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Abstract:

Uncertainty in load demand and operating conditions poses significant challenges to voltage regulation in
radial distribution networks. Conventional deterministic load flow methods, which assume fixed system
parameters, are unable to adequately capture these uncertainties. This paper presents a Monte Carlo—based
probabilistic load flow (PLF) analysis of the 11 kV Ayepe 34-bus radial distribution network operated by
the Ibadan Electricity Distribution Company (IBEDC), Nigeria. Load uncertainties were modeled using
Gaussian distributions with varying standard deviations of 25 & 5, 45 & 20 and 75 & 50 active and reactive
power respectively and repeated load flow solutions are carried out using the backward—forward sweep
algorithm. All simulations were performed in the MATLAB R2022a computational environment. The
results are analyzed using two different analysis approaches: Deterministic Load Flow & Probabilistic load
flow. Statistical voltage indices, including mean voltage, standard deviation, and probability of voltage
violation, were evaluated to assess voltage stability and operational risk using voltage profile curves,
probability distribution histograms, and bar charts to facilitate comparative and probabilistic analysis.
Results show that although probabilistic mean voltage profiles closely follow deterministic results, several
high-load and end-of-feeder buses exhibit a high probability of undervoltage violations under increased load
variability. The study demonstrates that Monte Carlo PLF provides a more realistic and risk-informed
assessment of distribution system performance than deterministic analysis and is suitable for planning
voltage support measures in practical radial networks.

Keywords — MATLAB, Monte-Carlo Simulation, Voltage Stability, Deterministic Load Flow,
Algorithm.
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I. INTRODUCTION methods such as Newton—Raphson and
backward/forward sweep assume fixed loads and
generation, providing a single operating solution

that fails to capture variability from load dynamics

Radial distribution networks form the terminal
segment of power delivery, supplying loads with

electricity while exhibiting high resistance-to-
reactance ratios and weak voltage support under
varying operational conditions [3]. Deterministic
load flow (DLF)

and intermittent distributed energy resources
(DERs) in modern systems [3]. As uncertainties
from DER penetration and stochastic load behavior
increase, deterministic approaches can
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misrepresent voltage profiles, power losses, and
reliability metrics.

Probabilistic load flow (PLF) frameworks address
these limitations by modeling uncertain inputs as
random variables and quantifying outputs e.g., bus
voltages and flows as statistical distributions [8].
Monte Carlo simulation (MCS) is widely used in
PLF to generate numerous scenarios of random
operating conditions and solve repeated load flow
cases, yielding estimates of statistical indices such
as means, variances, and violation probabilities
([8],[2]). While MCS is computationally intensive,
its ability to integrate with conventional algorithms
and handle nonlinearities makes it suitable for
radial systems with high DER penetration and
complex uncertainty profiles.

PLF with MCS thus supports risk-informed
planning, reliability assessment, and voltage
stability analysis by providing probabilistic
insights unavailable from deterministic studies,
enabling more resilient distribution network
operation amid growing uncertainty [8].

II. LITERATURE REVIEW

Probabilistic Load Flow (PLF) has emerged as a
critical tool for assessing the performance of power
systems under uncertainty, especially in radial
distribution networks where load and generation
variability significantly affect voltage profiles and
power losses. Classical deterministic load flow
methods such as  Newton-Raphson and
backward/forward sweep assume fixed system
parameters and fail to capture realistic operating
uncertainties associated with loads and distributed
energy resources (DERs) such as wind and solar
PV systems [1].

Monte Carlo Simulation (MCS) is among the most
widely adopted stochastic techniques for PLF due
to its conceptual simplicity and ability to model
arbitrary probability distributions of uncertain
inputs. [2] incorporated Monte Carlo methods to
assess probabilistic behavior in radial networks
with photovoltaic generation, demonstrating
improved representation of voltage and power flow
variability compared to deterministic methods.
Similarly, [7] used data clustering combined with
MCS to reduce computation time in PLF analysis
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of IEEE benchmark radial systems with wind
farms, highlighting trade-offs between simulation
accuracy and runtime .

The foundational approach to PLF dates back to
[8], who first introduced probabilistic methods for
load flow problems by modeling uncertain
variables as random processes, setting the stage for
Monte Carlo-based techniques in later studies [14].
Comparisons between probabilistic and fuzzy
approaches within radial systems underscore that
while fuzzy methods can address limited
uncertainty with lower runtime, Monte Carlo
remains more accurate when multiple random
variables interact within networks [6].

More advanced Monte Carlo-based studies have
expanded beyond basic radial setups to address
unbalanced three-phase systems. [4] advanced PLF
solutions including unbalanced conditions,
validating results against Monte Carlo benchmarks
and illustrating applicability in realistic
distribution networks. [5] further developed
methods for both radial and weakly meshed
networks without reliance on standard Y-bus
formulations, reinforcing that PLF should handle
diverse network configurations.

