

Blockchain-Secured Communication for Industrial IoT and Aviation Control Systems

Syed Kumail Abbas Zaidi*, Khandkar Sakib Al Islam**, Sums Uz Zaman***,
Sadia Afrin****

*(Department of Electrical and Computer Engineering, Lamar University, Beaumont, Texas, USA
Email: kumail.800@gmail.com)

**(Department of Electrical and Computer Engineering, Lamar University, Beaumont, Texas, USA
Email: sakibson786@gmail.com)

***(Department of The Grove School of Engineering, The City College of New York,
Email: sondyzaman999@gmail.com)

****(Department of Information Studies, Trine University, Indiana, USA
Email: sadiaafrainvay@gmail.com)

Abstract:

The rapid adoption of Industrial Internet of Things (IIoT) and digital aviation control systems has significantly improved automation, efficiency, and real-time decision-making across critical infrastructures. However, the increasing interconnectivity of sensors, controllers, and communication networks has also expanded the cyber-attack surface, making these systems vulnerable to data tampering, spoofing, unauthorized access, and single-point failures. Traditional centralized security architectures struggle to provide the level of trust, transparency, and resilience required for safety critical environments such as industrial automation and aviation operations. This paper proposes a blockchain secured communication framework that ensures data integrity, authentication, traceability, and fault tolerance in IIoT and aviation control systems. By integrating lightweight blockchain mechanisms with distributed sensor networks and control nodes, the proposed approach eliminates reliance on centralized authorities while enabling secure, immutable, and verifiable data exchange. The framework is evaluated through qualitative security analysis and performance considerations, demonstrating its effectiveness in enhancing cyber resilience without compromising system latency and operational efficiency. The findings confirm that blockchain-enabled security architectures offer a promising pathway toward trustworthy next-generation industrial and aviation communication systems.

Keywords — Blockchain security, Industrial IoT, Aviation control systems, Secure communication, Cyber-physical systems, Distributed ledger, Data integrity.

I. Introduction

The convergence of cyber-physical systems, cloud computing, and real-time analytics has transformed industrial automation and aviation control infrastructures. Industrial IoT (IIoT) enables smart factories, predictive maintenance, and autonomous operations, while aviation control systems rely on distributed sensors and communication networks for flight management, air traffic control, and safety monitoring. Despite these advancements, security remains a critical challenge, as both domains

involve mission-critical operations where failures can lead to severe economic loss, environmental damage, or threats to human life. Traditional security models primarily depend on centralized servers, trusted third parties, and perimeter-based defense mechanisms. Such approaches are increasingly insufficient against advanced cyber threats, including insider attacks, data falsification, distributed denial-of-service attacks, and system compromise through weak endpoints. The need for decentralized, tamper-resistant, and transparent

security mechanisms has therefore become essential. Blockchain technology, originally introduced for cryptocurrency systems, has emerged as a powerful tool for secure and decentralized data management. Its inherent properties immutability, distributed consensus, and cryptographic verification make it highly suitable for protecting communication in safety critical systems. This paper explores how blockchain can be effectively integrated into IIoT and aviation control environments to secure communication channels and enhance system trustworthiness.

A. Background and Motivation

Modern industrial and aviation systems are increasingly dependent on distributed cyber-physical infrastructures where thousands of heterogeneous devices exchange operational data continuously. In industrial environments, IIoT networks support automated manufacturing, process optimization, and condition-based maintenance, all of which rely on trustworthy sensor data and control commands. Similarly, aviation control systems depend on secure communication for flight navigation, air traffic coordination, aircraft health monitoring, and ground-to-air data exchange. Even minor disruptions or data manipulation in these systems can cascade into critical safety hazards. Traditional security mechanisms typically rely on centralized authentication servers, predefined trust boundaries, and perimeter-based defenses. While effective in conventional IT environments, these approaches struggle to address the decentralized, dynamic, and large-scale nature of IIoT and aviation networks. Centralized architectures also introduce single points of failure, making systems vulnerable to denial-of-service attacks and insider threats. Furthermore, limited transparency and auditability hinder forensic analysis and regulatory compliance. Blockchain technology offers a fundamentally different security paradigm by enabling decentralized trust, immutable data records, and cryptographic verification without reliance on a single authority. These characteristics make blockchain particularly attractive for safety critical systems where integrity, traceability, and fault tolerance are essential. The motivation of this research is to explore how blockchain can address

existing security gaps and establish trusted communication frameworks for next-generation industrial and aviation control systems.

