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Abstract:

Wire Arc Additive Manufacturing (WAAM) offers significant advantages for fabricating large-scale
metallic components due to its high deposition rate and material efficiency. However, the process remains
highly sensitive to variations in process parameters, particularly when processing thermally and
compositionally sensitive alloys such as Nitinol shape memory alloy. Conventional trial-and-error
approaches for parameter selection often result in inconsistent quality, defect formation, and limited
process repeatability. This study proposes a data-driven framework for process optimization and defect
prediction in WAAM of Nitinol using machine learning techniques. Experimental data obtained from
WAAM-fabricated Nitinol samples are utilized to develop predictive models correlating key process
parameters with defect occurrence and mechanical performance. Multiple regression-based and machine
learning models are evaluated to assess prediction accuracy and parameter sensitivity. The proposed
approach demonstrates the potential of artificial intelligence to reduce defect probability, enhance process
reliability, and support systematic optimization of WAAM processes for advanced manufacturing
applications.

Keywords — Data-Driven, Optimization, Defect Prediction, Wire Arc Additive Manufacturing,
Nitinol Shape Memory Alloy.
sk sk sk ok sk sk sk sk sk sk sl sk sl sk sk sk sk sk sk sk sk sk sk sk

as the feedstock, WAAM enables near-net-shape
L. INTRODUCTION fabrication of structural components for aerospace,
Wire Arc Additive Manufacturing (WAAM) marine, and industrial applications [1]. Despite
has emerged as a promising metal additive these advantages, achieving consistent quality
manufacturing technology for producing medium- remains a critical challenge, particularly for alloys
to large-scale components with reduced material with narrow processing windows.
waste and high deposition efficiency. By employing
an electric arc as the heat source and metallic wire
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Nitinol (NiTi) shape memory alloy is a
functional material widely used in aerospace,
biomedical, and robotic systems due to its shape
memory effect, superelasticity, and corrosion
resistance [2]. However, the alloy’s performance is
highly sensitive to compositional variation, thermal
history, and microstructural stability. When
processed using arc-based additive manufacturing
techniques, Nitinol is prone to defects such as
porosity, solidification cracking, and
microstructural heterogeneity, which significantly
influence mechanical and functional behavior [3].

Recent  experimental  studies  have
demonstrated that WAAM process parameters—
such as welding current, voltage, wire feed rate, and
travel speed—directly govern heat input, melt pool
dynamics, and solidification behavior [4]. While
empirical optimization approaches have been
employed to mitigate defects, such methods are

time-consuming, material-intensive, and lack
generalizability  across  different  processing
conditions. Moreover, traditional optimization

strategies often fail to capture the complex,
nonlinear interactions between multiple process
variables and resulting material properties.

In recent years, artificial intelligence (AI)
and machine learning (ML) techniques have gained
increasing attention for process modeling and
optimization in additive manufacturing. Data-driven
models have shown promise in predicting
mechanical properties, surface quality, and defect
formation in powder-based and laser-based metal
additive manufacturing processes [5], [6]. However,
the application of Al-based optimization
frameworks to WAAM—particularly for functional
alloys such as Nitinol—remains limited. Existing
studies primarily focus on conventional alloys and
often lack integration of defect characterization and
mechanical performance metrics.

This paper addresses this research gap by
proposing an Al-driven framework for defect
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prediction and process parameter optimization in
WAAM of Nitinol shape memory alloy. Using
experimentally generated data, machine learning
models are developed to establish quantitative
relationships between process parameters, defect
characteristics, and mechanical responses. The
objectives of this study are threefold: (i) to develop
predictive models for defect occurrence in WAAM-
fabricated Nitinol, (ii) to identify key process
parameters influencing quality and performance,
and (iii) to demonstrate the potential of data-driven
optimization for improving reliability and
repeatability in WAAM processes.

The outcomes of this work aim to contribute
toward intelligent manufacturing strategies for
wire-based additive manufacturing and provide a
foundation for future integration of real-time
monitoring, closed-loop control, and digital twin
frameworks.

