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Abstract: 
Uncertainty in load demand and operating conditions poses significant challenges to voltage regulation in 
radial distribution networks. Conventional deterministic load flow methods, which assume fixed system 
parameters, are unable to adequately capture these uncertainties. This paper presents a Monte Carlo–based 
probabilistic load flow (PLF) analysis of the 11 kV Ayepe 34-bus radial distribution network operated by 
the Ibadan Electricity Distribution Company (IBEDC), Nigeria. Load uncertainties were modeled using 
Gaussian distributions with varying standard deviations of 25 & 5, 45 & 20 and 75 & 50 active and reactive 
power respectively and repeated load flow solutions are carried out using the backward–forward sweep 
algorithm. All simulations were performed in the MATLAB R2022a computational environment. The 
results are analyzed using two different analysis approaches: Deterministic Load Flow & Probabilistic load 
flow. Statistical voltage indices, including mean voltage, standard deviation, and probability of voltage 
violation, were evaluated to assess voltage stability and operational risk using voltage profile curves, 
probability distribution histograms, and bar charts to facilitate comparative and probabilistic analysis. 
Results show that although probabilistic mean voltage profiles closely follow deterministic results, several 
high-load and end-of-feeder buses exhibit a high probability of undervoltage violations under increased load 
variability. The study demonstrates that Monte Carlo PLF provides a more realistic and risk-informed 
assessment of distribution system performance than deterministic analysis and is suitable for planning 
voltage support measures in practical radial networks. 

Keywords — MATLAB, Monte-Carlo Simulation, Voltage Stability, Deterministic Load Flow, 
Algorithm. 
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I.     INTRODUCTION 

Radial distribution networks form the terminal 
segment of power delivery, supplying loads with 
electricity while exhibiting high resistance-to-
reactance ratios and weak voltage support under 
varying operational conditions [3]. Deterministic 
load flow (DLF)  
 

methods such as Newton–Raphson and 
backward/forward sweep assume fixed loads and 
generation, providing a single operating solution 
that fails to capture variability from load dynamics 
and intermittent distributed energy resources 
(DERs) in modern systems [3]. As uncertainties 
from DER penetration and stochastic load behavior 
increase, deterministic approaches can 
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misrepresent voltage profiles, power losses, and 
reliability metrics. 
Probabilistic load flow (PLF) frameworks address 
these limitations by modeling uncertain inputs as 
random variables and quantifying outputs e.g., bus 
voltages and flows as statistical distributions [8]. 
Monte Carlo simulation (MCS) is widely used in 
PLF to generate numerous scenarios of random 
operating conditions and solve repeated load flow 
cases, yielding estimates of statistical indices such 
as means, variances, and violation probabilities 
([8],[2]). While MCS is computationally intensive, 
its ability to integrate with conventional algorithms 
and handle nonlinearities makes it suitable for 
radial systems with high DER penetration and 
complex uncertainty profiles. 
PLF with MCS thus supports risk-informed 
planning, reliability assessment, and voltage 
stability analysis by providing probabilistic 
insights unavailable from deterministic studies, 
enabling more resilient distribution network 
operation amid growing uncertainty [8]. 

II. LITERATURE REVIEW 

Probabilistic Load Flow (PLF) has emerged as a 
critical tool for assessing the performance of power 
systems under uncertainty, especially in radial 
distribution networks where load and generation 
variability significantly affect voltage profiles and 
power losses. Classical deterministic load flow 
methods such as Newton-Raphson and 
backward/forward sweep assume fixed system 
parameters and fail to capture realistic operating 
uncertainties associated with loads and distributed 
energy resources (DERs) such as wind and solar 
PV systems [1]. 
Monte Carlo Simulation (MCS) is among the most 
widely adopted stochastic techniques for PLF due 
to its conceptual simplicity and ability to model 
arbitrary probability distributions of uncertain 
inputs. [2] incorporated Monte Carlo methods to 
assess probabilistic behavior in radial networks 
with photovoltaic generation, demonstrating 
improved representation of voltage and power flow 
variability compared to deterministic methods. 
Similarly, [7] used data clustering combined with 
MCS to reduce computation time in PLF analysis 