Researchers have also applied Monte Carlo
techniques alongside sampling improvements. For
instance, Quasi-Monte Carlo (QMC) and Latin
Hypercube Sampling (LHS) have been proposed to
reduce variance and computational burden, with
comparative analyses showing that LHS can
maintain accuracy with fewer samples than simple
random sampling in MCS [11]. These enhanced
sampling strategies are particularly vital for high-
dimensional problems involving correlated
uncertainties of load and renewable generation
outputs.

Wind and solar power output variability drives
significant interest in probabilistic analysis within
distribution systems. [1] extended Monte Carlo
PLF to incorporate wind and PV uncertainties
using multi-linear formulations, offering improved
insight into combined generation impacts on
voltage and power flows. These approaches
consistently highlight that MCS remains the
benchmark for validating newer approximation
methods due to its ability to converge to true
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distributional behavior given sufficient samples
[9].

Recent advancements also explore machine
learning integration with PLF. For example,
adaptive kernel density estimation combined with
LHS demonstrated improvements in probabilistic
representation and computational efficiency when
compared against traditional Monte Carlo results
on standard systems such as IEEE test networks
[10]. These hybrid methods highlight ongoing
efforts to balance accuracy and computational
efficiency in probabilistic load flow studies [3].
Across the literature, key performance indices such
as voltage quality, loss distributions, and the
probability of limit violations are derived from
probabilistic outputs rather than single-point
estimates, offering system planners richer insight
into operational risk and robustness compared to
deterministic benchmarks [12]. Additionally,
probabilistic  studies have been used in
optimization contexts such as capacitor and DER
placement  demonstrating  that  stochastic
information can lead to more resilient distribution
design decisions [13].

Although probabilistic load flow (PLF) methods
particularly those based on Monte Carlo
Simulation (MCS) have been widely studied
internationally. Most existing PLF studies have
focused on standardized IEEE test systems or
distribution networks in developed countries with
relatively stable demand patterns and extensive
data availability. However, there exist notable
research gap when considering the unique
characteristics and challenges of Nigerian
distribution networks. There is a notable lack of
comprehensive Monte Carlo PLF studies
calibrated to actual Nigerian radial distribution
network data such as those operated by the
Distribution Companies (DisCos). The topology,
loading profiles, and reliability issues in Nigerian
networks differ significantly from benchmark
systems due to frequent outages, customer
behavior variability, and poor data acquisition
infrastructure. This study therefore, focuses on
Monte-Carlo Probabilistic load flow studies of the
AYEPE 34-bus radial distribution network in
Ibadan, Nigeria.
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III. MATERIALS AND METHOD

The Monte Carlo Probabilistic Load Flow
(MCPLF) technique was adopted for analyzing the
probabilistic behavior of a radial power
distribution  network.  Unlike  conventional
deterministic load flow analysis, which assumes
fixed or nominal load values, the probabilistic
approach accounts for the random and uncertain
nature of load demand in distribution systems.
The Monte Carlo simulation method is employed
to repeatedly generate random load values based
on predefined probability distributions, followed
by load flow analysis using the Backward—Forward
Sweep (BFS) algorithm. The statistical properties
of bus voltages and system losses are then
evaluated to quantify voltage stability, uncertainty,
and risk of voltage violation.

1) The Radial Distribution Test Network
For the probabilistic load flow analysis, the 11 kV
Ayepe 34-bus distribution feeder of the Ibadan
Electricity Distribution Company (IBEDC),
illustrated in Fig. 2, was adopted in this study. The
system comprises 34 buses, with Bus 1 acting as
the substation and supplying power to the
remaining buses in the network. The aggregate real
and reactive power demands of the feeder are 4.12
MW and 2.05 MVAr, respectively.
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Fig. 2. Ayepe 34-bus radial distribution network
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2) Deterministic Load  Flow
Backward-Forward Sweep Method

Using

The Backward—Forward Sweep (BFS) method is
adopted for load flow analysis due to its fast
convergence, numerical stability, and suitability
for radial networks. The BFS method involves two
iterative steps:

1. Backward Sweep — Calculation of branch
currents from the terminal buses to the
source

2. Forward Sweep — Updating of bus
voltages from the source to the terminal
buses

1. Backward Sweep: Branch Current Calculation

For each load bus i, the injected current is calculated as:
Pi—j i

Ii = V—:

where:

P; and Q; are the active and reactive power demands

V; is the bus voltage

(.)" denotes the complex conjugate

Branch currents are then obtained by summing the load

currents of downstream buses, starting from the terminal

buses and moving toward the source

2. Forward Sweep: Bus Voltage Update

During the forward sweep, voltages are updated sequentially

from the source bus to the terminal buses using:

Vi =V = I;(Rij +jXij)

Vi and V; are sending and receiving end voltages

I is branch current

R;j and X;j are line resistance and reactance

The source bus voltage is fixed at 1.0 p.u., and the process
continues until the voltage mismatch is below a predefined
tolerance.

