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ABSTARCT 
This article derives and evaluates a real-time urban traffic-flow forecasting end-to-end system from the 
METR-LA loop-detector data set. After reviewing statistical time-series, conventional machine-learning, and 
deep-learning methods, we identify the need for one spatiotemporal approach that handles missing data, non-
uniform sensor inputs, and deployment constraints. We then introduce a three-stage pipeline: (1) a 
preprocessing module that imputes sensor outages, applies per-sensor Z-score normalization, and augments 
each time step with cyclical time-of-day and day-of-week features; (2) a hybrid CNN–GCN–LSTM 
forecasting model that learns local spatial patterns using 1D convolutions, global network structure using graph 
convolutions, combines these representations using optional attention, and learns temporal dynamics using an 
LSTM decoder; and (3) an inference optimization suite that combines magnitude-based pruning and 8-bit 
quantization and exports the compressed model as a TorchScript artifact for sub-200 ms streaming prediction 
on edge and CPU hardware. Trained with sliding-window samples, Adam optimization, learning-rate 
scheduling, early stopping, and transfer learning from a larger PeMS-Bay dataset, the model reaches one-step 
RMSE of approximately 11.2 vehicles/5 min and MAPE of 8.7 %, significantly outperforming ARIMA, SVR, 
single LSTM, CNN–LSTM, and GCN–LSTM baselines, and demonstrating robustness to sensor dropouts and 
quick convergence. These results confirm that the framework we have introduced makes both theoretical 
contributions and contributions to real-world deployment of intelligent-transportation systems, and we 
consider improvements for the future including incorporation of exogenous data, dynamic graph adaptation, 
meta-learning for cold-start sensors, and federated on-device training. 
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I. INTRODUCTION 
Urban traffic congestion remains a pervasive global challenge, imposing severe economic, environmental, and 
social costs. The World Economic Forum estimates that congestion costs the global economy over USD 1 
trillion annually through lost productivity and wasted fuel (Allen et al., 2018). Rapid urbanization, particularly 
in developing regions, has outpaced transport infrastructure development, resulting in recurrent peak hour 
congestion, increased greenhouse gas emissions, degraded air quality, and public health risks (Zhang et al., 
2017; Anand et al., 2019). 
Traditional traffic forecasting approaches, including ARIMA and Kalman filter based models, perform 
adequately under stable conditions but degrade significantly in the presence of nonlinear interactions and 
sudden traffic disruptions (Ahmed & Cook, 1979; Vlahogianni et al., 2014). In contrast, Deep learning 
techniques enable automatic feature extraction from complex data. Models such as CNNs and LSTMs capture 
spatial and temporal dependencies respectively, while ConvLSTM architectures jointly model spatiotemporal 
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patterns with strong performance in short term forecasting (LeCun et al., 2015; Ma et al., 2015; Shi et al., 
2015). 
More recently, Graph Neural Networks have demonstrated superior capability in representing real world road 
topologies. Spatial temporal GCN variants leverage graph structures and adjacency matrices to outperform 
grid based methods by accurately modeling network connectivity and intersection dynamics (Zhao et al., 2019; 
Guo et al., 2019). Concurrently, the proliferation of IoT devices has generated large scale, heterogeneous 
traffic data streams from multiple sensing modalities. While big data platforms facilitate real time processing, 
challenges such as missing data, sensor failures, and inconsistent sampling persist, necessitating robust data 
imputation and normalization techniques (Lv et al., 2015; Cai et al., 2019). 
From a deployment perspective, real time traffic forecasting demands low latency inference on resource 
constrained edge devices. Model compression techniques, including pruning, quantization, and knowledge 
distillation, have shown promise in reducing computational overhead with minimal accuracy loss, yet 
balancing model compactness and predictive performance across large urban networks remains an open 
research problem (Han et al., 2016). 
 
II. METHODOLOGY 
This work proposes a real-time traffic flow forecasting framework based on a hybrid CNN–GCN–LSTM 
architecture evaluated on the METR-LA dataset. The framework integrates local spatial feature extraction, 
global graph-based dependencies, and temporal sequence modeling, followed by model compression for low-
latency edge deployment. Figure 1 illustrates the end-to-end system architecture. 