of IEEE benchmark radial systems with wind 
farms, highlighting trade-offs between simulation 
accuracy and runtime . 
The foundational approach to PLF dates back to 
[8], who first introduced probabilistic methods for 
load flow problems by modeling uncertain 
variables as random processes, setting the stage for 
Monte Carlo-based techniques in later studies [14]. 
Comparisons between probabilistic and fuzzy 
approaches within radial systems underscore that 
while fuzzy methods can address limited 
uncertainty with lower runtime, Monte Carlo 
remains more accurate when multiple random 
variables interact within networks [6]. 
More advanced Monte Carlo-based studies have 
expanded beyond basic radial setups to address 
unbalanced three-phase systems. [4] advanced PLF 
solutions including unbalanced conditions, 
validating results against Monte Carlo benchmarks 
and illustrating applicability in realistic 
distribution networks. [5] further developed 
methods for both radial and weakly meshed 
networks without reliance on standard Y-bus 
formulations, reinforcing that PLF should handle 
diverse network configurations. 
Researchers have also applied Monte Carlo 
techniques alongside sampling improvements. For 
instance, Quasi-Monte Carlo (QMC) and Latin 
Hypercube Sampling (LHS) have been proposed to 
reduce variance and computational burden, with 
comparative analyses showing that LHS can 
maintain accuracy with fewer samples than simple 
random sampling in MCS [11]. These enhanced 
sampling strategies are particularly vital for high-
dimensional problems involving correlated 
uncertainties of load and renewable generation 
outputs. 
Wind and solar power output variability drives 
significant interest in probabilistic analysis within 
distribution systems. [1] extended Monte Carlo 
PLF to incorporate wind and PV uncertainties 
using multi-linear formulations, offering improved 
insight into combined generation impacts on 
voltage and power flows. These approaches 
consistently highlight that MCS remains the 
benchmark for validating newer approximation 
methods due to its ability to converge to true 
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distributional behavior given sufficient samples 
[9]. 
Recent advancements also explore machine 
learning integration with PLF. For example, 
adaptive kernel density estimation combined with 
LHS demonstrated improvements in probabilistic 
representation and computational efficiency when 
compared against traditional Monte Carlo results 
on standard systems such as IEEE test networks 
[10]. These hybrid methods highlight ongoing 
efforts to balance accuracy and computational 
efficiency in probabilistic load flow studies [3]. 
Across the literature, key performance indices such 
as voltage quality, loss distributions, and the 
probability of limit violations are derived from 
probabilistic outputs rather than single-point 
estimates, offering system planners richer insight 
into operational risk and robustness compared to 
deterministic benchmarks [12]. Additionally, 
probabilistic studies have been used in 
optimization contexts such as capacitor and DER 
placement demonstrating that stochastic 
information can lead to more resilient distribution 
design decisions [13]. 
Although probabilistic load flow (PLF) methods 
particularly those based on Monte Carlo 
Simulation (MCS) have been widely studied 
internationally. Most existing PLF studies have 
focused on standardized IEEE test systems or 
distribution networks in developed countries with 
relatively stable demand patterns and extensive 
data availability. However, there exist notable 
research gap when considering the unique 
characteristics and challenges of Nigerian 
distribution networks. There is a notable lack of 
comprehensive Monte Carlo PLF studies 
calibrated to actual Nigerian radial distribution 
network data such as those operated by the 
Distribution Companies (DisCos). The topology, 
loading profiles, and reliability issues in Nigerian 
networks differ significantly from benchmark 
systems due to frequent outages, customer 
behavior variability, and poor data acquisition 
infrastructure. This study therefore, focuses on 
Monte-Carlo Probabilistic load flow studies of the 
AYEPE 34-bus radial distribution network in 
Ibadan, Nigeria. 

III. MATERIALS AND METHOD 

The Monte Carlo Probabilistic Load Flow 
(MCPLF) technique was adopted for analyzing the 
probabilistic behavior of a radial power 
distribution network. Unlike conventional 
deterministic load flow analysis, which assumes 
fixed or nominal load values, the probabilistic 
approach accounts for the random and uncertain 
nature of load demand in distribution systems. 
The Monte Carlo simulation method is employed 
to repeatedly generate random load values based 
on predefined probability distributions, followed 
by load flow analysis using the Backward–Forward 
Sweep (BFS) algorithm. The statistical properties 
of bus voltages and system losses are then 
evaluated to quantify voltage stability, uncertainty, 
and risk of voltage violation. 

