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Abstract: 
            Wire Arc Additive Manufacturing (WAAM) offers significant advantages for fabricating large-scale 
metallic components due to its high deposition rate and material efficiency. However, the process remains 
highly sensitive to variations in process parameters, particularly when processing thermally and 
compositionally sensitive alloys such as Nitinol shape memory alloy. Conventional trial-and-error 
approaches for parameter selection often result in inconsistent quality, defect formation, and limited 
process repeatability. This study proposes a data-driven framework for process optimization and defect 
prediction in WAAM of Nitinol using machine learning techniques. Experimental data obtained from 
WAAM-fabricated Nitinol samples are utilized to develop predictive models correlating key process 
parameters with defect occurrence and mechanical performance. Multiple regression-based and machine 
learning models are evaluated to assess prediction accuracy and parameter sensitivity. The proposed 
approach demonstrates the potential of artificial intelligence to reduce defect probability, enhance process 
reliability, and support systematic optimization of WAAM processes for advanced manufacturing 
applications. 
 
Keywords — Data-Driven, Optimization, Defect Prediction, Wire Arc Additive Manufacturing, 
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I.     INTRODUCTION 

  Wire Arc Additive Manufacturing (WAAM) 
has emerged as a promising metal additive 
manufacturing technology for producing medium- 
to large-scale components with reduced material 
waste and high deposition efficiency. By employing 
an electric arc as the heat source and metallic wire 

as the feedstock, WAAM enables near-net-shape 
fabrication of structural components for aerospace, 
marine, and industrial applications [1]. Despite 
these advantages, achieving consistent quality 
remains a critical challenge, particularly for alloys 
with narrow processing windows. 
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Nitinol (NiTi) shape memory alloy is a 
functional material widely used in aerospace, 
biomedical, and robotic systems due to its shape 
memory effect, superelasticity, and corrosion 
resistance [2]. However, the alloy’s performance is 
highly sensitive to compositional variation, thermal 
history, and microstructural stability. When 
processed using arc-based additive manufacturing 
techniques, Nitinol is prone to defects such as 
porosity, solidification cracking, and 
microstructural heterogeneity, which significantly 
influence mechanical and functional behavior [3]. 

Recent experimental studies have 
demonstrated that WAAM process parameters—
such as welding current, voltage, wire feed rate, and 
travel speed—directly govern heat input, melt pool 
dynamics, and solidification behavior [4]. While 
empirical optimization approaches have been 
employed to mitigate defects, such methods are 
time-consuming, material-intensive, and lack 
generalizability across different processing 
conditions. Moreover, traditional optimization 
strategies often fail to capture the complex, 
nonlinear interactions between multiple process 
variables and resulting material properties. 

In recent years, artificial intelligence (AI) 
and machine learning (ML) techniques have gained 
increasing attention for process modeling and 
optimization in additive manufacturing. Data-driven 
models have shown promise in predicting 
mechanical properties, surface quality, and defect 
formation in powder-based and laser-based metal 
additive manufacturing processes [5], [6]. However, 
the application of AI-based optimization 
frameworks to WAAM—particularly for functional 
alloys such as Nitinol—remains limited. Existing 
studies primarily focus on conventional alloys and 
often lack integration of defect characterization and 
mechanical performance metrics. 

This paper addresses this research gap by 
proposing an AI-driven framework for defect 

prediction and process parameter optimization in 
WAAM of Nitinol shape memory alloy. Using 
experimentally generated data, machine learning 
models are developed to establish quantitative 
relationships between process parameters, defect 
characteristics, and mechanical responses. The 
objectives of this study are threefold: (i) to develop 
predictive models for defect occurrence in WAAM-
fabricated Nitinol, (ii) to identify key process 
parameters influencing quality and performance, 
and (iii) to demonstrate the potential of data-driven 
optimization for improving reliability and 
repeatability in WAAM processes. 

The outcomes of this work aim to contribute 
toward intelligent manufacturing strategies for 
wire-based additive manufacturing and provide a 
foundation for future integration of real-time 
monitoring, closed-loop control, and digital twin 
frameworks. 

