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Abstract:

FinSecure: A Privacy-Preserving Federated Learning Framework for Financial Fraud Detection, The rapid
digitalization of the financial sector has led to a significant rise in transaction volumes. At the same time, it
has created new vulnerabilities for financial fraud. Traditional fraud detection systems rely on centralized
machine learning models that need to pool sensitive customer data into a single server. This method raises
important privacy concerns, data security risks, and regulatory compliance issues, such as GDPR and
CCPA.

This paper proposes FinSecure, a decentralized fraud detection framework based on Federated Learning
(FL). Unlike centralized systems, FinSecure allows multiple financial institutions to collaboratively train a
global fraud detection model without sharing raw transaction data. The system uses a Client-Server
architecture where a central server collects model updates (gradients) from participating clients (banks)
while keeping the actual data local and private.

We implemented the system using FastAPI for the aggregation server, React for the dashboard, and
TensorFlow for local model training. Our results show that FinSecure achieves accuracy similar to
centralized models while ensuring complete data privacy.

Keywords — Federated Learning, Financial Fraud Detection, Privacy-Preserving Al, Distributed Systems,
Deep Learning
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records at risk. To solve this issue, we present
FinSecure, a platform that uses Federated Learning
(FL). FL is a distributed machine learning method
that allows training on separate data. In our system,
the model goes to the data instead of the data coming
to the model. Each bank trains a local model on its
private data and shares only the mathematical

I. INTRODUCTION

Financial fraud is a major problem for the global
economy, costing billions of dollars each year. As
banking shifts online, fraud patterns have become
more complex. This complexity requires effective
Machine Learning (ML) solutions to identify

unusual activity. The success of these ML models
relies on the amount and variety of data used for
training. Currently, banks operate in "data silos."
Bank A cannot share its fraud data with Bank B
because of strict data privacy laws and competitive
concerns. This restriction makes it hard for the
industry to create a strong fraud detection model. A
centralized system, where all banks upload data to a
central cloud, poses a huge security risk. A single
breach could put millions of sensitive financial

updates, known as gradients, with the FinSecure
server. This way, raw data stays in the bank's secure
environment.

II. PROBLEM STATEMENT

1. The Ideal State

In a perfect financial ecosystem, institutions
should be able to use the combined knowledge of the
entire industry to spot complex fraud patterns. A
strong fraud detection system needs varied, large
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datasets to train machine learning models that can
quickly detect changing criminal tactics.

2. The Reality: "Data Silos"
Right now, financial institutions work in isolation
due to:

Privacy Regulations. Strict laws like GDPR,
CCPA, and the Digital Personal Data Protection Act
(DPDP) prevent organizations from sharing raw
customer transaction data.

Competitive Barriers. Banks hesitate to share
internal data that could expose business strategies or
customer behaviors to their competitors.

Security Risks. Gathering data from multiple
banks into one master server creates a high-risk
single point of failure, attracting cyberattacks.

3. The Consequences
As a result, fraud detection models are trained on
limited, local datasets. This fragmentation leads to:

Low Accuracy. Models struggle to recognize
global fraud trends that haven't emerged in a specific
bank's local data.

Vulnerability of Smaller Players. Smaller financial
institutions, with less data for training, are much
more exposed to sophisticated fraud.

Innovation Stagnation. The industry cannot
improve fraud detection efficiency without
compromising the basic right to data privacy.

4. The FinSecure Objective

The goal of this project is to create FinSecure, a
decentralized framework that uses Federated
Learning to bridge these data silos. FinSecure aims
to allow collaborative model training by sharing only
mathematical gradients instead of raw sensitive data,
improving fraud detection accuracy while ensuring
complete data privacy and meeting regulatory
standards.
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III. OBJECTIVES

The main goal of the FinSecure project is to create,
implement, and assess a decentralized framework
that protects privacy and allows financial institutions
to train shared fraud detection models. The detailed
objectives are as follows:

3.1 Framework Architecture & Orchestration

- Design a Hub-and-Spoke Topology: Create a
scalable network where a central FastAPI aggregator
manages global model states while independent
"Spoke" nodes (banks) keep local data control.

