
International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at wwwijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 810

FINSECURE: Federated Learning Platform for

Fintech Companies
1Sajjan Udar, 2Nishant Ghuse

1(Computer Science and Engineering, KDK College of Engineering, Nagpur
Email: sajjanudar@gmail.com)

2(Computer Science and Engineering, KDK College of Engineering, Nagpur
Email: nishant18g@gmail.com)

--************************----------------------------------

Abstract:
FinSecure: A Privacy-Preserving Federated Learning Framework for Financial Fraud Detection, The rapid
digitalization of the financial sector has led to a significant rise in transaction volumes. At the same time, it
has created new vulnerabilities for financial fraud. Traditional fraud detection systems rely on centralized
machine learning models that need to pool sensitive customer data into a single server. This method raises
important privacy concerns, data security risks, and regulatory compliance issues, such as GDPR and
CCPA.
This paper proposes FinSecure, a decentralized fraud detection framework based on Federated Learning
(FL). Unlike centralized systems, FinSecure allows multiple financial institutions to collaboratively train a
global fraud detection model without sharing raw transaction data. The system uses a Client-Server
architecture where a central server collects model updates (gradients) from participating clients (banks)
while keeping the actual data local and private.
We implemented the system using FastAPI for the aggregation server, React for the dashboard, and
TensorFlow for local model training. Our results show that FinSecure achieves accuracy similar to
centralized models while ensuring complete data privacy.

Keywords — Federated Learning, Financial Fraud Detection, Privacy-Preserving AI, Distributed Systems,
Deep Learning

--************************----------------------------------

I. INTRODUCTION

Financial fraud is a major problem for the global
economy, costing billions of dollars each year. As
banking shifts online, fraud patterns have become
more complex. This complexity requires effective
Machine Learning (ML) solutions to identify
unusual activity. The success of these ML models
relies on the amount and variety of data used for
training. Currently, banks operate in "data silos."
Bank A cannot share its fraud data with Bank B
because of strict data privacy laws and competitive
concerns. This restriction makes it hard for the
industry to create a strong fraud detection model. A
centralized system, where all banks upload data to a
central cloud, poses a huge security risk. A single
breach could put millions of sensitive financial

records at risk. To solve this issue, we present
FinSecure, a platform that uses Federated Learning
(FL). FL is a distributed machine learning method
that allows training on separate data. In our system,
the model goes to the data instead of the data coming
to the model. Each bank trains a local model on its
private data and shares only the mathematical
updates, known as gradients, with the FinSecure
server. This way, raw data stays in the bank's secure
environment.

II. PROBLEM STATEMENT

1. The Ideal State
In a perfect financial ecosystem, institutions

should be able to use the combined knowledge of the
entire industry to spot complex fraud patterns. A
strong fraud detection system needs varied, large

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at wwwijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 811

datasets to train machine learning models that can
quickly detect changing criminal tactics.

2. The Reality: "Data Silos"
Right now, financial institutions work in isolation

due to:

Privacy Regulations. Strict laws like GDPR,

CCPA, and the Digital Personal Data Protection Act
(DPDP) prevent organizations from sharing raw
customer transaction data.

Competitive Barriers. Banks hesitate to share

internal data that could expose business strategies or
customer behaviors to their competitors.

Security Risks. Gathering data from multiple

banks into one master server creates a high-risk
single point of failure, attracting cyberattacks.

3. The Consequences
As a result, fraud detection models are trained on

limited, local datasets. This fragmentation leads to:

Low Accuracy. Models struggle to recognize

global fraud trends that haven't emerged in a specific
bank's local data.

Vulnerability of Smaller Players. Smaller financial

institutions, with less data for training, are much
more exposed to sophisticated fraud.

Innovation Stagnation. The industry cannot

improve fraud detection efficiency without
compromising the basic right to data privacy.

4. The FinSecure Objective
The goal of this project is to create FinSecure, a

decentralized framework that uses Federated
Learning to bridge these data silos. FinSecure aims
to allow collaborative model training by sharing only
mathematical gradients instead of raw sensitive data,
improving fraud detection accuracy while ensuring
complete data privacy and meeting regulatory
standards.

III. OBJECTIVES
The main goal of the FinSecure project is to create,

implement, and assess a decentralized framework
that protects privacy and allows financial institutions
to train shared fraud detection models. The detailed
objectives are as follows:

3.1 Framework Architecture & Orchestration

- Design a Hub-and-Spoke Topology: Create a

scalable network where a central FastAPI aggregator
manages global model states while independent
"Spoke" nodes (banks) keep local data control.