II. BACKGROUND AND RELATED WORK 

i. WAAM Process Optimization 
Wire Arc Additive Manufacturing (WAAM) 

has gained significant attention as a cost-effective 
and high-deposition-rate metal additive 
manufacturing technique. Compared to powder-
based processes, WAAM offers advantages in 
material utilization, scalability, and suitability for 
large structural components [1]. However, the 
process is inherently complex due to the strong 
coupling between electrical, thermal, and 
metallurgical phenomena. 

Process parameters such as welding current, 
arc voltage, wire feed rate, and travel speed directly 
influence heat input and melt pool behavior, which 
in turn affect bead geometry, microstructure, and 
defect formation [7]. Conventional WAAM process 
optimization relies largely on empirical trial-and-
error approaches, which are time-consuming and 
material-intensive. Such methods often fail to 
capture the nonlinear interactions between multiple 
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parameters and their combined effect on part 
quality. 

For thermally sensitive alloys such as 
Nitinol, these challenges are further amplified. 
Minor variations in heat input can significantly alter 
phase transformation behavior, grain morphology, 
and defect susceptibility, making manual 
optimization approaches inadequate for reliable 
production [3]. 

ii. Defect Formation in WAAM of Shape 
Memory Alloys 

Defect formation remains one of the 
primary limitations in WAAM-fabricated 
components. Common defects reported in WAAM 
include porosity, lack of fusion, solidification 
cracking, and microstructural heterogeneity [8]. 
These defects are strongly dependent on thermal 
gradients, solidification rates, and residual stress 
development during deposition. 

In the case of Nitinol, defect sensitivity is 
particularly pronounced due to its narrow 
compositional tolerance and phase transformation 
characteristics. Studies have reported that arc-based 
additive manufacturing of NiTi alloys often leads to 
increased porosity and cracking when process 
parameters are not carefully controlled [3], [9]. 
Additionally, repeated thermal cycling during layer-
by-layer deposition can promote grain coarsening 
and anisotropic microstructures, adversely affecting 
mechanical and functional properties. 

While post-deposition heat treatment has 
been shown to mitigate some of these issues, it does 
not fully compensate for suboptimal processing 
conditions. Therefore, predictive approaches that 
enable defect minimization at the process planning 
stage are critically needed. 

iii. Machine Learning in Additive 
Manufacturing 

Recent advances in artificial intelligence 
and machine learning have enabled new approaches 
for modeling complex manufacturing processes. 

Machine learning techniques are particularly well-
suited for additive manufacturing due to their 
ability to capture nonlinear relationships between 
process inputs and output responses [5]. 

Several studies have demonstrated the use 
of regression models, artificial neural networks, and 
ensemble learning methods for predicting 
mechanical properties, surface roughness, and 
defect occurrence in laser-based and powder-bed 
fusion processes [6], [10]. These models leverage 
experimental data to generate predictive insights 
without requiring explicit physical equations. 

However, the majority of existing AI-based 
studies focus on laser-based additive manufacturing 
processes and conventional structural alloys. The 
application of data-driven models to wire-based 
processes such as WAAM remains comparatively 
limited, especially for functional alloys such as 
Nitinol. 

iv. Research Gap and Motivation 
Despite growing interest in AI-driven 

manufacturing, there is a notable lack of systematic 
studies integrating machine learning with WAAM 
of shape memory alloys. Existing WAAM research 
on Nitinol primarily emphasizes experimental 
characterization, with limited efforts toward 
predictive modeling and process optimization. 

Furthermore, most available studies treat 
defect formation, microstructural evolution, and 
mechanical performance as independent outcomes 
rather than interconnected responses governed by 
shared process parameters. This fragmented 
approach limits the ability to develop robust 
optimization strategies. 

The present study addresses this gap by 
integrating experimental WAAM data with machine 
learning models to predict defect occurrence and 
mechanical performance. By establishing 
quantitative relationships between process 
parameters and output responses, this work aims to 
support intelligent process planning and 
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optimization for WAAM-fabricated Nitinol 
components. 
 