 
Figure 1.  End to end system architecture 

The pipeline consists of four stages: (i) data preprocessing and feature engineering, (ii) graph construction, 
(iii) spatiotemporal model learning, and (iv) real-time inference optimization. 
The study relies on a structured preprocessing pipeline that transforms raw traffic sensor measurements into 
model-ready inputs, addressing missing data, scaling inconsistencies, temporal context, and sampling strategy 
to ensure robust learning and reliable evaluation. 
1. Dataset: The METR-LA dataset contains 5-minute aggregated traffic flow measurements from 207 loop 
detectors deployed across Los Angeles freeways between March and June 2012. Traffic flow values range 
from zero (typically indicating sensor failure) to approximately 180 vehicles per interval. Strong diurnal and 
weekly patterns are present. 
2. Missing Value Handling: Zero-valued readings are treated as missing and replaced with NaN. Short gaps 
are filled using time-based linear interpolation, while boundary gaps are handled via forward and backward 
filling. Time steps with more than 20% missing sensors are discarded. 
3. Normalization and Temporal Features: Per-sensor Z-score normalization is applied using statistics 
computed from the training set only. Temporal context is added via sine and cosine encodings of time of day 
and one-hot encoding of day of week, yielding 216 features per time step. 
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4.  Sliding-Window Sample Generation:  For each time step t ≥ Tw, an input tensor Xt ∈ ℝTw x Nis formed from 
the previous Tw intervals, with target yt ∈ ℝN representing the next-step flow.  All samples are stacked into X 
∈ ℝS x Tw x N and Y ∈ ℝS x N. 
5.  Batching and Model Input:  The dataset is split chronologically into training, validation, and test sets 
(70%/10%/20%). Mini-batches of shape (B, Tw, N) are fed in parallel to the CNN and GCN spatial encoders. 

6) Prediction and Evaluation:  The model Y ∈ ℝB X N, which is evaluated using MSE and MAPE. Inference 
latency is also recorded to ensure suitability for real-time deployment. 

Figure 2 summarizes the preprocessing pipeline. 

 
Figure 2.  Data Preprocessing Pipeline 

The freeway network is modeled as an undirected graph G = (V, E), where each node corresponds to a traffic 
sensor and edges capture spatial proximity and roadway connectivity between sensors. To support stable and 
efficient graph convolution operations, the binary adjacency matrix provided with the METR-LA dataset is 
symmetrically normalized, while maintaining a consistent sensor ordering between the adjacency matrix and 
the input feature tensors to ensure correct propagation of spatial information across the network. 

 
Sensor ordering is carefully aligned between the adjacency matrix and the feature tensors to ensure consistent 
graph convolution behavior. Figure 3 shows a dataset snippet. 
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Figure 3.  A snippet of the METR-LA Dataset 

The proposed model architecture integrates convolutional, graph-based, and recurrent components to jointly 
capture local spatial patterns, global network dependencies, and temporal dynamics, as illustrated in Figures 
4 through 7. 
1. CNN Spatial Encoder: A 1D convolution operates over ordered sensors to capture localized spatial 
correlations. 

 
Figure 4.  1D CNN Filter Sliding Over Ordered Detectors 

2. GCN Spatial Encoder: Graph convolution layers learn long-range spatial dependencies using the normalized 
adjacency matrix. 

 
Figure 5.  Single GCN Layer Propagation Rule 

3. Fusion Layer: CNN and GCN embeddings are fused using concatenation and attention mechanisms. 
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Figure 6.  Fusion of CNN and GCN Embeddings 

4. Temporal Module: An LSTM processes fused embeddings over a sliding window of  
Tw = 12 time steps (1 hour). 

 
Figure 7.  LSTM Unrolled Over a Sequence of Fused Embeddings 

5. Output Layer: The final LSTM hidden state is projected to one-step-ahead traffic flow predictions for all 
sensors. 
Supervised training is performed using a sliding window sampling strategy, with the model optimized via 
Mean Squared Error loss augmented by L2 regularization, and trained using the Adam optimizer with learning 
rate scheduling and early stopping to promote stable convergence and prevent overfitting. 