1) The Radial Distribution Test Network 
For the probabilistic load flow analysis, the 11 kV 
Ayepe 34-bus distribution feeder of the Ibadan 
Electricity Distribution Company (IBEDC), 
illustrated in Fig. 2, was adopted in this study. The 
system comprises 34 buses, with Bus 1 acting as 
the substation and supplying power to the 
remaining buses in the network. The aggregate real 
and reactive power demands of the feeder are 4.12 
MW and 2.05 MVAr, respectively. 

Fig. 2. Ayepe 34-bus radial distribution network 
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2) Deterministic Load Flow Using 
Backward–Forward Sweep Method 

The Backward–Forward Sweep (BFS) method is 
adopted for load flow analysis due to its fast 
convergence, numerical stability, and suitability 
for radial networks. The BFS method involves two 
iterative steps: 

1. Backward Sweep – Calculation of branch 
currents from the terminal buses to the 
source 

2. Forward Sweep – Updating of bus 
voltages from the source to the terminal 
buses 
 

1. Backward Sweep: Branch Current Calculation 
For each load bus 𝑖, the injected current is calculated as: 

𝐼௜ =
௉೔ି௝ ೔

௏೔
∗   

where: 
𝑃௜  and 𝑄௜  are the active and reactive power demands 
𝑉௜ is the bus voltage 
(. )∗ denotes the complex conjugate  
Branch currents are then obtained by summing the load 
currents of downstream buses, starting from the terminal 
buses and moving toward the source 
2. Forward Sweep: Bus Voltage Update 
During the forward sweep, voltages are updated sequentially 
from the source bus to the terminal buses using: 
𝑉௝ = 𝑉௜ − 𝐼௜௝(𝑅௜௝ + 𝑗𝑋௜௝)  
𝑽𝒊 and 𝑽𝒋 are sending and receiving end voltages 
𝑰𝒊𝒋  is branch current 
𝑹𝒊𝒋 and 𝑿𝒊𝒋 are line resistance and reactance 
The source bus voltage is fixed at 1.0 p.u., and the process 
continues until the voltage mismatch is below a predefined 
tolerance. 
 

3) Monte Carlo Probabilistic Load Flow 
Framework 

The Monte Carlo simulation involves repeated 
random sampling of load values and execution of 
load flow analysis. For each simulation iteration: 

1. Random load values are generated for all 
buses 

2. Backward–Forward Sweep load flow is 
executed 

3. Bus voltages and system losses are recorded 
This process is repeated for N Monte Carlo 
iterations, typically ranging from 1,000 to 10,000, 
to ensure statistical convergence. 

4)Modeling of Load Uncertainty 
1) Probability Distribution of Loads 

In this study, the active and reactive loads are 
assumed to follow a normal (Gaussian) 
distribution: 
𝑃௜ = 𝜇௉௜ + 𝜎௉௜ . 𝑁(0,1)  
𝑄௜ = 𝜇ொ௜ + 𝜎ொ௜ . 𝑁(0,1)  
where: 
𝜇௉௜ , 𝜇ொ௜  are the nominal load values 
𝜎௉௜ , 𝜎ொ௜ are the standard deviations 
𝑁(0,1) is a standard normal random variable 
A standard deviation of the nominal load is used to reflect 
realistic operating conditions. 

2) Mean Voltage  

𝑉௠௘௔௡,௜ =
ଵ

ேೞ
∑ 𝑉௜

(௞)ேೞ
௞ୀଵ   

𝑤ℎ𝑒𝑟𝑒:  

𝑉௜
(௞) is the voltage magnitude at bus 𝑖 for the 𝑘 − 𝑡ℎ 

Monte Carlo sample 
𝑁௦ is the total number of Monte Carlo samples 

The mean voltage represents the expected or 
average voltage at each bus under load 
uncertainties. Buses near the substation have 
higher 𝑉௠௘௔௡  showing a better voltage support. 
Remote buses have Lower 𝑉௠௘௔௡, showing higher 
risk of undervoltage. The mean voltage is used to 
assess overall voltage profile under stochastic 
conditions. 