- Implement Secure Communication Protocols:
Set up encrypted channels for sending model
gradients to ensure that interceptors cannot piece
together  sensitive  financial data  during
synchronization.

- Develop a Global Orchestrator: Build a central
server that handles client registration, chooses active
participants for each training round, and manages
global weight versions.

3.2 Machine Learning & Algorithmic Goals

- Implement the FedAvg Algorithm: Use the
Federated Averaging algorithm as the main
optimization method. This ensures global updates
are calculated as the weighted average of local model
weights:

$SW_GM{t+1} = \frac{l1}{N} \sum_{k=1}"{N}
W KSS

- Address Data Imbalance (Class Distribution):
Integrate methods like SMOTE (Synthetic Minority
Over-sampling Technique) or cost-sensitive learning
within local nodes to manage the extreme lack of
fraudulent transactions ($<1\%3$).

- Optimize Local Convergence: Set local
TensorFlow training parameters (learning rate,
epochs, and batch size) for quick local learning
without causing the global model to diverge.

3.3 Privacy and Regulatory Compliance

- Enforce Zero-Data Sharing: Stick to a strict "raw
data stays local" policy to ensure the system meets
the rules of DPDP (India), GDPR (EU), and CCPA
(USA).
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- Prevent Gradient Leakage: Explore the
feasibility of adding Differential Privacy (DP) by
injecting calibrated noise into local gradients to
reduce the risk of "Membership Inference Attacks,"
where an attacker tries to determine if a specific
record was part of the training set.

3.4 System Monitoring & UX

- Develop a Real-Time Analytical Dashboard:
Create a React interface that shows administrators
live visualizations of:

- Training loss and accuracy curves per round.

- The geographic or logical distribution of
participating institutions.

- System health metrics
communication overhead).

- Implement Auditability: Keep a secure log of
model updates and participation history for forensic
review on how the global model changed over time.

(latency and

3.5 Evaluation and Validation

- Perform Accuracy Benchmarking: Compare the
performance (Precision, Recall, F1-Score) of the
FinSecure federated model against a baseline
Centralized Model trained on the same data in a
single repository.

- Measure Communication Efficiency: Analyze
the balance between the number of communication
rounds and the model's accuracy to reduce the
bandwidth needed for bank-to-server updates.

IV. LITERATURE REVIEW

Traditional fraud detection relies on Rule-Based
Systems or centralized ML models like Random
Forest, SVM, and Neural Networks. While these
methods are effective, they have high false-positive
rates and struggle to keep up with new fraud patterns

seen by other institutions.

In 2017, Google introduced Federated Learning
mainly for mobile keyboard prediction. Later
research has applied Federated Learning to
healthcare and IoT, but its use in Fintech is still
emerging. Yang et al. proposed FATE, a secure
computing framework in 2019; however, it lacks a
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user-friendly
participants.

interface for managing multiple

FinSecure addresses this issue by offering a
complete, full-stack solution, including Backend,
Frontend, and Client Script. It is specifically
designed to help financial institutions collaborate
easily.

V. METHODOLOGY

FinSecure follows a Hub-and-Spoke network
topology. Central Aggregator (Server): This is
hosted on a cloud platform, such as Render or AWS.
It manages the global model, coordinates training
rounds, and combines weights. Participating Clients
(Banks): These are independent entities running the
FinSecure Client Script. They store the private
transaction data. Administrator Dashboard: This is a
React-based web interface for tracking training
progress, accuracy metrics, and participating
companies.

B. The Federated Averaging (FedAvg) Algorithm

We use the FedAvg algorithm to combine model
updates. The process for one training round is as
follows:

- Initialization: The server starts with a global
Neural Network model ($W_GS$).

- Distribution: The server sends the current model
weights (§W_G8$) to selected clients.

- Local Training: Client $k$ trains the model on its
local data $D_kS$ for $SE$ epochs to get local weights
$W_KkS.

- Upload: Client $k$ sends only the updated
weights (§W_k§) to the server.