- Implement Secure Communication Protocols:
Set up encrypted channels for sending model
gradients to ensure that interceptors cannot piece
together sensitive financial data during
synchronization.

- Develop a Global Orchestrator: Build a central
server that handles client registration, chooses active
participants for each training round, and manages
global weight versions.

3.2 Machine Learning & Algorithmic Goals

- Implement the FedAvg Algorithm: Use the

Federated Averaging algorithm as the main
optimization method. This ensures global updates
are calculated as the weighted average of local model
weights:

$$W_G^{t+1} = \frac{1}{N} \sum_{k=1}^{N}
W_k$$

- Address Data Imbalance (Class Distribution):
Integrate methods like SMOTE (Synthetic Minority
Over-sampling Technique) or cost-sensitive learning
within local nodes to manage the extreme lack of
fraudulent transactions ($<1\%$).

- Optimize Local Convergence: Set local
TensorFlow training parameters (learning rate,
epochs, and batch size) for quick local learning
without causing the global model to diverge.

3.3 Privacy and Regulatory Compliance

- Enforce Zero-Data Sharing: Stick to a strict "raw

data stays local" policy to ensure the system meets
the rules of DPDP (India), GDPR (EU), and CCPA
(USA).

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at wwwijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 812

- Prevent Gradient Leakage: Explore the
feasibility of adding Differential Privacy (DP) by
injecting calibrated noise into local gradients to
reduce the risk of "Membership Inference Attacks,"
where an attacker tries to determine if a specific
record was part of the training set.

3.4 System Monitoring & UX

- Develop a Real-Time Analytical Dashboard:

Create a React interface that shows administrators
live visualizations of:

 - Training loss and accuracy curves per round.
 - The geographic or logical distribution of

participating institutions.
 - System health metrics (latency and

communication overhead).
- Implement Auditability: Keep a secure log of

model updates and participation history for forensic
review on how the global model changed over time.

3.5 Evaluation and Validation

- Perform Accuracy Benchmarking: Compare the

performance (Precision, Recall, F1-Score) of the
FinSecure federated model against a baseline
Centralized Model trained on the same data in a
single repository.

- Measure Communication Efficiency: Analyze
the balance between the number of communication
rounds and the model's accuracy to reduce the
bandwidth needed for bank-to-server updates.

IV. LITERATURE REVIEW
 Traditional fraud detection relies on Rule-Based

Systems or centralized ML models like Random
Forest, SVM, and Neural Networks. While these
methods are effective, they have high false-positive
rates and struggle to keep up with new fraud patterns
seen by other institutions.

In 2017, Google introduced Federated Learning

mainly for mobile keyboard prediction. Later
research has applied Federated Learning to
healthcare and IoT, but its use in Fintech is still
emerging. Yang et al. proposed FATE, a secure
computing framework in 2019; however, it lacks a

user-friendly interface for managing multiple
participants.

FinSecure addresses this issue by offering a

complete, full-stack solution, including Backend,
Frontend, and Client Script. It is specifically
designed to help financial institutions collaborate
easily.

V. METHODOLOGY
FinSecure follows a Hub-and-Spoke network

topology. Central Aggregator (Server): This is
hosted on a cloud platform, such as Render or AWS.
It manages the global model, coordinates training
rounds, and combines weights. Participating Clients
(Banks): These are independent entities running the
FinSecure Client Script. They store the private
transaction data. Administrator Dashboard: This is a
React-based web interface for tracking training
progress, accuracy metrics, and participating
companies.

B. The Federated Averaging (FedAvg) Algorithm
We use the FedAvg algorithm to combine model

updates. The process for one training round is as
follows:

- Initialization: The server starts with a global

Neural Network model (W_G).
- Distribution: The server sends the current model

weights (W_G) to selected clients.
- Local Training: Client k trains the model on its

local data D_k for E epochs to get local weights
W_k.

- Upload: Client k sends only the updated
weights (W_k) to the server.

- Aggregation: The server averages the weights
from all clients to update the global model:

$$W_{G}^{t+1} = \frac{1}{N}
\sum_{k=1}^{N} W_k$$

- Iteration: Steps 2-5 repeat until the model
achieves the desired accuracy.