I1. BACKGROUND AND RELATED WORK

i. WAAM Process Optimization

Wire Arc Additive Manufacturing (WAAM)
has gained significant attention as a cost-effective
and high-deposition-rate metal additive
manufacturing technique. Compared to powder-
based processes, WAAM offers advantages in
material utilization, scalability, and suitability for
large structural components [1]. However, the
process is inherently complex due to the strong
coupling between electrical, thermal, and
metallurgical phenomena.

Process parameters such as welding current,
arc voltage, wire feed rate, and travel speed directly
influence heat input and melt pool behavior, which
in turn affect bead geometry, microstructure, and
defect formation [7]. Conventional WAAM process
optimization relies largely on empirical trial-and-
error approaches, which are time-consuming and
material-intensive. Such methods often fail to
capture the nonlinear interactions between multiple
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parameters and their combined effect on part
quality.

For thermally sensitive alloys such as
Nitinol, these challenges are further amplified.
Minor variations in heat input can significantly alter
phase transformation behavior, grain morphology,
and defect susceptibility, making
optimization approaches inadequate for reliable
production [3].

ii. Defect Formation in WAAM of Shape
Memory Alloys

Defect formation remains one of the
primary  limitations in = WAAM-fabricated
components. Common defects reported in WAAM
include porosity, lack of fusion, solidification
cracking, and microstructural heterogeneity [8].
These defects are strongly dependent on thermal
gradients, solidification rates, and residual stress
development during deposition.

In the case of Nitinol, defect sensitivity is
particularly pronounced due to its

manual

narrow
compositional tolerance and phase transformation
characteristics. Studies have reported that arc-based
additive manufacturing of NiTi alloys often leads to
increased porosity and cracking when process
parameters are not carefully controlled [3], [9].
Additionally, repeated thermal cycling during layer-
by-layer deposition can promote grain coarsening
and anisotropic microstructures, adversely affecting
mechanical and functional properties.

While post-deposition heat treatment has
been shown to mitigate some of these issues, it does
not fully compensate for suboptimal processing
conditions. Therefore, predictive approaches that
enable defect minimization at the process planning
stage are critically needed.

iii. Machine Learning in
Manufacturing
Recent advances in artificial intelligence

Additive

and machine learning have enabled new approaches
for modeling complex manufacturing processes.
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Machine learning techniques are particularly well-
suited for additive manufacturing due to their
ability to capture nonlinear relationships between
process inputs and output responses [5].

Several studies have demonstrated the use
of regression models, artificial neural networks, and
ensemble learning methods for predicting
mechanical properties, surface roughness, and
defect occurrence in laser-based and powder-bed
fusion processes [6], [10]. These models leverage
experimental data to generate predictive insights
without requiring explicit physical equations.

However, the majority of existing Al-based
studies focus on laser-based additive manufacturing
processes and conventional structural alloys. The
application of data-driven models to wire-based
processes such as WAAM remains comparatively
limited, especially for functional alloys such as
Nitinol.

iv. Research Gap and Motivation

Despite growing interest in Al-driven
manufacturing, there is a notable lack of systematic
studies integrating machine learning with WAAM
of shape memory alloys. Existing WAAM research
on Nitinol primarily emphasizes experimental
characterization, with limited efforts toward
predictive modeling and process optimization.

Furthermore, most available studies treat
defect formation, microstructural evolution, and
mechanical performance as independent outcomes
rather than interconnected responses governed by
shared process parameters. This fragmented
approach limits the ability to develop robust
optimization strategies.

The present study addresses this gap by
integrating experimental WAAM data with machine
learning models to predict defect occurrence and
mechanical  performance. By  establishing
relationships ~ between  process
parameters and output responses, this work aims to
support intelligent  process

quantitative

planning  and
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optimization for WAAM-fabricated Nitinol
components.
III. EXPERIMENTAL DATA AND FEATURE

SELECTION

This study utilizes experimentally generated
data from Wire Arc Additive Manufacturing
(WAAM) trials conducted on Nitinol shape
memory alloy to develop a data-driven framework
for defect prediction and process optimization. The
experimental dataset generated through
systematic variation of key WAAM process
parameters, enabling quantitative analysis of their
influence on defect formation and process stability.

i. Experimental Setup and Process
Parameters

WAAM  deposition
carried out using a TIG-based wire arc additive
manufacturing system. A Nitinol plate was used as
the substrate material, while Nitinol wire of 1 mm
diameter served as the filler material. High-purity
argon gas (99.99%) was employed as the shielding
medium, with a constant flow rate of 15 L/min to
oxidation during deposition. The
electrode extension was maintained at 5 mm, and a
tungsten electrode with a diameter of 2 mm was
used throughout the experiments.

