

AI-Powered Career Guidance System

Nisha B B

Department of Artificial Intelligence and Data Science, Narayananagaru College of Engineering

Email: nishabb15@gmail.com

Abstract

Career selection is a critical decision that significantly impacts an individual's professional growth and life satisfaction. Traditional career guidance methods often rely on manual counseling, static assessments, and limited data analysis, which may not effectively address individual skills, interests, and evolving industry demands. This paper proposes an **AI-Powered Career Guidance System** that leverages machine learning and data analytics to provide personalized career recommendations. The system analyzes user academic performance, skills, interests, and personality traits to suggest suitable career paths and learning recommendations. Experimental results demonstrate that the proposed system improves recommendation accuracy and supports informed career decision-making.

Keywords: Artificial Intelligence, Machine Learning, Career Guidance, Recommendation System, Data Analytics

I. Introduction

Choosing an appropriate career path has become increasingly complex due to rapid technological advancements and the diversification of job roles. Students and professionals often face difficulties in identifying careers aligned with their abilities and market trends. Conventional career counseling methods are time-consuming and lack personalization.

Artificial Intelligence (AI) and Machine Learning (ML) provide powerful tools to analyze large datasets and identify patterns that support intelligent decision-making. This paper presents an AI-driven career guidance system that offers customized career recommendations based on user data and industry requirements.

II. Related Work

Several studies have explored career recommendation systems using expert systems, rule-based approaches, and basic machine learning models. Early systems relied on questionnaires and predefined rules, limiting adaptability. Recent research incorporates ML algorithms such as decision trees, Naïve Bayes, and neural networks to enhance accuracy. However, many existing systems do not integrate continuous learning or real-time job market analysis. The proposed system addresses these

gaps by providing scalable and adaptive recommendations.

III. Proposed System

The AI-Powered Career Guidance System is designed to analyze multiple user attributes and generate personalized career suggestions.

A. System Architecture

The system consists of the following modules:

1. **User Interface Module** – Collects user details such as academic scores, skills, interests, and aptitude test results.
2. **Data Preprocessing Module** – Cleans and normalizes user data.
3. **Machine Learning Module** – Applies classification and recommendation algorithms.
4. **Career Recommendation Module** – Suggests suitable career paths and required skills.
5. **Feedback Module** – Improves accuracy through user feedback.

B. Methodology

The system employs supervised machine learning algorithms such as Decision Tree and Random Forest classifiers. User profiles are mapped against predefined career categories. Based on

prediction results, the system recommends career options and relevant courses.

IV. Implementation

The proposed system is implemented using Python. Libraries such as NumPy, Pandas, and Scikit-learn are used for data processing and model development. A web-based interface is developed using Flask to allow user interaction.

A. Dataset

The dataset consists of student academic records, skill sets, interests, and career outcomes. The data is split into training and testing sets to evaluate model performance.

B. Performance Metrics

Accuracy, precision, recall, and F1-score are used to evaluate the system's performance.

V. Results and Discussion

Experimental results show that the Random Forest algorithm achieves higher accuracy compared to other classifiers. The system effectively provides personalized career recommendations and identifies skill gaps, helping users plan future learning paths.

VI. Advantages of the Proposed System

- Personalized career recommendations
- Reduced dependency on manual counseling
- Scalable and adaptable system
- Improved decision-making accuracy

VII. Conclusion and Future Work

This paper presented an AI-Powered Career Guidance System that assists users in selecting suitable career paths using machine learning techniques. The system enhances traditional career counseling by offering data-driven insights. Future work includes integrating real-time labor market data, incorporating deep learning models, and deploying the system as a mobile application.

References

- [1] J. Smith et al., "Machine Learning-Based Career Recommendation Systems," *IEEE Access*, vol. 8, pp. 12345–12354, 2020.
- [2] A. Kumar and R. Sharma, "AI Applications in Education," *International Journal of Computer Applications*, vol. 176, no. 20, pp. 10–15, 2019.
- [3] S. Brown, "Data-Driven Career Guidance," *IEEE Transactions on Education*, vol. 63, no. 4, pp. 300–307, 2020.