," where a 
malicious actor might try to reconstruct data from 
the model updates.  
- Secure Multi-Party Computation (SMPC): 
Adding SMPC could allow for combining 
weights without the central server ever seeing the 
individual gradients. 
 
Security and Trust 
- Blockchain Integration: To stop "Poisoning 
Attacks," where a malicious client sends false 
weights to disrupt the global model, a blockchain-
based ledger could be used to track and verify the 
reputation of participating banks.  



International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026  
                                                                                                 Available at wwwijsred.com               

ISSN: 2581-7175                                     ©IJSRED: All Rights are Reserved                                     Page 816 

- Byzantine Fault Tolerance: We need to create 
stronger aggregation algorithms that can 
automatically identify and exclude unusual or 
harmful updates from participating nodes. 
 
Technical Scalability 
- Asynchronous Federated Learning: Right now, 
the server waits for all clients to finish. Switching 
to an asynchronous method would let the model 
update as soon as the first few banks submit their 
gradients, greatly cutting down training time.  
- Incentivization Models: We will explore reward 
systems to encourage smaller financial 
institutions to participate and provide high-
quality data to the network. 
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