The wire feed speed was fixed at 0.4 m/min
to isolate the influence of electrical and kinematic
parameters. The welding system operated at a
pulsed frequency of 20 kHz to improve arc stability
and bead consistency. These parameters were held
constant across all experimental cases to ensure
comparability.

The heat input for each deposition case was
calculated wusing the standard arc welding
formulation:

was

experiments  were

minimize

VxIx60

Heat Input = ———
cdt Py Travel Speed
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where V'is the arc voltage (V), [is the welding
current (A), and travel speed is expressed in
mm/min.

ii. Dataset Description and Experimental
Cases
A total of ten experimental cases were
designed by varying welding current, arc voltage,
and torch travel speed within a controlled parameter
window. The selected ranges were chosen based on
preliminary trials to ensure stable deposition while
capturing variations in defect behavior.
The welding current was varied between
125 A and 135 A, the arc voltage between 8 V and
15 V, and the torch travel speed between 210
mm/min and 230 mm/min. These variations
resulted in different effective heat input levels,

directly influencing melt pool dynamics and
solidification behavior.
C Torch Calculated
ase Curr Volt Travel Heat Input
t(A \Y
No. | M) | age(V) | Speed (J/mm)
(mm/min)
10 x 130 x 60
1 130 10 220 220
= 354.5
10 x 130 x 60
2 130 10 230 230
= 339.1
10 x 130 x 60
3 130 10 210 210
=371.4
10 x 135 X 60
4 135 10 220 220
= 368.2
10 x 130 x 60
5 130 10 220 220
= 354.5
10 x 125 x 60
6 125 10 220 220
= 340.9

ISSN : 2581-7175

O©IJSRED: All Rights are Reserved

Page 1003



International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

15 x 130 x 60

220
=531.8

7 130 15 220

10 x 130 x 60

220
= 354.5

8 130 10 220

8x 130 X 60

220
= 283.6

9 130 8 220

10 x 128 x 60

220
= 349.1

128 10 220

(Table 1: WAAM process parameter matrix for
all experimental cases.)

(All experiments were conducted using a
Nitinol substrate and Nitinol filler wire of 1 mm
diameter. Argon shielding gas with a purity of
99.99% was supplied at a constant flow rate of 15
L/min. Wire feed speed was maintained at 0.4
m/min, electrode extension was fixed at 5 mm, and
TIG rod diameter was 2 mm. Heat input was

calculated wusing the standard arc welding
formulation.)
Among the ten cases, Case 10—

characterized by a welding current of 128 A, arc
voltage of 10 V, and torch travel speed of 220
mm/min—resulted in stable deposition with no
observable surface defects. This case serves as a
reference for optimal process conditions and is used
as a benchmark during Al-based optimization.
iii. QOutput Variables and Quality
Indicators
The output variables selected for modeling
represent key quality and performance indicators
for WAAM-fabricated Nitinol components. Defect-
related outputs stereo
microscopy and microstructural characterization,
while mechanical properties were obtained through
hardness and tensile testing.
The primary output variables include:
e Presence or absence of surface defects
(binary classification)

were evaluated using
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e Surface porosity level
e Microhardness
o Ultimate tensile strength
Defect-free deposition, as observed in Case
10, was treated as the desired target condition
during model training and optimization.