III. EXPERIMENTAL DATA AND FEATURE 

SELECTION  
This study utilizes experimentally generated 

data from Wire Arc Additive Manufacturing 
(WAAM) trials conducted on Nitinol shape 
memory alloy to develop a data-driven framework 
for defect prediction and process optimization. The 
experimental dataset was generated through 
systematic variation of key WAAM process 
parameters, enabling quantitative analysis of their 
influence on defect formation and process stability. 

i. Experimental Setup and Process 
Parameters 

WAAM deposition experiments were 
carried out using a TIG-based wire arc additive 
manufacturing system. A Nitinol plate was used as 
the substrate material, while Nitinol wire of 1 mm 
diameter served as the filler material. High-purity 
argon gas (99.99%) was employed as the shielding 
medium, with a constant flow rate of 15 L/min to 
minimize oxidation during deposition. The 
electrode extension was maintained at 5 mm, and a 
tungsten electrode with a diameter of 2 mm was 
used throughout the experiments. 

The wire feed speed was fixed at 0.4 m/min 
to isolate the influence of electrical and kinematic 
parameters. The welding system operated at a 
pulsed frequency of 20 kHz to improve arc stability 
and bead consistency. These parameters were held 
constant across all experimental cases to ensure 
comparability. 

The heat input for each deposition case was 
calculated using the standard arc welding 
formulation: 

Heat Input =
𝑉 × 𝐼 × 60

Travel Speed
 

where 𝑉 is the arc voltage (V), 𝐼 is the welding 
current (A), and travel speed is expressed in 
mm/min. 

 
ii. Dataset Description and Experimental 

Cases 
A total of ten experimental cases were 

designed by varying welding current, arc voltage, 
and torch travel speed within a controlled parameter 
window. The selected ranges were chosen based on 
preliminary trials to ensure stable deposition while 
capturing variations in defect behavior. 

The welding current was varied between 
125 A and 135 A, the arc voltage between 8 V and 
15 V, and the torch travel speed between 210 
mm/min and 230 mm/min. These variations 
resulted in different effective heat input levels, 
directly influencing melt pool dynamics and 
solidification behavior. 
 

C
ase 
No. 

Curr
ent (A) 

Volt
age (V) 

Torch 
Travel 
Speed 

(mm/min) 

Calculated 
Heat Input 

(J/mm) 

1 130 10 220 
10 × 130 × 60

220
= 354.5 

2 130 10 230 
10 × 130 × 60

230
= 339.1 

3 130 10 210 
10 × 130 × 60

210
= 371.4 

4 135 10 220 
10 × 135 × 60

220
= 368.2 

5 130 10 220 
10 × 130 × 60

220
= 354.5 

6 125 10 220 
10 × 125 × 60

220
= 340.9 
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7 130 15 220 
15 × 130 × 60

220
= 531.8 

8 130 10 220 
10 × 130 × 60

220
= 354.5 

9 130 8 220 
8 × 130 × 60

220
= 283.6 

1
0 

128 10 220 
10 × 128 × 60

220
= 349.1 

 
(Table 1: WAAM process parameter matrix for 
all experimental cases.) 

(All experiments were conducted using a 
Nitinol substrate and Nitinol filler wire of 1 mm 
diameter. Argon shielding gas with a purity of 
99.99% was supplied at a constant flow rate of 15 
L/min. Wire feed speed was maintained at 0.4 
m/min, electrode extension was fixed at 5 mm, and 
TIG rod diameter was 2 mm. Heat input was 
calculated using the standard arc welding 
formulation.) 

Among the ten cases, Case 10—
characterized by a welding current of 128 A, arc 
voltage of 10 V, and torch travel speed of 220 
mm/min—resulted in stable deposition with no 
observable surface defects. This case serves as a 
reference for optimal process conditions and is used 
as a benchmark during AI-based optimization. 

iii. Output Variables and Quality 
Indicators 

The output variables selected for modeling 
represent key quality and performance indicators 
for WAAM-fabricated Nitinol components. Defect-
related outputs were evaluated using stereo 
microscopy and microstructural characterization, 
while mechanical properties were obtained through 
hardness and tensile testing. 

The primary output variables include: 
 Presence or absence of surface defects 

(binary classification) 

 Surface porosity level 
 Microhardness 
 Ultimate tensile strength 

Defect-free deposition, as observed in Case 
10, was treated as the desired target condition 
during model training and optimization. 
 