 
Figure 8.  Sliding window illustration 

To improve convergence and generalization, CNN and GCN encoders are pretrained on the PeMS-BAY 
dataset and transferred to METR-LA using a staged fine-tuning strategy. Figure 8 illustrates the sliding 
window mechanism. 
For deployment on edge devices, magnitude-based pruning (50% sparsity) and post-training 8-bit quantization 
are applied. The optimized model is exported as a TorchScript module to enable low-latency streaming 
inference. Figure 9 summarizes pruning and quantization techniques. 
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Figure 9.  Pruning and Quantization Techniques 

The evaluation framework defines the metrics and experimental configuration used to measure forecasting 
accuracy, generalization capability, and computational efficiency under consistent and reproducible 
conditions. 
A. Train/Validation/Test Splits 
We split the entire METR-LA timeline chronologically: train on the first 70% of intervals, validate on the next 
10%, and test on the final 20%. This will never put future data in front of the model during training or 
validation. 
 
B. Primary Metrics 

1. RMSE: Evaluated per sensor and averaged over all N=207N=207N=207. Smaller RMSE indicates 
fewer large outliers. 

2. MAPE: Computed as average of ∣ (y^t,i−yt,i)/yt,i∣×100%, averaged over all nonzero yt,i. 
3. R2: Measures fraction of variance explained, computed globally over all sensors and intervals. 

Computational Performance Metrics 

1. Inference Latency: Measured as average wall-clock time from input preprocessed tensor to output flow 
predictions, both on Jetson Nano and an Intel Core i7 CPU. We report median and 95th percentile 
latencies over 1,000 inferences. 

2. Throughput: Number of sequential predictions per second in streaming mode—critical in scenarios 
where multiple forecasts are required to be made in parallel (e.g., across various intersections). 

3. Memory Footprint: Inference peak RAM usage, with the compressed model being within the target 
device's constraint (e.g., <1 GB for Jetson Nano, <1 MB for microcontrollers). 

IV. TEST AND RESULTS 
The experimental evaluation of the proposed CNN–GCN–LSTM model on the METR-LA dataset is being 
discussed here. All experiments follow the setup described in the methodology section. Performance is 
evaluated in terms of forecasting accuracy, real-time inference efficiency, transfer learning capability, and 
robustness under realistic traffic conditions. Experiments were conducted on two platforms: an NVIDIA Jetson 
Nano edge device (quad-core ARM Cortex-A57 CPU, 128 CUDA cores, 4 GB RAM) and an Intel Core i7-
10750H CPU @ 2.60 GHz with 16 GB RAM running Ubuntu 18.04. All models were implemented in Python 
3.8 using PyTorch 1.10. Graph convolution layers were implemented using PyTorch Geometric v1.7, with 
data preprocessing performed using Pandas 1.3 and NumPy 1.21. 
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The METR-LA dataset consists of 5-minute aggregated traffic flow data collected from 207 loop detectors 
between March and June 2012. The data were split chronologically into training (70%), validation (10%), and 
test (20%) sets. Missing values were interpolated and normalized using per-sensor Z-score normalization 
computed from the training set. Temporal encodings representing time of day and day of week were appended, 
yielding 216 features per time step. A sliding window of 12 time steps (1 hour) was used for prediction. 
The proposed model was compared with ARIMA, SVR, LSTM, GCN–LSTM, and CNN–LSTM baselines. 
Performance was evaluated using RMSE, MAPE, and the coefficient of determination (R²). All results are 
reported as the mean and standard deviation over three independent runs. 
Table 1 reports 5-minute ahead forecasting results. The proposed CNN–GCN–LSTM model achieves the 
lowest error (RMSE = 11.2 veh/5 min, MAPE = 8.7%, 𝑅2 = 0.89), outperforming all baselines. The hybrid 
model reduces RMSE by approximately 27% compared to a standalone LSTM and significantly outperforms 
classical statistical models. 
 
Table 1.  One-Step (5-Minute) Ahead Traffic Flow Forecasting Performance on METR-LA 
Model RMSE (veh/5 min) MAPE (%) R² 

ARIMA 20.1 ± 0.3 11.0 ± 0.4 0.64 ± 0.01 

SVR 21.5 ± 0.5 12.8 ± 0.6 0.58 ± 0.02 

LSTM 15.4 ± 0.2 9.8 ± 0.3 0.80 ± 0.01 

GCN-LSTM 13.6 ± 0.2 9.9 ± 0.2 0.84 ± 0.01 

CNN-LSTM 13.9 ± 0.3 10.3 ± 0.3 0.83 ± 0.01 

Proposed 11.2 ± 0.2 8.7 ± 0.2 0.89 ± 0.01 

Multi-step forecasting results at 15-, 30-, and 60-minute horizons show that, although prediction error 
increases with longer horizons, the proposed model consistently achieves superior accuracy, with performance 
gains over CNN–LSTM and GCN–LSTM becoming more pronounced at extended prediction intervals, 
indicating stronger temporal generalization. 
 