Output Variable Description Measurement Unit / Type
Technique
Surface Defect Presence of visible surface | Visual inspection | Binary (0 =No
Presence defects such as cracks, and stereo defect, 1 =
spatter, or irregular bead microscopy Defect)
geometry
Porosity Level Qualitative assessment of Stereo microscopy | Low / Medium /
surface and near-surface analysis High
pores
Bead Geometry | Uniformity and consistency | Optical microscopy | Qualitative
Stability of deposited bead and visual
inspection
Microhardness Resistance to localized Vickers HV
plastic deformation microhardness
testing
Tensile Strength | Maximum stress sustained | Universal testing MPa
before failure machine (UTM)
Defect-Free Overall quality assessment | Combined Binary (0=
Deposition combining surface and microscopy + Defective, | =
Indicator microstructural observations | mechanical results | Zero defect)

(Table 2: Output variables
experimental measurements.)
Feature Selection and Engineering
Feature selection was guided by both
experimental relevance and physical interpretability.
The primary input features used for modeling
include welding current, arc voltage, and torch

and corresponding

iv.

travel speed. Heat input was included as a derived
feature to capture the combined thermal influence
of electrical and kinematic parameters.

By incorporating heat alongside
individual parameters, the model is able to learn
both direct and aggregated thermal effects on defect
formation. This approach enhances predictive
accuracy while preserving physical meaning, which

input

is critical for process optimization applications [7],

[11].

The feature set was finalized after
correlation analysis, ensuring that redundant
variables were minimized while retaining
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parameters with strong influence on defect behavior.

The selected features enable the Al models to
distinguish between unstable deposition conditions
and the optimized parameter window represented
by the defect-free case.

Feature Parameter Symbol | Unit Description

Type

Input . Electrical current supplied during

Feature Welding Current | 1 A WAAM deposition

Input Arc Voltage v v Volta}ge maintained across the

Feature welding arc

Input Torch Travel s mm/min Lmlear speed .O.f torch movement

Feature Speed during deposition

Input . . i .

Wire Feed Speed | WFS m/min | Nitinol filler wire feed rate

Feature

Input Shielding Gas . Argon gas flow rate for oxidation

Feature Flow Rate GFR L/min protection

. Calculated using

Derived Heat Input HI J/mm _ V' xIxe60

Feature Heat Input = —————
Travel Speed

Derived Energy Density | ED J/mme Heat input normalized with bead

Feature geometry

Derived Process Stability psI B Combined indicator derived from

Feature Index voltage and current stability

(Table 3: Selected input features and derived
parameters used for AI modeling.)
V. Relevance for AI-Based Optimization

The structured experimental dataset,
combined with clearly identified defect-free
conditions, provides a robust foundation for
supervised learning and optimization. The inclusion
of a zero-defect reference case allows the machine
learning models to identify optimal parameter
combinations and define safe operating windows
for WAAM of Nitinol.

This dataset design supports not only defect
prediction but also parameter sensitivity analysis
and process optimization, which are discussed in
subsequent sections.

IV. AI-BASED MODELING METHODOLOGY
To enable predictive defect assessment and
systematic process optimization in WAAM of
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Nitinol, a supervised machine learning framework
was developed using experimentally generated data.
The modeling methodology integrates data
preprocessing, model selection, training, validation,
and performance evaluation to establish quantitative
relationships between process parameters and
quality indicators.

i. Modeling Objective and Problem

Formulation

The primary objective of the Al framework is
twofold:
(i) Defect prediction, formulated as a
classification/regression task to estimate the
likelihood or severity of surface defects; and
(1)) Process optimization, formulated as a
regression task to identify parameter combinations
that minimize defect probability while maintaining
desirable mechanical properties.

Given an input feature vector
x=|[IV,S H]

where [ is welding current (A), Vis arc
voltage (V), Sis torch travel speed (mm/min), and
His the derived heat input, the model aims to
predict output responses y , including defect
presence, porosity level, and mechanical properties.

ii. Data Preparation and Splitting

The experimental dataset described in
Section 3 was normalized using min—max scaling to
ensure numerical stability and consistent model
convergence. Binary labels were assigned to
represent defect presence (1) or defect-free
condition (0), with Case 10 serving as the
benchmark defect-free reference.