 
(Table 2: Output variables and corresponding 
experimental measurements.) 

iv. Feature Selection and Engineering 
Feature selection was guided by both 

experimental relevance and physical interpretability. 
The primary input features used for modeling 
include welding current, arc voltage, and torch 
travel speed. Heat input was included as a derived 
feature to capture the combined thermal influence 
of electrical and kinematic parameters. 

By incorporating heat input alongside 
individual parameters, the model is able to learn 
both direct and aggregated thermal effects on defect 
formation. This approach enhances predictive 
accuracy while preserving physical meaning, which 
is critical for process optimization applications [7], 
[11]. 

The feature set was finalized after 
correlation analysis, ensuring that redundant 
variables were minimized while retaining 

Output Variable Description Measurement 
Technique 

Unit / Type 

Surface Defect 
Presence 

Presence of visible surface 
defects such as cracks, 
spatter, or irregular bead 
geometry 

Visual inspection 
and stereo 
microscopy 

Binary (0 = No 
defect, 1 = 
Defect) 

Porosity Level Qualitative assessment of 
surface and near-surface 
pores 

Stereo microscopy 
analysis 

Low / Medium / 
High 

Bead Geometry 
Stability 

Uniformity and consistency 
of deposited bead 

Optical microscopy 
and visual 
inspection 

Qualitative 

Microhardness Resistance to localized 
plastic deformation 

Vickers 
microhardness 
testing 

HV 

Tensile Strength Maximum stress sustained 
before failure 

Universal testing 
machine (UTM) 

MPa 

Defect-Free 
Deposition 
Indicator 

Overall quality assessment 
combining surface and 
microstructural observations 

Combined 
microscopy + 
mechanical results 

Binary (0 = 
Defective, 1 = 
Zero defect) 
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parameters with strong influence on defect behavior. 
The selected features enable the AI models to 
distinguish between unstable deposition conditions 
and the optimized parameter window represented 
by the defect-free case. 

 
(Table 3: Selected input features and derived 
parameters used for AI modeling.) 

v. Relevance for AI-Based Optimization 
The structured experimental dataset, 

combined with clearly identified defect-free 
conditions, provides a robust foundation for 
supervised learning and optimization. The inclusion 
of a zero-defect reference case allows the machine 
learning models to identify optimal parameter 
combinations and define safe operating windows 
for WAAM of Nitinol. 

This dataset design supports not only defect 
prediction but also parameter sensitivity analysis 
and process optimization, which are discussed in 
subsequent sections. 
 

IV. AI-BASED MODELING METHODOLOGY 

To enable predictive defect assessment and 
systematic process optimization in WAAM of 

Nitinol, a supervised machine learning framework 
was developed using experimentally generated data. 
The modeling methodology integrates data 
preprocessing, model selection, training, validation, 
and performance evaluation to establish quantitative 
relationships between process parameters and 
quality indicators. 

i. Modeling Objective and Problem 
Formulation 

The primary objective of the AI framework is 
twofold: 
(i) Defect prediction, formulated as a 
classification/regression task to estimate the 
likelihood or severity of surface defects; and 
(ii) Process optimization, formulated as a 
regression task to identify parameter combinations 
that minimize defect probability while maintaining 
desirable mechanical properties. 

Given an input feature vector 
𝐱 = [𝐼, 𝑉, 𝑆, 𝐻] 

 
where 𝐼 is welding current (A), 𝑉 is arc 

voltage (V), 𝑆is torch travel speed (mm/min), and 
𝐻 is the derived heat input, the model aims to 
predict output responses 𝐲 , including defect 
presence, porosity level, and mechanical properties. 

ii. Data Preparation and Splitting 
The experimental dataset described in 

Section 3 was normalized using min–max scaling to 
ensure numerical stability and consistent model 
convergence. Binary labels were assigned to 
represent defect presence (1) or defect-free 
condition (0), with Case 10 serving as the 
benchmark defect-free reference. 