3) Monte Carlo Probabilistic Load Flow
Framework

The Monte Carlo simulation involves repeated
random sampling of load values and execution of
load flow analysis. For each simulation iteration:
1.Random load values are generated for all
buses
2.Backward-Forward Sweep load flow is
executed
3.Bus voltages and system losses are recorded
This process is repeated for N Monte Carlo
iterations, typically ranging from 1,000 to 10,000,
to ensure statistical convergence.

Available at www.ijsred.com

4)Modeling of Load Uncertainty
1) Probability Distribution of Loads

In this study, the active and reactive loads are
assumed to follow a normal (Gaussian)
distribution:

P; = pp; + 0p;.N(0,1)

Qi = ugi +0¢i-N(0,1)

where:

Upi, Lo are the nominal load values

Opi, 0¢; are the standard deviations

N(0,1) is a standard normal random variable

A standard deviation of the nominal load is used to reflect
realistic operating conditions.

2) Mean Voltage

1 N k
Vinean,i = N_Zkil Vi( )
S
where:
Vi(k) is the voltage magnitude at bus i for the k — th

Monte Carlo sample
N; is the total number of Monte Carlo samples

The mean voltage represents the expected or
average voltage at each bus wunder load
uncertainties. Buses near the substation have
higher V,,,04n showing a better voltage support.
Remote buses have Lower V,.q,, showing higher
risk of undervoltage. The mean voltage is used to
assess overall voltage profile under stochastic
conditions.

3) Voltage Standard Deviation (o)

= [y (@ 2
Oy,; = \/Ns—l Zk:l Vl - Vmean,i)

The Standard deviation quantifies voltage
variability or uncertainty at each bus. It is used to
identify buses with high voltage dispersion and
highlights the need for voltage regulation devices
(DG, capacitor banks, STATCOM).

4) Probability of Voltage Violation(P(P <
Vmin ))
@

Number of samples where ;

Ns

_ <Vmin

Pviol,i -
where:

Nyi<o.9s 1s the number of occurrences of voltage
violation

N is the total Monte Carlo simulation
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Vinin 18 usually 0.95 pu (acceptable voltage limit
in distribution systems).

The probability of voltage violation provides a
risk-based measure of voltage violations at each
bus. It highlights buses that occasionally violate
voltage limits, even if Vy,pqn > Vinin and allows
quantitative ranking of critical buses. It identifies
buses for targeted voltage support.

5) Performance Evaluation Criteria

The effectiveness of the probabilistic analysis is
evaluated based on:

e Mean bus voltage profile

e Voltage standard deviation

e Probability of voltage violation

o Expected system power losses

These indices provide a comprehensive
understanding of system behavior under
uncertainty.

Iv. RESULTS AND DISCUSSION

The Monte Carlo Probabilistic Power Flow
(MCPPF) was performed on the AYEPE 34-bus
radial distribution system in Ibadan, Nigeria, to
evaluate the impact of stochastic load variations on
bus voltages. A total of 2000 random samples of
active and reactive loads were generated using a
normal distribution of 25 & 5,45 & 20 and 75 &
50, standard deviation of active and reactive power
respectively. The results are analyzed using two
different analysis approaches: Deterministic Load
Flow & Probabilistic load flow. The Deterministic
load flow of backward-forward sweep load flow
algorithm uses fixed (nominal) load values at each
bus and produces a single voltage profile curve.
While the probabilistic Load Flow assumes load
uncertainty (typically modeled as a normal or
uniform distribution) and uses Monte Carlo
simulation to repeatedly run load flow with random
load variations. It produces: the Mean voltage
profile (average of all simulations), +1c band,
representing one standard deviation around the
mean, and probability of voltage violation (P
(V<0.90 pu)) i.e P>5%. These indicators provide a
comprehensive view of voltage stability and
critical buses under realistic operating conditions.
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CASE 1: Monte Carlo Probabilistic Power
Flow Results at 25&S5 standard deviation of
real and reactive power