Table 2.  Multi-Step Traffic Flow Forecasting Performance at Different Prediction Horizons 
Model Horizon RMSE MAPE 
Proposed 15 min 12.8 ± 0.3 9.5 ± 0.3 
Proposed 30 min 14.5 ± 0.4 10.7 ± 0.4 
Proposed 60 min 18.2 ± 0.5 13.4 ± 0.5 
CNN-LSTM 15 min 14.0 ± 0.4 10.3 ± 0.4 
CNN-LSTM 30 min 16.2 ± 0.5 12.5 ± 0.5 
CNN-LSTM 60 min 20.5 ± 0.6 15.8 ± 0.6 
GCN-LSTM 15 min 13.5 ± 0.3 9.9 ± 0.3 
GCN-LSTM 30 min 15.6 ± 0.5 12.1 ± 0.5 
GCN-LSTM 60 min 19.8 ± 0.6 14.7 ± 0.6 
LSTM 15 min 15.2 ± 0.4 11.0 ± 0.4 
LSTM 30 min 17.8 ± 0.5 13.8 ± 0.5 
LSTM 60 min 21.9 ± 0.7 16.2 ± 0.7 

Figure 10 and Table 3 can be seen below and they summarize performance trends across all horizons. 
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Figure 10.  RMSE as a Function of Forecast Horizon (Plot: X-axis = horizon {5, 15, 30, 60}, Y-axis = 

RMSE) 
 

Table 3.  RMSE Comparison across Models and Forecast Horizons 
Horizon ARIMA SVR LSTM GCN-LSTM CNN-LSTM Proposed 

5 min 20.1 21.5 15.4 13.6 13.9 11.2 

15 min 22.3 23.1 15.2 13.5 14.0 12.8 

30 min 25.7 26.5 17.8 15.6 16.2 14.5 

60 min 30.4 31.2 21.9 19.8 20.5 18.2 

Ablation experiments demonstrated that removing either the CNN or GCN spatial module increased RMSE 
by approximately 2.5 veh. Excluding temporal modeling further degraded performance. The inclusion of an 
attention mechanism in the fusion layer yielded additional accuracy gains, confirming the complementary 
contributions of local, global, and temporal representations 
Table 4 evaluates the contribution of each architectural component. Removing either the CNN or GCN branch 
degrades performance by approximately 2.5 RMSE. Eliminating temporal modeling results in further 
degradation. The attention-based fusion mechanism yields additional improvements, confirming the 
complementary roles of local, global, and temporal representations. 
 
Table 4.  Ablation Study Results Showing the Contribution of Model Components 
Variant RMSE (5 min) MAPE ∆ vs. Proposed 
CNN only (no GCN, LSTM remains) 13.9 ± 0.3 10.6 ± 0.3 +2.7 RMSE 
GCN only (no CNN, LSTM remains) 13.6 ± 0.2 10.3 ± 0.2 +2.4 RMSE 
CNN+GCN (fused no LSTM—feed to FC) 12.5 ± 0.3 9.8 ± 0.3 +1.3 RMSE 
Fusion (w/o attention) + LSTM 11.6 ± 0.2 9.2 ± 0.2 +0.4 RMSE 
Full: Fusion + w/ attention + LSTM 11.2 ± 0.2 8.7 ± 0.2 — 

The results indicate that removing either of the spatial components (CNN or GCN) leads to a noticeable 
degradation in performance, with an increase of approximately 2.5 RMSE, underscoring the importance of 
both spatial representations. When CNN and GCN features are simply concatenated and fed directly to a fully 
connected layer without temporal modeling, the RMSE rises to 12.5, highlighting that spatial feature fusion 
alone is insufficient and that explicit spatiotemporal learning through the LSTM is essential. Furthermore, 
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incorporating an attention mechanism within the fusion layer provides an additional performance gain, 
yielding an improvement of about 0.4 RMSE over plain feature concatenation. 
Batch and streaming inference benchmarks are reported in Tables 5 and 6. The pruned and quantized model 
reduces latency by approximately 80%, achieving 25 ms per sample on CPU and 45 ms per sample on Jetson 
Nano, while incurring only a 0.5 RMSE accuracy loss. 
 