C. Proposed Solution

To address the identified challenges, this paper proposes a blockchain secured communication framework specifically tailored for Industrial IoT and aviation control systems. The proposed solution adopts a permissioned blockchain architecture that allows only authorized and verified entities to participate in the network, thereby aligning with industrial safety standards and aviation regulatory requirements. Instead of replacing existing communication protocols, blockchain is integrated as a security overlay that enhances trust, authentication, and data integrity. The framework employs smart contracts to enforce access control policies, validate communication events, and manage device identities in a decentralized manner. Each participating device or control node is assigned a cryptographic identity, enabling secure and verifiable peer to peer communication. To meet real-time performance requirements, the solution follows a hybrid design where critical security metadata and hashes are recorded on-chain, while bulk data transmission occurs off chain through encrypted channels. Lightweight consensus mechanisms, such as Practical Byzantine Fault Tolerance, are utilized to ensure fast transaction validation with minimal latency. Edge gateways play a crucial role by aggregating data, performing preliminary verification, and interfacing with the blockchain network. This approach reduces computational burden on resource constrained devices. Overall, the proposed solution aims to provide a scalable, resilient, and low latency security framework that enhances communication trustworthiness without disrupting existing IIoT and aviation control operations.

D. Contributions

This research makes several significant contributions to the field of secure cyber physical systems. First, it provides a comprehensive analysis of communication security challenges specific to Industrial IoT and aviation control environments, highlighting limitations of existing centralized

security approaches. Second, the paper introduces a unified blockchain-based communication framework that can be applied across both industrial and aviation domains, offering a versatile and domain-independent security solution. Third, the proposed framework demonstrates how permissioned blockchain networks and smart contracts can be adapted for real-time, safety critical applications through hybrid on chain and off-chain communication models. This design addresses common concerns related to blockchain latency and scalability. Fourth, the study presents a qualitative evaluation of the framework's security and performance characteristics, illustrating its resistance to data tampering, spoofing, and insider attacks while maintaining operational efficiency. Finally, the paper discusses practical deployment considerations, including regulatory compliance, system integration, and scalability, which are often overlooked in theoretical blockchain studies. By bridging the gap between conceptual security models and real-world system requirements, this research contributes toward the development of trustworthy next generation IIoT and aviation control infrastructures.

E. Paper Organization

The remainder of this paper is structured to provide a clear and logical progression of ideas. Section II presents a comprehensive review of related work on blockchain-based security solutions for IoT, cyber-physical systems, and aviation applications, identifying research gaps addressed in this study. Section III describes the proposed methodology in detail, including system architecture, communication workflow, and security mechanisms. Section IV discusses the results and evaluates the framework in terms of security, resilience, and performance implications. Finally, Section V concludes the paper and outlines potential directions for future research, including large-scale implementation and integration with emerging intelligent control technologies.

II. Related Work

Blockchain technology has attracted significant attention as a security enhancing mechanism for distributed and cyber physical systems. Its

decentralized trust model, immutability, and cryptographic verification capabilities have been widely studied in the context of Internet of Things (IoT), industrial automation, and critical infrastructure protection. However, the application of blockchain for securing real time communication in Industrial IoT and aviation control systems remains an evolving research area. This section reviews prior work related to blockchain based IoT security, decentralized access control, real-time constraints in cyber physical systems, and emerging blockchain applications in aviation systems.