The deterministic load flow represents the nominal
operating point using base load values and it was
carried out using the Backward-Forward Sweep
load flow analysis. Figure 2 compares the
deterministic voltage profile with the probabilistic
mean voltage profile and +1c confidence band. Fig.
2 shows that the mean probabilistic voltage profile
closely follows the deterministic voltage profile,
confirming consistency of the BFS algorithm.
Figure 3 shows that buses 1-8 and buses 19-27
maintain voltages above the minimum voltage
limit of 0.9pu showing strong voltage support since
they are closer to the substation and their voltages
remain stable even when loads fluctuate. Figure 4
shows that high load buses 8-18 and end-of-feeder
buses 28-34 are critical or weak buses. They show
higher probability bars which indicates that under
load uncertainty, their voltages frequently drop
below the acceptable limit of 0.9pu. They show
lower mean voltages and wider +lc bands,
indicating higher sensitivity to load variations. The
mean voltage provides a first-order assessment of
voltage adequacy, but does not capture the full risk
of violation. It’s the probabilistic load flow that
show the full risk of voltage violation.
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Fig. 2: Deterministic vs Probabilistic Voltage Profile

(AYEPE 34-Bus)
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Fig 3: Mean Probabilistic Voltage Profile (25&5 standard
deviation of real and reactive power)
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Fig. 4: Probability of voltage violation per bus at 25&5 %
standard deviation of real and reactive power

Using the criterion P(V<0.95)>5%, the following
buses are critical:

In figure 4, high load buses 9-18 and end of feeder
buses 28-34 where voltage drop accumulates are
critical buses under probabilistic load flow using a
bench mark of Probability of voltage violation
greater than 5%. Buses closer to the source show
low or zero voltage probability violation and their
probability of voltage violation was less than 5%.
The critical buses shown in figure 4 are high-
priority targets for voltage support interventions
such as DG integration, capacitor banks, or
STATCOM integration. = The  probabilistic
approach provides a more realistic and robust
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assessment than deterministic analysis, which
might classify certain buses with high mean
voltage, as safe.

CASE 2: Monte Carlo Probabilistic Power
Flow Results at 45&25 standard deviation of
real and reactive power

Figure 5 shows that at 45 & 25 standard deviation
of the real and reactive power, the probabilistic
load flow plot follows the deterministic load flow
plot closely showing the effectiveness of the
backward-forward sweep load flow algorithm.
Figure 6 shows the mean voltage profile when
there was 45&25 standard deviation of the real and
reactive power. Figure 7 shows that the near
substation buses which are buses 1 to 7, have their
voltages remain stable even when loads fluctuate
and they maintained the minimum voltage of 0.9pu
due to the strong voltage support they got from the
substation. Low load buses 9-19 also have their
voltages remain stable even when loads fluctuate
and they maintain the minimum bus voltage of
0.9pu. While, high load buses 8-18 and end of
feeder buses 8-18, 28-34 are critical buses due to
their high level of sensitivity to load variations.
Increase in the standard deviation of real and
reactive power to 45 & 25, forced buses 8 and 28
to become critical buses when the loads were
varied.
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Fig. 5: Deterministic vs Probabilistic Voltage Profile
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Fig. 7: Probability of voltage violation per bus at 45&25 %
standard deviation of real and reactive power

CASE 3: Monte Carlo Probabilistic Power
Flow Results at 75&5S standard deviation of
real and reactive power

Figure 8 shows that at 75 & 55 standard deviation
of the real and reactive power, the probabilistic
load flow plot follows the deterministic load flow
plot closely showing the effectiveness of the
backward-forward sweep load flow algorithm.
Figure 9 shows the mean voltage profile when
there was 75&55 standard deviation of the real and
reactive power. Figure 10 shows that the near
substation buses which are buses 1 to 5 and 19-26
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maintained the minimum voltage of 0.9pu due to
the strong voltage support they got from the
substation while high load buses 6-16 and end of
feeder buses 27-34 are critical buses due to their
high level of sensitivity to load variations. Increase
in the standard deviation of real and reactive power
to 75 & 55, caused buses 6, 7 and 27 to become
critical buses which were not critical buses in case
2, when the loads were varied.
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Fig. 8: Deterministic vs Probabilistic Voltage Profile
(AYEPE 34-Bus)
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Fig. 10: Probability of voltage violation per bus at 75&55 %
standard deviation of real and reactive power

CONCLUSION

This paper applied a Monte Carlo—based
probabilistic load flow approach to assess voltage
performance in the 11 kV Ayepe 34-bus radial
distribution network under load uncertainty. While
probabilistic mean voltages closely matched
deterministic results, high-load and end-of-feeder
buses exhibited significant probabilities of

undervoltage, which increased with load variability.

These results confirm the limitations of
deterministic load flow for voltage risk assessment
in radial systems. The proposed framework enables
risk-informed identification of weak buses for
planning purposes. Future work will incorporate
stochastic distributed generation, and voltage
support devices such as capacitor banks and
STATCOMs.
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