Table 5.  Batch-Mode Inference Latency and Throughput on i7 CPU (FP32, Pruned, and Quantized 
Models) 
Batch Size FP32 Model (ms/sample) Pruned Model (ms) Quantized Model (ms) 
1 120 ± 5 75 ± 3 40 ± 2 
8 98 ± 4 (≈ 12 ms/sample) 60 ± 3 (≈ 7.5 ms/sample) 25 ± 2 (≈ 3.1 ms/sample) 
16 85 ± 4 (≈ 5.3 ms/sample) 52 ± 3 (≈ 3.2 ms/sample) 18 ± 2 (≈ 1.1 ms/sample) 
32 75 ± 3 (≈ 2.3 ms/sample) 45 ± 2 (≈ 1.4 ms/sample) 15 ± 1 (≈ 0.5 ms/sample) 

From Table 5, quantization yields a substantial reduction in inference latency, achieving approximately a 67 
% decrease for batch size 1 when compared to the full-precision model (40 ms versus 120 ms). Pruning also 
provides a meaningful speed-up, reducing latency by about 37 % relative to the FP32 baseline (75 ms versus 
120 ms). Additionally, increasing the batch size consistently improves throughput by lowering the effective 
per-sample inference time; however, such gains are less appropriate for strictly streaming or real-time 
workloads, where low-latency, small-batch inference is typically required. 
 
Table 6.   Impact of Pruning and Quantization on Speed–Accuracy Trade-off 
Variant RMSE (5 min) MAPE Latency (CPU ms) 

Full Precision (FP32) 11.2 ± 0.2 8.7 ± 0.2 120 ± 5 

Pruned (50% sparse) 11.6 ± 0.2 9.1 ± 0.2 75 ± 3 

Quantized (8-bit) 11.4 ± 0.2 8.9 ± 0.2 40 ± 2 

Pruned + Quantized 11.7 ± 0.3 9.2 ± 0.3 25 ± 2 

From Table 6, pruning introduces a modest accuracy trade-off, increasing RMSE by approximately 0.4, while 
quantization incurs an even smaller penalty of about 0.2 RMSE. When combined, pruning and quantization 
result in an overall RMSE increase of roughly 0.5, yet they deliver a significant latency reduction of nearly 80 
% compared to the full-precision model. Consequently, for edge deployment scenarios, the pruned and 
quantized configuration is preferred, as it achieves sub-second inference latency (approximately 25 ms) while 
maintaining an acceptable level of predictive accuracy (RMSE 11.7). 
To evaluate the generalization capability of the proposed CNN–GCN–LSTM framework, we investigated the 
impact of transfer learning and robustness under sensor degradation. The spatial encoders (CNN and GCN) 
were pretrained on the larger PeMS-BAY dataset and subsequently fine-tuned on METR-LA. 
Quantitatively, transfer learning yielded a consistent improvement in predictive accuracy. Compared to 
random initialization, the pretrained model achieved an approximately 5% reduction in RMSE on the METR-
LA test set (from 11.8 to 11.2 veh/5 min), while also converging significantly faster. Specifically, the 
pretrained model reached optimal validation performance in roughly 20 epochs, compared to about 35 epochs 
for the randomly initialized counterpart. This behavior indicates that the CNN and GCN layers successfully 
learn transferable spatial congestion patterns, such as bottleneck propagation and freeway coupling that 
generalize across urban networks. 
Robustness was further assessed through simulated sensor dropout experiments, in which a fraction of sensor 
inputs was randomly removed at test time. When 10% of sensors were dropped, RMSE increased modestly 
from 11.2 to 11.8, while MAPE rose by only 0.5%. Under a more severe 20% dropout, RMSE increased to 
12.5, corresponding to a degradation of approximately 11%. These results demonstrate that the graph 
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convolution component mitigates isolated sensor failures by leveraging neighboring sensor information 
through the adjacency matrix, while the LSTM preserves temporal continuity. However, performance 
degradation becomes more pronounced under widespread outages, highlighting the inherent dependence of 
data-driven models on sufficient spatial coverage. 
Overall, the transfer learning and robustness results confirm that the proposed model is not only accurate but 
also resilient to realistic deployment conditions, including partial sensor failures and cross-network transfer 
scenarios. 
To complement the quantitative results, we conducted qualitative case studies and detailed error analysis using 
temporal plots, spatial heat maps, and residual statistics. 
Figure 11 illustrates 24-hour actual versus predicted traffic flow profiles for representative sensors located at 
freeway merges, urban highways, and suburban arterials. Across all cases, the model accurately tracks diurnal 
traffic patterns, including morning and evening rush-hour peaks. Prediction errors during off-peak periods 
remain consistently low (typically within ±2 veh/5 min), indicating strong baseline modeling of steady traffic 
conditions. 