MATERIALS

• Frontend: React.js with Tailwind
CSS for the admin dashboard.

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at wwwijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 813

• Backend: Python FastAPI for high-
performance asynchronous request handling.
• Database: MongoDB (Motor async
driver) for storing company profiles, model
versions, and training logs.

VI. PROCEDURE

Data Preprocessing and Partitioning
Since the main value of FinSecure is training on
decentralized data, we simulate a multi-bank
environment using a standard financial fraud
dataset, such as the Kaggle Credit Card Fraud
dataset.

Normalization: All transaction amounts and
numerical features are scaled with a
StandardScaler. This ensures uniform gradient
descent across different client nodes.

Addressing Class Imbalance: Fraudulent
transactions usually make up less than 0.2% of the
data. We apply SMOTE (Synthetic Minority
Over-sampling Technique) on each local client
node. This helps local models effectively learn
fraud patterns.

Data Partitioning: The dataset is divided into N
non-overlapping subsets (shards) to simulate
independent banks. We distribute the data in a
non-IID (Independent and Identically
Distributed) way. This reflects real-world
situations where different banks have different
customer demographics.

Fig. 1 Sample of interface.

Fig. 2 User interface with details.
System Implementation and Integration
The system is designed as a distributed
application with separate roles for the server and
the clients.

Step 1: Aggregator (Server) Initialization:
A FastAPI application acts as the central hub. It
initializes the global model using
TensorFlow/Keras with a set architecture, such as
an MLP featuring Dropout layers to prevent
overfitting.

Step 2: Client Node Configuration:
Each "Bank" node runs a Python script that
connects to the server through WebSockets or
REST endpoints. These nodes are set up with
their local database connection strings and local
training hyperparameters (E epochs, B batch
size).

Step 3: Administrative Control:
The React Dashboard connects to the server’s
/metrics endpoint. This allows us to visualize loss
and accuracy in real-time.

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at wwwijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 814

 Federated Training Workflow (Execution)

Fig. 3 Global Model Metrics over federated Rounds

Fig. 4 Sample of confusion matrix

Fig. 5 Sample of confusion matrix(2)

The training process occurs in distinct
"Communication Rounds." Each round follows
this procedure:

Broadcast: The FastAPI server sends the current
global model weights W_G^t to all active bank
clients.

Local Training: Each bank receives the weights,
loads them into their local TensorFlow model,
and trains on its local shard for 5 epochs.

Weight Extraction: After training, the client script
extracts only the trainable variables (weights and
biases). It does not touch or move any raw
transaction records.

Submission: Clients return the updated weights
(W_k) to the server using a POST request.

Aggregation: The server waits for updates from at
least a minimum quorum of clients. Once
received, it applies the FedAvg algorithm:
$$W_{G}^{t+1} = \sum_{k=1}^{N}
\frac{n_k}{n} W_k$$
(Here, n_k is the number of samples at client k,
and n is the total number of samples across all
clients.)

Evaluation: The server assesses the new global
model against a held-out validation set and logs
the results to the React dashboard.

Evaluation Metrics
To validate the process, we track the following for
each round:

Precision and Recall: Both are crucial for fraud
detection since missing a single fraudulent
transaction (low recall) can be expensive.

F1-Score: This helps us find a balance between
false alarms and detected fraud.

Communication Overhead: We measure the size
of the weight payloads to ensure the system
remains lightweight.
The development of FinSecure tackles one of the
biggest challenges in today's financial world: the
"Data Silo" problem. By using Federated
Learning, this framework shows that
collaborative intelligence can exist without
sacrificing consumer privacy or following
regulations. Our implementation, which includes
FastAPI, TensorFlow, and React, successfully

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at wwwijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 815

connects different financial entities. The results
show that the FedAvg algorithm allows the global
model to achieve high fraud detection accuracy,
similar to centralized training methods, while
ensuring that 100% of raw transaction data stays
within the originating bank's secure system.
FinSecure effectively reduces the risks of large
data breaches and offers a scalable, secure, and
compliant alternative to traditional data pooling.

Future Work
While FinSecure provides a strong base for
privacy-preserving AI, there are several paths for
further improvement and strengthening in the
industry:

Enhanced Privacy Layers
- Differential Privacy (DP): Future versions will
focus on adding controlled mathematical "noise"
to the local gradients before they are sent. This
prevents possible "Inversion Attacks," where a
malicious actor might try to reconstruct data from
the model updates.
- Secure Multi-Party Computation (SMPC):
Adding SMPC could allow for combining
weights without the central server ever seeing the
individual gradients.