3) Voltage Standard Deviation (𝝈𝑽) 
 

𝜎௏,௜ = ට
ଵ

ேೞିଵ
∑ ൫𝑉

௜

(௞)
− 𝑉௠௘௔௡,௜൯

ଶேೞ
௞ୀଵ   

The Standard deviation quantifies voltage 
variability or uncertainty at each bus. It is used to 
identify buses with high voltage dispersion and 
highlights the need for voltage regulation devices 
(DG, capacitor banks, STATCOM). 

4) Probability of Voltage Violation(𝑷(𝑷 <
 𝑽𝒎𝒊𝒏 )) 

𝑃௩௜௢௟,௜ =
ே௨௠௕௘௥ ௢௙ ௦௔௠௣௟௘௦ ௪௛௘௥௘ ೔

(ೖ)
ழ௏೘೔೙

ேೞ
  

where: 
𝑁௏௜ழ଴.ଽହ is the number of occurrences of voltage 
violation 
𝑁 is the total Monte Carlo simulation 
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𝑉௠௜௡ is usually 0.95 pu (acceptable voltage limit 
in distribution systems). 
The probability of voltage violation provides a 
risk-based measure of voltage violations at each 
bus. It highlights buses that occasionally violate 
voltage limits, even if 𝑉௠௘௔௡ > 𝑉௠௜௡ and allows 
quantitative ranking of critical buses. It identifies 
buses for targeted voltage support. 

5) Performance Evaluation Criteria 

The effectiveness of the probabilistic analysis is 
evaluated based on: 

 Mean bus voltage profile 
 Voltage standard deviation 
 Probability of voltage violation 
 Expected system power losses 

These indices provide a comprehensive 
understanding of system behavior under 
uncertainty. 

IV.     RESULTS AND DISCUSSION 

The Monte Carlo Probabilistic Power Flow 
(MCPPF) was performed on the AYEPE 34-bus 
radial distribution system in Ibadan, Nigeria, to 
evaluate the impact of stochastic load variations on 
bus voltages. A total of 2000 random samples of 
active and reactive loads were generated using a 
normal distribution of 25 & 5, 45 & 20 and 75 & 
50, standard deviation of active and reactive power 
respectively. The results are analyzed using two 
different analysis approaches: Deterministic Load 
Flow & Probabilistic load flow. The Deterministic 
load flow of backward-forward sweep load flow 
algorithm uses fixed (nominal) load values at each 
bus and produces a single voltage profile curve. 
While the probabilistic Load Flow assumes load 
uncertainty (typically modeled as a normal or 
uniform distribution) and uses Monte Carlo 
simulation to repeatedly run load flow with random 
load variations. It produces: the Mean voltage 
profile (average of all simulations), ±1σ band, 
representing one standard deviation around the 
mean, and probability of voltage violation (P 
(V<0.90 pu)) i.e P>5%. These indicators provide a 
comprehensive view of voltage stability and 
critical buses under realistic operating conditions. 

CASE 1: Monte Carlo Probabilistic Power 
Flow Results at 25&5 standard deviation of 
real and reactive power 
The deterministic load flow represents the nominal 
operating point using base load values and it was 
carried out using the Backward-Forward Sweep 
load flow analysis. Figure 2 compares the 
deterministic voltage profile with the probabilistic 
mean voltage profile and ±1σ confidence band. Fig. 
2 shows that the mean probabilistic voltage profile 
closely follows the deterministic voltage profile, 
confirming consistency of the BFS algorithm.  
Figure 3 shows that buses 1–8 and buses 19-27 
maintain voltages above the minimum voltage 
limit of 0.9pu showing strong voltage support since 
they are closer to the substation and their voltages 
remain stable even when loads fluctuate. Figure 4 
shows that high load buses 8-18 and end-of-feeder 
buses 28–34 are critical or weak buses. They show 
higher probability bars which indicates that under 
load uncertainty, their voltages frequently drop 
below the acceptable limit of 0.9pu. They show 
lower mean voltages and wider ±1σ bands, 
indicating higher sensitivity to load variations. The 
mean voltage provides a first-order assessment of 
voltage adequacy, but does not capture the full risk 
of violation. It’s the probabilistic load flow that 
show the full risk of voltage violation. 