 
Figure 11.  24-Hour Temporal Plot for Sensor 101. X-axis = time (5-minute intervals), Y-axis = flow 

(veh/5 min), Actual vs. Predicted curves 
During peak congestion, errors increase slightly, particularly at major interchanges where traffic dynamics 
change abruptly. For example, at a freeway merge sensor, the model underestimates the sharpest congestion 
spikes by approximately 3–5 vehicles. Nevertheless, the temporal alignment between predicted and actual 
peaks remains accurate, demonstrating that the LSTM effectively captures the timing and evolution of 
congestion even when magnitude errors occur. 
Figure 12 presents a spatial heat map of per-sensor RMSE across the METR-LA network. Higher errors are 
concentrated around complex freeway interchanges and urban cores, where traffic patterns are influenced by 
lane merges, ramp interactions, and unobserved external factors. In contrast, suburban freeway segments 
exhibit substantially lower RMSE values, reflecting more stable and predictable traffic behavior. This spatial 
error distribution shows that graph-based models outperform purely temporal baselines by better capturing 
inter-sensor dependencies. 
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Figure 12.  Spatial RMSE Heatmap on METR-LA Sensor Graph 

Figure 13 evaluates the model under a simulated incident scenario involving a sudden flow drop across 
adjacent sensors. In the initial 10–15 minutes following the incident, prediction errors increase noticeably, as 
the model cannot anticipate abrupt, unobserved disruptions. However, as temporal context accumulates, the 
LSTM gradually adapts, reducing errors to acceptable levels.  
 

 
Figure 13.  Incident Scenario: Actual vs. Predicted on Affected Sensors 

This behavior highlights a key limitation of data-driven forecasting models: while they excel at learning 
recurrent patterns, they struggle with instantaneous, non-recurring events without auxiliary inputs such as 
incident or weather data. 
Residual analysis reveals a near-zero mean error with a standard deviation of approximately 3.1 veh/5 min, 
confirming the absence of systematic bias. A mild negative skew is observed at very high traffic volumes, 
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indicating a tendency toward underprediction during extreme congestion. This aligns with the observed peak-
hour errors in temporal case studies. 
Finally, streaming inference experiments show a modest ≈5% increase in RMSE relative to batch-mode 
inference. This degradation arises from the accumulation of small prediction errors over time when LSTM 
states are propagated continuously. Despite this, streaming performance remains well within acceptable limits 
for real-time deployment, especially when balanced against the substantial latency reductions achieved 
through pruning and quantization. 
 
V. CONCLUSIONS 
The proposed CNN–GCN–LSTM framework consistently outperforms classical and deep-learning baselines 
across 5-, 15-, 30-, and 60-minute forecasting horizons. On the METR-LA dataset, it achieves RMSE ≈ 11.2 
veh/5 min and MAPE ≈ 8.7%, corresponding to an approximate 27% RMSE reduction over a standalone 
LSTM. Ablation studies confirm that combining local convolutional features with global graph-based 
dependencies yields complementary spatial representations, further enhanced through attention-based fusion. 
Model compression using 50% pruning and 8-bit quantization reduces inference latency by over 60%, 
achieving approximately 25–35 ms per sample on CPU and about 45 ms on Jetson Nano, with only a modest 
increase of +0.5 RMSE. This trade-off is acceptable for real-time traffic management and edge deployment. 
Transfer learning from the PeMS-BAY dataset improves METR-LA forecasting accuracy by approximately 
5% RMSE and reduces convergence time by nearly 40%, demonstrating cross-network generalizability. 
Robustness experiments with 10–20% sensor dropouts show moderate performance degradation, indicating 
resilience due to graph-based spatial modeling. 
Residual and case-study analyses reveal near-zero mean error, with mild underprediction during extreme 
congestion events and slightly higher errors near major interchanges. Streaming inference introduces a small 
performance penalty of approximately 5% RMSE increase but remains suitable for real-time operation. 
Overall, the framework achieves a practical balance between predictive accuracy, robustness, and 
deployability, making it suitable for intelligent transportation systems. 
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