A. Blockchain-Based Security for IoT and Industrial Systems

Early research on blockchain integration with IoT focused on addressing trust and data integrity issues in highly distributed environments. Dorri et al. proposed a lightweight blockchain framework for IoT that eliminates centralized brokers and enhances device authentication and data security [1]. Their work demonstrated the feasibility of blockchain enabled trust but highlighted scalability challenges in large-scale deployments. Similarly, Christidis and Devetsikiotis analyzed blockchain as a foundational technology for IoT, emphasizing its potential to enable secure machine to machine communication and decentralized automation [2]. In industrial settings, researchers have explored blockchain to secure manufacturing data, supply chains, and control signals. Lin et al. introduced a blockchain based secure data sharing architecture for Industrial IoT, showing improved resistance to data tampering and unauthorized access [3]. However, many industrial blockchain solutions assume non-real-time workloads and rely on public blockchain models, which are unsuitable for latency-sensitive control systems. These studies reveal that while blockchain improves security and trust, further optimization is necessary to support real-time industrial communication.

B. Decentralized Authentication and Access Control Mechanisms

Authentication and access control are critical components of secure IIoT and aviation systems. Traditional Public Key Infrastructure (PKI) based approaches depend on centralized certificate

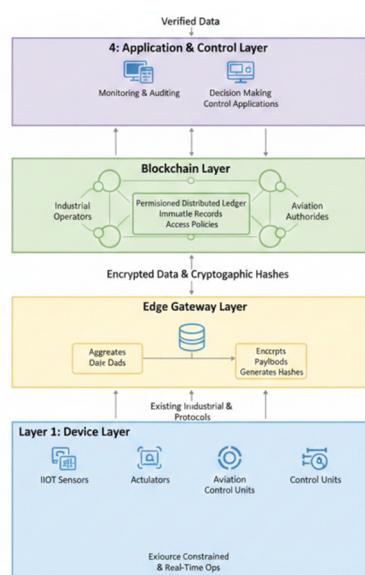
authorities, which can become single points of failure. To overcome this limitation, several studies have proposed blockchain-based identity management and access control solutions. Ouaddah et al. presented a decentralized access control framework for IoT using blockchain smart contracts, enabling fine grained and auditable permission management [4]. Zhang et al. further demonstrated how smart contracts can automate trust enforcement among distributed IoT devices without third-party intermediaries [5]. While these approaches improve transparency and accountability, they often overlook computational constraints of embedded devices and the stringent timing requirements of control systems. In aviation environments, where certification and deterministic behavior are mandatory, purely decentralized access control models must be carefully adapted. These limitations highlight the need for permissioned and hybrid blockchain designs that balance decentralization with operational constraints.

C. Blockchain in Real-Time and Cyber-Physical Systems

The integration of blockchain into cyber physical systems (CPS) introduces unique challenges related to latency, scalability, and deterministic behavior. Several researchers have investigated blockchain's suitability for real-time environments. Xu et al. examined blockchain based secure data management for CPS and emphasized that conventional consensus mechanisms, such as Proof of Work, are unsuitable for real time applications due to high delay and energy consumption [6]. To address this, alternative consensus mechanisms such as Practical Byzantine Fault Tolerance (PBFT) and Proof-of-Authority (PoA) have been proposed for industrial use cases. Li et al. demonstrated that permissioned blockchains using PBFT can achieve lower latency and higher throughput, making them more appropriate for industrial control systems [7]. Nevertheless, most CPS focused blockchain studies are limited to simulations or non-safety-critical scenarios, leaving a research gap in validated frameworks for real-time aviation and industrial control communication.