 
Fig. 2: Deterministic vs Probabilistic Voltage Profile 

(AYEPE 34-Bus) 
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Fig 3: Mean Probabilistic Voltage Profile (25&5 standard 

deviation of real and reactive power) 

 
Fig. 4: Probability of voltage violation per bus at 25&5 % 

standard deviation of real and reactive power 
 

Using the criterion P(V<0.95)>5%, the following 
buses are critical: 
In figure 4, high load buses 9-18 and end of feeder 
buses 28-34 where voltage drop accumulates are 
critical buses under probabilistic load flow using a 
bench mark of Probability of voltage violation 
greater than 5%. Buses closer to the source show 
low or zero voltage probability violation and their 
probability of voltage violation was less than 5%. 
The critical buses shown in figure 4 are high-
priority targets for voltage support interventions 
such as DG integration, capacitor banks, or 
STATCOM integration. The probabilistic 
approach provides a more realistic and robust 

assessment than deterministic analysis, which 
might classify certain buses with high mean 
voltage, as safe. 
 
CASE 2: Monte Carlo Probabilistic Power 
Flow Results at 45&25 standard deviation of 
real and reactive power 
Figure 5 shows that at 45 & 25 standard deviation 
of the real and reactive power, the probabilistic 
load flow plot follows the deterministic load flow 
plot closely showing the effectiveness of the 
backward-forward sweep load flow algorithm. 
Figure 6 shows the mean voltage profile when 
there was 45&25 standard deviation of the real and 
reactive power. Figure 7 shows that the near 
substation buses which are buses 1 to 7, have their 
voltages remain stable even when loads fluctuate 
and they maintained the minimum voltage of 0.9pu 
due to the strong voltage support they got from the 
substation. Low load buses 9-19 also have their 
voltages remain stable even when loads fluctuate 
and they maintain the minimum bus voltage of 
0.9pu. While, high load buses 8-18 and end of 
feeder buses 8-18, 28-34 are critical buses due to 
their high level of sensitivity to load variations. 
Increase in the standard deviation of real and 
reactive power to 45 & 25, forced buses 8 and 28 
to become critical buses when the loads were 
varied. 

 
Fig. 5: Deterministic vs Probabilistic Voltage Profile 

(AYEPE 34-Bus) 
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Fig 6: Mean Probabilistic Voltage Profile (45&25 

standard deviation of real and reactive power) 
 

 
Fig. 7: Probability of voltage violation per bus at 45&25 % 

standard deviation of real and reactive power 
 
CASE 3: Monte Carlo Probabilistic Power 
Flow Results at 75&55 standard deviation of 
real and reactive power 
Figure 8 shows that at 75 & 55 standard deviation 
of the real and reactive power, the probabilistic 
load flow plot follows the deterministic load flow 
plot closely showing the effectiveness of the 
backward-forward sweep load flow algorithm. 
Figure 9 shows the mean voltage profile when 
there was 75&55 standard deviation of the real and 
reactive power. Figure 10 shows that the near 
substation buses which are buses 1 to 5 and 19-26 

maintained the minimum voltage of 0.9pu due to 
the strong voltage support they got from the 
substation while high load buses 6-16 and end of 
feeder buses 27-34 are critical buses due to their 
high level of sensitivity to load variations. Increase 
in the standard deviation of real and reactive power 
to 75 & 55, caused buses 6, 7 and 27 to become 
critical buses which were not critical buses in case 
2, when the loads were varied. 

 
Fig. 8: Deterministic vs Probabilistic Voltage Profile 
(AYEPE 34-Bus) 

 
Fig 9: Mean Probabilistic Voltage Profile (75&55 
standard deviation of real and reactive power) 
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Fig. 10: Probability of voltage violation per bus at 75&55 % 
standard deviation of real and reactive power 
 
CONCLUSION 
This paper applied a Monte Carlo–based 
probabilistic load flow approach to assess voltage 
performance in the 11 kV Ayepe 34-bus radial 
distribution network under load uncertainty. While 
probabilistic mean voltages closely matched 
deterministic results, high-load and end-of-feeder 
buses exhibited significant probabilities of 
undervoltage, which increased with load variability. 
These results confirm the limitations of 
deterministic load flow for voltage risk assessment 
in radial systems. The proposed framework enables 
risk-informed identification of weak buses for 
planning purposes. Future work will incorporate 
stochastic distributed generation, and voltage 
support devices such as capacitor banks and 
STATCOMs. 
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