The dataset was divided into training and
testing subsets an 80:20 split. This
partitioning ensures sufficient data for model
learning while preserving unseen samples for
unbiased performance evaluation.

iii. Model Selection

using
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Three complementary modeling approaches
were selected to balance interpretability and
predictive capability:

1. Linear Regression (Baseline Model)
Linear regression was used as a baseline to
assess linear dependencies between process
parameters and output responses:

n
y:ﬁo+z,3ixi
=1

where f; are regression coefficients and x; are
input features.

2. Support Vector (SVR)
SVR was employed to capture nonlinear
relationships using kernel functions. The
SVR model minimizes:

Regression

N
1
min = Il w I+ CZ(&- L e
i=1

subject to e-insensitive loss constraints, enabling
robust prediction under limited data conditions.

3. Random Forest Regression
An ensemble-based random forest model
was used to improve prediction accuracy
and identify feature importance. The final
prediction is obtained by averaging outputs
from multiple decision trees:

T
1
9= fi®
t=1

where f;denotes the prediction from the t*"tree.
These models were selected due to their
proven effectiveness in additive manufacturing
process modeling and their ability to operate
reliably with moderate-sized experimental datasets.
iv. Training and Validation Strategy
Model training was performed using the
training subset, with hyperparameters tuned through
grid search to minimize prediction error. Cross-
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validation was applied to reduce overfitting and
ensure generalization. Model performance was
evaluated on the test dataset using standard
regression metrics, including root mean square error

(RMSE), mean absolute error (MAE), and
coefficient of determination (R?).
Classification performance for defect

prediction was
confusion matrix analysis, with particular emphasis
on correctly identifying defect-free conditions.
V. Workflow Description
The overall Al-based modeling workflow
integrates experimental data acquisition,
preprocessing, model training, prediction, and
optimization. This structured approach ensures
reproducibility and facilitates future integration
with real-time monitoring systems.

assessed using accuracy and

WAAM Experimental Data
(Process Parameters + Outputs)

A 4
Data Preprocessing
(Normalization, Feature Engineering)

Y
Machine Learning Models
(Linear Regression, SVR, Random Forest)

\ 4
Model Training & Validation
(RMSE, MAE, R?)

4
Defect Prediction & Optimization
(Zero-defect parameter window)

(Fig. 4: Al-based modeling workflow for WAAM
defect prediction and process optimization.)

The workflow enables identification of
optimal parameter combinations that align with the
experimentally observed zero-defect condition
while maintaining physical interpretability of model
predictions.
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V. DEFECT PREDICTION RESULTS AND
MODEL PERFORMANCE

This section presents the results obtained
from applying machine learning models to predict
defect occurrence and evaluate process performance
in Wire Arc Additive Manufacturing (WAAM) of
Nitinol shape memory alloy. The models were
trained using experimentally derived process
parameters and corresponding defect indicators,
with the objective of identifying optimal parameter
combinations that minimize defect formation.

i. Model Training and Validation
Performance

The selected machine learning models were
trained using the processed experimental dataset
described in Section 3. The dataset was divided into
training and validation subsets using an 80:20 split
to ensure robust performance evaluation. Model
accuracy was assessed using standard regression
and classification metrics, including Root Mean
Square Error (RMSE), Mean Absolute Error (MAE),
and coefficient of determination (R?) for continuous
outputs, and classification accuracy for defect
presence.

Among the evaluated models, ensemble-
based approaches demonstrated superior predictive
capability due to their ability to capture nonlinear
relationships between process parameters and
defect formation. Linear models exhibited limited
performance, indicating that defect formation in
WAAM is governed by complex, nonlinear
interactions among current, voltage, and torch
travel speed.

Comparison of Al Model Performance

Relative Prediction Performance

Random Forest

Linear Regression SVR
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(Fig. 5: Comparison of prediction accuracy for
different AI models.)
ii. Defect Prediction Analysis

Defect prediction was performed by
mapping process parameters to observed defect
including porosity and surface

The trained models
distinguished between stable and unstable
deposition regimes. Parameter combinations
associated with excessive heat input or insufficient
melting were consistently predicted to result in
defects.