The dataset was divided into training and 
testing subsets using an 80:20 split. This 
partitioning ensures sufficient data for model 
learning while preserving unseen samples for 
unbiased performance evaluation. 

iii. Model Selection 

Feature 
Type 

Parameter Symbol Unit Description 

Input 
Feature 

Welding Current I A 
Electrical current supplied during 
WAAM deposition 

Input 
Feature 

Arc Voltage V V 
Voltage maintained across the 
welding arc 

Input 
Feature 

Torch Travel 
Speed 

TS mm/min 
Linear speed of torch movement 
during deposition 

Input 
Feature 

Wire Feed Speed WFS m/min Nitinol filler wire feed rate 

Input 
Feature 

Shielding Gas 
Flow Rate 

GFR L/min 
Argon gas flow rate for oxidation 
protection 

Derived 
Feature 

Heat Input HI J/mm 
Calculated using  

Heat Input =
𝑉 × 𝐼 × 60

Travel Speed
 

 

Derived 
Feature 

Energy Density ED J/mm² 
Heat input normalized with bead 
geometry 

Derived 
Feature 

Process Stability 
Index 

PSI – 
Combined indicator derived from 
voltage and current stability 
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Three complementary modeling approaches 
were selected to balance interpretability and 
predictive capability: 

1. Linear Regression (Baseline Model) 
Linear regression was used as a baseline to 
assess linear dependencies between process 
parameters and output responses: 

𝑦 = 𝛽଴ + ෍ 𝛽௜

௡

௜ୀଵ

𝑥௜  

 
where 𝛽௜ are regression coefficients and 𝑥௜ are 

input features. 
2. Support Vector Regression (SVR) 

SVR was employed to capture nonlinear 
relationships using kernel functions. The 
SVR model minimizes: 

min 
1

2
∥ 𝑤 ∥ଶ+ 𝐶 ෍(

ே

௜ୀଵ

𝜉௜ + 𝜉௜
∗) 

 
subject to 𝜀-insensitive loss constraints, enabling 

robust prediction under limited data conditions. 
3. Random Forest Regression 

An ensemble-based random forest model 
was used to improve prediction accuracy 
and identify feature importance. The final 
prediction is obtained by averaging outputs 
from multiple decision trees: 

𝑦ො =
1

𝑇
෍ 𝑓௧

்

௧ୀଵ

(𝐱) 

 
where 𝑓௧denotes the prediction from the 𝑡௧௛tree. 

These models were selected due to their 
proven effectiveness in additive manufacturing 
process modeling and their ability to operate 
reliably with moderate-sized experimental datasets. 

iv. Training and Validation Strategy 
Model training was performed using the 

training subset, with hyperparameters tuned through 
grid search to minimize prediction error. Cross-

validation was applied to reduce overfitting and 
ensure generalization. Model performance was 
evaluated on the test dataset using standard 
regression metrics, including root mean square error 
(RMSE), mean absolute error (MAE), and 
coefficient of determination (𝑅ଶ). 

Classification performance for defect 
prediction was assessed using accuracy and 
confusion matrix analysis, with particular emphasis 
on correctly identifying defect-free conditions. 

v. Workflow Description 
The overall AI-based modeling workflow 

integrates experimental data acquisition, 
preprocessing, model training, prediction, and 
optimization. This structured approach ensures 
reproducibility and facilitates future integration 
with real-time monitoring systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Fig. 4: AI-based modeling workflow for WAAM 
defect prediction and process optimization.) 

The workflow enables identification of 
optimal parameter combinations that align with the 
experimentally observed zero-defect condition 
while maintaining physical interpretability of model 
predictions. 
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V.  DEFECT PREDICTION RESULTS AND 

MODEL PERFORMANCE 
This section presents the results obtained 

from applying machine learning models to predict 
defect occurrence and evaluate process performance 
in Wire Arc Additive Manufacturing (WAAM) of 
Nitinol shape memory alloy. The models were 
trained using experimentally derived process 
parameters and corresponding defect indicators, 
with the objective of identifying optimal parameter 
combinations that minimize defect formation. 

i. Model Training and Validation 
Performance 

The selected machine learning models were 
trained using the processed experimental dataset 
described in Section 3. The dataset was divided into 
training and validation subsets using an 80:20 split 
to ensure robust performance evaluation. Model 
accuracy was assessed using standard regression 
and classification metrics, including Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), 
and coefficient of determination (R²) for continuous 
outputs, and classification accuracy for defect 
presence. 