- Aggregation: The server averages the weights
from all clients to update the global model:

$SW_{G}N{t+1} = \frac{1} {N}
\sum_{k=1}"{N} W_k§$

- Iteration: Steps 2-5 repeat until the model
achieves the desired accuracy.

MATERIALS
. Frontend: Reactjs with Tailwind
CSS for the admin dashboard.
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. Backend: Python FastAPI for high-
performance asynchronous request handling.
. Database: MongoDB (Motor async

driver) for storing company profiles, model
versions, and training logs.

PROCEDURE
Data Preprocessing and Partitioning
Since the main value of FinSecure is training on
decentralized data, we simulate a multi-bank
environment using a standard financial fraud
dataset, such as the Kaggle Credit Card Fraud
dataset.

Normalization: All transaction amounts and
numerical features are scaled with a
StandardScaler. This ensures uniform gradient
descent across different client nodes.

Addressing  Class Imbalance:  Fraudulent
transactions usually make up less than 0.2% of the
data. We apply SMOTE (Synthetic Minority
Over-sampling Technique) on each local client
node. This helps local models effectively learn
fraud patterns.

Data Partitioning: The dataset is divided into N
non-overlapping subsets (shards) to simulate
independent banks. We distribute the data in a
non-IID (Independent and Identically
Distributed) way. This reflects real-world
situations where different banks have different
customer demographics.

581 Bank
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Client Setup Guide

& Download Pythen Scrpt

Fig. 2 User interface with details.
System Implementation and Integration

The system 1is designed as a distributed
application with separate roles for the server and
the clients.

Step 1: Aggregator (Server) Initialization:

A FastAPI application acts as the central hub. It
initializes the global  model  using
TensorFlow/Keras with a set architecture, such as
an MLP featuring Dropout layers to prevent
overfitting.

Step 2: Client Node Configuration:

Each "Bank" node runs a Python script that
connects to the server through WebSockets or
REST endpoints. These nodes are set up with
their local database connection strings and local
training hyperparameters (E epochs, B batch
size).

Step 3: Administrative Control:

The React Dashboard connects to the server’s
/metrics endpoint. This allows us to visualize loss
and accuracy in real-time.
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Federated Training Workflow (Execution)

Global Model Metrics over Federated Rounds Local Training: Each bank receives the weights,
loads them into their local TensorFlow model,
and trains on its local shard for 5 epochs.

1.0

0.8

% — Accuracy
E Recall

0 —n Weight Extraction: After training, the client script
. extracts only the trainable variables (weights and

| biases). It does not touch or move any raw
" : : : : 5 = transaction records.

Federated Round

Fig. 3 Global Model Metrics over federated Rounds o . .
Submission: Clients return the updated weights

Confusion Matrix - Final Global (W_k) to the server using a POST request.
g 2000 Aggregation: The server waits for updates from at
3 least a minimum quorum of clients. Once
© - 657 . . . .
& 1500 received, it applies the FedAvg algorithm:
= g $SW_{G}M{t+1} = \sum_{k=1}"{N}
2 \frac{n_k} {n} W _k$$
€ _ - 1000 (Here, n_k is the number of samples at client k,
Lo and n is the total number of samples across all
o . 14 60 :
B - 500 clients.)
r
, , Evaluation: The server assesses the new global
Not Fraud(0) Fraud(1) model against a held-out validation set and logs
_ ~ Predicted the results to the React dashboard.
Fig. 4 Sample of confusion matrix
Confusion Matrix - Final Global Evaluation Metrics
S To validate the process, we track the following for
3 2500 each round:
© 0
i 2000 .. .
_% Precision and Recall: Both are crucial for fraud
o Z . . . .
2 - 1500 detection since missing a single fraudulent
< transaction (low recall) can be expensive.
=) - 1000
B - 74 0 .
? -500 F1-Score: This helps us find a balance between
= false alarms and detected fraud.
| | = 0
Not Fraud(0) Fraud(1)

Communication Overhead: We measure the size
of the weight payloads to ensure the system
remains lightweight.