The model predictions
agreement  with  experimental
particularly for cases
welding current and arc voltage. Lower voltage
conditions combined with optimized current and
controlled travel speed resulted in reduced defect
probability, consistent ~ with  metallurgical
observations reported in prior studies [6], [7].

outcomes,

irregularities. successfully

showed strong
observations,
involving variations in

Predicted vs Observed Defect Occurrence

1.04 e Observed 2
< Predicted

0.8

Zero Defect)

0.6 4

Defect, 1

0.4 A

0.2

Defect Indicator (0

004 & L] [ ] L] [ ] [ ] [ ] L] [ ]
2 4 6 8 10
Case Number
(Fig. 6: Predicted versus observed defect
occurrence.)
ii. Identification of Zero-Defect Process
Window

One of the most significant outcomes of this
study is the identification of a zero-defect process
window. The model accurately predicted that the
parameter combination corresponding to Case 10
resulted in defect-free deposition. This parameter
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set represents a balanced heat input condition that
promotes stable melt pool formation without
excessive dilution or thermal instability.

The Al-based framework was able to
generalize this behavior, indicating a narrow but
stable operating region where defect probability
approaches zero. This result demonstrates the
effectiveness of combining experimental data with
machine learning for process optimization in
WAAM systems.

Process Parameter Space for WAAM

15 ° ® Defect Cases

r Zero Defect (Case 10)

Voltage (V)
- - - =
- N w »

-
(=)
L
L]
°

©o

8 1 °

126 128 130 132 134
Current (A)

(Fig. 7: Process parameter space highlighting the
zero-defect region.)
iv. Model Error Analysis

Error analysis revealed that prediction
deviations primarily occurred near transition
boundaries between stable and unstable deposition
regimes. These regions are highly sensitive to
minor fluctuations in process parameters, which are
difficult to capture fully with limited experimental
datasets. Nevertheless, overall prediction errors

remained  within  acceptable limits for
manufacturing decision support.
The results indicate that incorporating

additional data points and real-time sensing data
could further improve model robustness and
predictive accuracy.
V. Discussion of Model Reliability
The consistency between predicted and
experimentally observed defect behavior confirms
the reliability of the proposed Al-based modeling
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approach.  Unlike traditional
optimization, the data-driven framework provides
actionable insights into process stability and
enables informed parameter selection prior to

trial-and-error

fabrication.

The proposed methodology is particularly
valuable for high-cost materials such as Nitinol,
where minimizing experimental iterations is critical.

VI. PROCESS OPTIMIZATION AND
SENSITIVITY ANALYSIS
This section presents the optimization of
WAAM process parameters using the trained Al
models and analyzes the sensitivity of defect
formation to variations in key input variables. The
objective is to identify stable operating conditions
that minimize defect occurrence while maintaining
acceptable mechanical performance of Nitinol
deposits.

i. Al-Based
Strategy
Process optimization was performed by
systematically the trained model’s
response across the parameter space defined by
welding current, arc voltage, and torch travel speed.
Rather than relying on discrete experimental trials
alone, the AI model was used to interpolate
between tested conditions and identify regions

associated with minimal defect probability.
The optimization objective was defined as

Process Optimization

exploring

minimizing defect indicators while maintaining
sufficient heat input for complete fusion and stable
deposition. The model consistently identified a
corresponding  to
aligning with

narrow  operating window
balanced heat input conditions,
experimental observations.

The parameter set associated with Case 10
emerged as the optimal solution, characterized by
moderate current, stable voltage, and controlled

travel speed. This combination resulted in defect-
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free deposition and serves as a reference point for
defining a zero-defect operating regime.

15Optimization Surface for WAAM Defect Probability
Yo Zero Defect (Case 10)

Voltage (V)
Relative Defect Probability

8
120.0 122.5 125.0 127.5 130.0 132.5 135.0 137.5 140.0
Current (A)

(Fig. 8: Optimization surface showing defect

probability versus process parameters.)

ii. Sensitivity  Analysis  of
Parameters

Process

Sensitivity analysis conducted to
evaluate the relative influence of individual process
parameters on defect formation. Each input variable
was varied independently while holding others
constant at optimized values. The resulting changes
in predicted defect probability were analyzed to
identify dominant contributors.