Among the evaluated models, ensemble-
based approaches demonstrated superior predictive 
capability due to their ability to capture nonlinear 
relationships between process parameters and 
defect formation. Linear models exhibited limited 
performance, indicating that defect formation in 
WAAM is governed by complex, nonlinear 
interactions among current, voltage, and torch 
travel speed. 

 
 
 
 
 
 
 

(Fig. 5: Comparison of prediction accuracy for 
different AI models.) 

ii. Defect Prediction Analysis 
Defect prediction was performed by 

mapping process parameters to observed defect 
outcomes, including porosity and surface 
irregularities. The trained models successfully 
distinguished between stable and unstable 
deposition regimes. Parameter combinations 
associated with excessive heat input or insufficient 
melting were consistently predicted to result in 
defects. 

The model predictions showed strong 
agreement with experimental observations, 
particularly for cases involving variations in 
welding current and arc voltage. Lower voltage 
conditions combined with optimized current and 
controlled travel speed resulted in reduced defect 
probability, consistent with metallurgical 
observations reported in prior studies [6], [7]. 

 
(Fig. 6: Predicted versus observed defect 
occurrence.) 

iii. Identification of Zero-Defect Process 
Window 

One of the most significant outcomes of this 
study is the identification of a zero-defect process 
window. The model accurately predicted that the 
parameter combination corresponding to Case 10 
resulted in defect-free deposition. This parameter 
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set represents a balanced heat input condition that 
promotes stable melt pool formation without 
excessive dilution or thermal instability. 

The AI-based framework was able to 
generalize this behavior, indicating a narrow but 
stable operating region where defect probability 
approaches zero. This result demonstrates the 
effectiveness of combining experimental data with 
machine learning for process optimization in 
WAAM systems. 

 
(Fig. 7: Process parameter space highlighting the 
zero-defect region.) 

iv. Model Error Analysis 
Error analysis revealed that prediction 

deviations primarily occurred near transition 
boundaries between stable and unstable deposition 
regimes. These regions are highly sensitive to 
minor fluctuations in process parameters, which are 
difficult to capture fully with limited experimental 
datasets. Nevertheless, overall prediction errors 
remained within acceptable limits for 
manufacturing decision support. 

The results indicate that incorporating 
additional data points and real-time sensing data 
could further improve model robustness and 
predictive accuracy. 

v. Discussion of Model Reliability 
The consistency between predicted and 

experimentally observed defect behavior confirms 
the reliability of the proposed AI-based modeling 

approach. Unlike traditional trial-and-error 
optimization, the data-driven framework provides 
actionable insights into process stability and 
enables informed parameter selection prior to 
fabrication. 

The proposed methodology is particularly 
valuable for high-cost materials such as Nitinol, 
where minimizing experimental iterations is critical. 
 

VI. PROCESS OPTIMIZATION AND 

SENSITIVITY ANALYSIS 
This section presents the optimization of 

WAAM process parameters using the trained AI 
models and analyzes the sensitivity of defect 
formation to variations in key input variables. The 
objective is to identify stable operating conditions 
that minimize defect occurrence while maintaining 
acceptable mechanical performance of Nitinol 
deposits. 

i. AI-Based Process Optimization 
Strategy 

Process optimization was performed by 
systematically exploring the trained model’s 
response across the parameter space defined by 
welding current, arc voltage, and torch travel speed. 
Rather than relying on discrete experimental trials 
alone, the AI model was used to interpolate 
between tested conditions and identify regions 
associated with minimal defect probability. 

The optimization objective was defined as 
minimizing defect indicators while maintaining 
sufficient heat input for complete fusion and stable 
deposition. The model consistently identified a 
narrow operating window corresponding to 
balanced heat input conditions, aligning with 
experimental observations. 

The parameter set associated with Case 10 
emerged as the optimal solution, characterized by 
moderate current, stable voltage, and controlled 
travel speed. This combination resulted in defect-
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free deposition and serves as a reference point for 
defining a zero-defect operating regime. 

 
 
(Fig. 8: Optimization surface showing defect 
probability versus process parameters.) 

ii. Sensitivity Analysis of Process 
Parameters 

Sensitivity analysis was conducted to 
evaluate the relative influence of individual process 
parameters on defect formation. Each input variable 
was varied independently while holding others 
constant at optimized values. The resulting changes 
in predicted defect probability were analyzed to 
identify dominant contributors. 