The development of FinSecure tackles one of the
biggest challenges in today's financial world: the
"Data Silo" problem. By using Federated
Learning, this framework  shows  that
collaborative intelligence can exist without
sacrificing consumer privacy or following
regulations. Our implementation, which includes
FastAPI, TensorFlow, and React, successfully

Predicted

Fig. 5 Sample of confusion matrix(2)

The training process occurs in distinct
"Communication Rounds." Each round follows
this procedure:

Broadcast: The FastAPI server sends the current
global model weights W_G”t to all active bank
clients.
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connects different financial entities. The results
show that the FedAvg algorithm allows the global
model to achieve high fraud detection accuracy,
similar to centralized training methods, while
ensuring that 100% of raw transaction data stays
within the originating bank's secure system.
FinSecure effectively reduces the risks of large
data breaches and offers a scalable, secure, and
compliant alternative to traditional data pooling.

Future Work

While FinSecure provides a strong base for
privacy-preserving Al, there are several paths for
further improvement and strengthening in the
industry:

Enhanced Privacy Layers

- Differential Privacy (DP): Future versions will
focus on adding controlled mathematical "noise"
to the local gradients before they are sent. This
prevents possible "Inversion Attacks," where a
malicious actor might try to reconstruct data from
the model updates.

- Secure Multi-Party Computation (SMPC):
Adding SMPC could allow for combining
weights without the central server ever seeing the
individual gradients.

Security and Trust

- Blockchain Integration: To stop "Poisoning
Attacks," where a malicious client sends false
weights to disrupt the global model, a blockchain-
based ledger could be used to track and verify the
reputation of participating banks.

- Byzantine Fault Tolerance: We need to create
stronger aggregation algorithms that can
automatically identify and exclude unusual or
harmful updates from participating nodes.

Technical Scalability

- Asynchronous Federated Learning: Right now,
the server waits for all clients to finish. Switching
to an asynchronous method would let the model
update as soon as the first few banks submit their
gradients, greatly cutting down training time.

- Incentivization Models: We will explore reward
systems to encourage smaller financial

©IJSRED: All Rights are Reserved
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institutions to participate and provide high-
quality data to the network.

VII. CONCLUSION AND FUTURE WORK

The development of FinSecure tackles one of
the biggest challenges in today's financial world:
the "Data Silo" problem. By using Federated
Learning, this framework  shows that
collaborative intelligence can exist without
sacrificing consumer privacy or following
regulations. Our implementation, which includes
FastAPI, TensorFlow, and React, successfully
connects different financial entities. The results
show that the FedAvg algorithm allows the global
model to achieve high fraud detection accuracy,
similar to centralized training methods, while
ensuring that 100% of raw transaction data stays
within the originating bank's secure system.
FinSecure effectively reduces the risks of large
data breaches and offers a scalable, secure, and
compliant alternative to traditional data pooling.

Future Work

While FinSecure provides a strong base for
privacy-preserving Al, there are several paths for
further improvement and strengthening in the
industry:

Enhanced Privacy Layers

- Differential Privacy (DP): Future versions will
focus on adding controlled mathematical "noise"
to the local gradients before they are sent. This
prevents possible "Inversion Attacks," where a
malicious actor might try to reconstruct data from
the model updates.

- Secure Multi-Party Computation (SMPC):
Adding SMPC could allow for combining
weights without the central server ever seeing the
individual gradients.

Security and Trust

- Blockchain Integration: To stop "Poisoning
Attacks," where a malicious client sends false
weights to disrupt the global model, a blockchain-
based ledger could be used to track and verify the
reputation of participating banks.
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. Byzantine Fault Tolerance: We need to create [4] Hardy et al., “Privacy-Preserving Federated Learning for Healthcare,”
. . 2020.

stronger aggregation algorithms that can

automatically identify and exclude unusual or [S1 RBI & SEBI regulations on fraud detection and data privacy (2023)

harmful updates from participating nodes.

Technical Scalability

- Asynchronous Federated Learning: Right now,
the server waits for all clients to finish. Switching
to an asynchronous method would let the model
update as soon as the first few banks submit their
gradients, greatly cutting down training time.

- Incentivization Models: We will explore reward
systems to encourage smaller financial
institutions to participate and provide high-
quality data to the network.
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