Security and Trust
- Blockchain Integration: To stop "Poisoning
Attacks," where a malicious client sends false
weights to disrupt the global model, a blockchain-
based ledger could be used to track and verify the
reputation of participating banks.
- Byzantine Fault Tolerance: We need to create
stronger aggregation algorithms that can
automatically identify and exclude unusual or
harmful updates from participating nodes.

Technical Scalability
- Asynchronous Federated Learning: Right now,
the server waits for all clients to finish. Switching
to an asynchronous method would let the model
update as soon as the first few banks submit their
gradients, greatly cutting down training time.
- Incentivization Models: We will explore reward
systems to encourage smaller financial

institutions to participate and provide high-
quality data to the network.

VII. CONCLUSION AND FUTURE WORK
 The development of FinSecure tackles one of
the biggest challenges in today's financial world:
the "Data Silo" problem. By using Federated
Learning, this framework shows that
collaborative intelligence can exist without
sacrificing consumer privacy or following
regulations. Our implementation, which includes
FastAPI, TensorFlow, and React, successfully
connects different financial entities. The results
show that the FedAvg algorithm allows the global
model to achieve high fraud detection accuracy,
similar to centralized training methods, while
ensuring that 100% of raw transaction data stays
within the originating bank's secure system.
FinSecure effectively reduces the risks of large
data breaches and offers a scalable, secure, and
compliant alternative to traditional data pooling.

Future Work
While FinSecure provides a strong base for
privacy-preserving AI, there are several paths for
further improvement and strengthening in the
industry:

Enhanced Privacy Layers
- Differential Privacy (DP): Future versions will
focus on adding controlled mathematical "noise"
to the local gradients before they are sent. This
prevents possible "Inversion Attacks," where a
malicious actor might try to reconstruct data from
the model updates.
- Secure Multi-Party Computation (SMPC):
Adding SMPC could allow for combining
weights without the central server ever seeing the
individual gradients.

Security and Trust
- Blockchain Integration: To stop "Poisoning
Attacks," where a malicious client sends false
weights to disrupt the global model, a blockchain-
based ledger could be used to track and verify the
reputation of participating banks.

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at wwwijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 816

- Byzantine Fault Tolerance: We need to create
stronger aggregation algorithms that can
automatically identify and exclude unusual or
harmful updates from participating nodes.

Technical Scalability
- Asynchronous Federated Learning: Right now,
the server waits for all clients to finish. Switching
to an asynchronous method would let the model
update as soon as the first few banks submit their
gradients, greatly cutting down training time.
- Incentivization Models: We will explore reward
systems to encourage smaller financial
institutions to participate and provide high-
quality data to the network.

ACKNOWLEDGMENT

The heading of the Acknowledgment section and
the References section must not be numbered.

Causal Productions wishes to acknowledge
Michael Shell and other contributors for developing
and maintaining the IEEE LaTeX style files which
have been used in the preparation of this template.
To see the list of contributors, please refer to the top
of file IEEETran.cls in the IEEE LaTeX
distribution… The authors would like to express
their sincere gratitude to our project guide, Dr. Anup
Bhange, for their invaluable mentorship, technical
insights, and continuous encouragement throughout
the development of FinSecure. We are also grateful
to the Department of Computer Science &
Engineering at KDK College of Engineering, for
providing the necessary infrastructure and resources
to conduct this research.

Furthermore, we wish to acknowledge Michael
Shell and the various contributors for developing and
maintaining the IEEE LaTeX style files, which were
instrumental in the professional preparation and
formatting of this manuscript. Finally, we thank our
peers and families for their unwavering support
during the completion of this project.

REFERENCES
[1] McMahan et al., “Communication-Efficient Learning of Deep

Networks from Decentralized Data,” AISTATS 2017.
[2] Blanchard et al., “Machine Learning with Adversaries: Byzantine

Tolerant Gradient Descent,” NeurIPS 2017
[3] Bonawitz et al., “Practical Secure Aggregation for FL,” CCS 2017

(Google)

[4] Hardy et al., “Privacy-Preserving Federated Learning for Healthcare,”
2020.

[5] RBI & SEBI regulations on fraud detection and data privacy (2023)