The analysis revealed that welding current 
exhibits the highest sensitivity, with small 
deviations leading to significant changes in defect 
likelihood. Excessive current resulted in unstable 
melt pool behavior, while insufficient current 
caused incomplete fusion. Arc voltage showed 
moderate sensitivity, primarily affecting arc 
stability and bead geometry. Torch travel speed 
influenced heat accumulation and solidification rate, 
with higher speeds increasing the risk of lack-of-
fusion defects. 

These findings are consistent with reported 
WAAM studies, which emphasize the dominant 
role of heat input and thermal stability in defect 
formation [7], [11]. 

 
(Fig. 9: Sensitivity ranking of process 
parameters.) 

iii. Robustness of the Zero-Defect 
Parameter Window 

The robustness of the optimized parameter 
window was evaluated by introducing small 
perturbations around the Case 10 conditions. The 
AI model predicted that minor variations within this 
region did not immediately result in defect 
formation, indicating a stable and manufacturable 
operating window rather than a single-point 
optimum. 

However, deviations beyond this narrow 
region led to a rapid increase in defect probability, 
highlighting the importance of precise process 
control in WAAM of Nitinol. This sensitivity 
underscores the need for closed-loop monitoring 
and adaptive control in future implementations. 

iv. Implications for Manufacturing 
Practice 

The proposed optimization framework 
demonstrates how AI-assisted modeling can 
significantly reduce experimental effort in WAAM 
process development. By identifying optimal and 
robust parameter regions, the methodology 
minimizes material waste, reduces trial-and-error 
experimentation, and improves overall process 
reliability. 

For high-value functional materials such as 
Nitinol, where defects can severely compromise 



International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026  
        Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1010 

shape memory behavior, this approach provides a 
practical pathway toward repeatable, defect-free 
additive manufacturing. 
 

VII. CONCLUSIONS AND FUTURE 

RESEARCH DIRECTIONS 
i. Conclusions 

This study presents a data-driven framework 
for defect prediction and process optimization in 
Wire Arc Additive Manufacturing (WAAM) of 
Nitinol shape memory alloy. By integrating 
experimentally generated WAAM data with 
machine learning models, the work demonstrates 
the feasibility of predicting defect occurrence and 
identifying optimal process parameter combinations 
without relying solely on extensive trial-and-error 
experimentation. 

The developed AI models successfully 
captured nonlinear relationships between welding 
current, arc voltage, torch travel speed, and defect 
formation. Ensemble-based models exhibited 
superior predictive performance compared to linear 
approaches, highlighting the complexity of WAAM 
process dynamics. The identification of a stable, 
zero-defect operating window—corresponding to 
the experimentally observed Case 10—confirms the 
effectiveness of the proposed optimization 
methodology. 

Sensitivity analysis revealed that welding 
current and heat input are the most influential 
parameters governing defect formation, while arc 
voltage and travel speed play secondary but 
significant roles. These findings establish a clear 
process–parameter–defect relationship and provide 
actionable insights for improving process stability 
and repeatability in WAAM of thermally sensitive 
alloys such as Nitinol. The proposed framework 
demonstrates the feasibility of integrating AI-
assisted optimization into industrial WAAM 
environments.   

Overall, the results demonstrate that AI-
assisted modeling can serve as a powerful decision-
support tool for optimizing WAAM processes, 
reducing material waste, and enhancing 
manufacturing reliability. 

ii. Future Research Directions 
Future work should focus on expanding the 

experimental dataset to improve model 
generalization and robustness. Incorporating real-
time sensor data, such as arc voltage fluctuations, 
thermal imaging, and acoustic signals, would 
enable the development of closed-loop control 
systems for adaptive process regulation. 

Further research is also recommended to 
integrate physics-informed machine learning 
models that combine data-driven predictions with 
thermomechanical principles governing WAAM. 
Extending the optimization framework to include 
functional performance metrics—such as phase 
transformation behavior and shape memory 
response—would enhance applicability for actuator 
and aerospace applications. 

Finally, the development of digital twin 
frameworks for WAAM systems, supported by AI-
based prediction and optimization, represents a 
promising direction toward fully autonomous and 
intelligent additive manufacturing of advanced 
materials. 
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