The analysis revealed that welding current
exhibits the highest sensitivity, with small
deviations leading to significant changes in defect
likelihood. Excessive current resulted in unstable
melt pool behavior, while insufficient current
caused incomplete fusion. Arc voltage showed
moderate sensitivity, primarily affecting arc
stability and bead geometry. Torch travel speed
influenced heat accumulation and solidification rate,
with higher speeds increasing the risk of lack-of-
fusion defects.

These findings are consistent with reported
WAAM studies, which emphasize the dominant
role of heat input and thermal stability in defect
formation [7], [11].

was
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Sensitivity Ranking of WAAM Process Parameters

0.4 4

o
w

o
N

Relative Sensitivity

e
-

0.0 -

Me\d\“qguﬂe“‘ \Aea““"“‘ Nc\,o\xa‘ée - qe\sveed
(Fig. 9: Sensitivity ranking of process
parameters.)
iii. Robustness of the Zero-Defect

Parameter Window

The robustness of the optimized parameter
window was evaluated by introducing small
perturbations around the Case 10 conditions. The
Al model predicted that minor variations within this
region did not immediately result in defect
formation, indicating a stable and manufacturable
operating window rather than a single-point
optimum.

However, deviations beyond this narrow
region led to a rapid increase in defect probability,
highlighting the importance of precise process
control in WAAM of Nitinol. This sensitivity
underscores the need for closed-loop monitoring
and adaptive control in future implementations.

iv. Implications for = Manufacturing
Practice
The proposed optimization framework

demonstrates how Al-assisted modeling can
significantly reduce experimental effort in WAAM
process development. By identifying optimal and
robust parameter regions, the methodology
minimizes material waste, reduces trial-and-error
experimentation, and improves overall process
reliability.

For high-value functional materials such as
Nitinol, where defects can severely compromise
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shape memory behavior, this approach provides a
practical pathway toward repeatable, defect-free
additive manufacturing.

VII. CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS
i. Conclusions

This study presents a data-driven framework
for defect prediction and process optimization in
Wire Arc Additive Manufacturing (WAAM) of
Nitinol shape memory alloy. By integrating
experimentally generated WAAM data with
machine learning models, the work demonstrates
the feasibility of predicting defect occurrence and
identifying optimal process parameter combinations
without relying solely on extensive trial-and-error
experimentation.

The developed AI models successfully
captured nonlinear relationships between welding
current, arc voltage, torch travel speed, and defect
formation. Ensemble-based models exhibited
superior predictive performance compared to linear
approaches, highlighting the complexity of WAAM
process dynamics. The identification of a stable,
zero-defect operating window—corresponding to
the experimentally observed Case 10—confirms the
effectiveness of the proposed optimization
methodology.

Sensitivity analysis revealed that welding
current and heat input are the most influential
parameters governing defect formation, while arc
voltage and travel speed play secondary but
significant roles. These findings establish a clear
process—parameter—defect relationship and provide
actionable insights for improving process stability
and repeatability in WAAM of thermally sensitive
alloys such as Nitinol. The proposed framework
demonstrates the feasibility of integrating Al-
assisted optimization into industrial WAAM
environments.
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Overall, the results demonstrate that Al-
assisted modeling can serve as a powerful decision-
support tool for optimizing WAAM processes,

reducing  material waste, and enhancing
manufacturing reliability.
ii. Future Research Directions

Future work should focus on expanding the
experimental  dataset  to model
generalization and robustness. Incorporating real-
time sensor data, such as arc voltage fluctuations,
thermal imaging, and acoustic signals, would
enable the development of closed-loop control

improve

systems for adaptive process regulation.

Further research is also recommended to
integrate  physics-informed machine learning
models that combine data-driven predictions with
thermomechanical principles governing WAAM.
Extending the optimization framework to include
functional performance metrics—such as phase
transformation behavior and shape memory
response—would enhance applicability for actuator
and aerospace applications.

Finally, the development of digital twin
frameworks for WAAM systems, supported by Al-
based prediction and optimization, represents a
promising direction toward fully autonomous and
intelligent additive manufacturing of advanced
materials.
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