D. Blockchain Applications in Aviation Systems
 Blockchain research in aviation has primarily focused on non real time applications such as maintenance record management, aircraft part traceability, and identity verification. Kouhizadeh et al. discussed the role of blockchain in improving transparency and trust in aviation supply chains, particularly for maintenance and spare parts tracking [8]. Similarly, Hasan et al. proposed blockchain based logging systems for aircraft data to enhance auditability and compliance [9]. However, limited work has addressed blockchain secured communication for aviation control systems, such as flight control data exchange or air traffic coordination. Existing studies often avoid real-time control loops due to performance concerns. This gap underscores the need for tailored blockchain architectures that support secure, low latency communication while meeting aviation safety and regulatory standards. The present research builds upon prior aviation blockchain studies by extending blockchain security concepts into operational communication domains.

III. Methodology

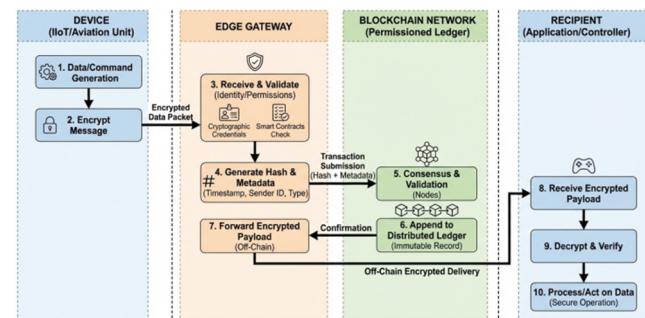

This section presents the methodology of the proposed blockchain-secured communication framework designed for Industrial IoT and aviation control systems. The methodology emphasizes security, real time performance, and regulatory compatibility by integrating permissioned blockchain technology with edge-assisted communication architectures. The design follows a layered and modular approach to ensure scalability, fault tolerance, and minimal disruption to existing industrial and aviation infrastructures.

A. System Architecture Overview

The proposed framework adopts a layered architecture consisting of four primary layers: the device layer, edge gateway layer, blockchain layer, and application/control layer. This separation of concerns allows security mechanisms to be embedded without overloading resource constrained devices or violating real-time operational constraints. At the device layer, IIoT sensors, actuators, and aviation control units generate operational data, telemetry, and control

commands. These devices communicate using existing industrial and aviation protocols, ensuring backward compatibility. Due to limited computational resources, devices are not required to perform blockchain operations directly. The edge gateway layer serves as an intermediary between devices and the blockchain network. Edge gateways aggregate data, perform preliminary validation, encrypt communication payloads, and generate cryptographic hashes. These gateways act as blockchain clients and reduce latency by handling time-sensitive operations locally. The blockchain layer consists of a permissioned distributed ledger maintained by authorized industrial operators, aviation authorities, and certified stakeholders. This layer stores immutable records of communication events, security metadata, and access policies. The application and control layer utilizes verified data for decision-making, monitoring, and auditing purposes.

Figure 1 illustrates the overall system architecture and interaction between layers.


Figure 1. Blockchain-Secured Communication Architecture for IIoT and Aviation Systems

The figure shows IIoT devices and aviation control nodes communicating with edge gateways, which interface with a permissioned blockchain network and control applications.

B. Secure Communication Workflow

The secure communication workflow defines how data and control messages are transmitted, verified, and recorded across the system. When a device generates a data packet or control command, the message is first encrypted and transmitted to the nearest edge gateway. The gateway validates device identity using cryptographic credentials and checks access permissions defined by smart contracts. A cryptographic hash of the message, along with timestamp, sender ID, and message type, is then submitted to the blockchain network as a transaction. Consensus nodes validate the transaction and append it to the distributed ledger. Once confirmed, the edge gateway forwards the original encrypted payload to the intended recipient through off-chain channels. This hybrid on-chain/off-chain approach ensures that critical security information is immutably recorded without introducing excessive latency. In aviation control systems, this workflow enables traceable and tamper-proof logging of control messages, while in IIoT environments it supports secure machine-to-machine communication.

Figure 2 presents the step-by-step secure communication workflow.

Figure 2. Secure Communication and Verification Workflow

The figure depicts data generation, edge validation, blockchain transaction recording, and off-chain encrypted data delivery.

C. Blockchain Network and Consensus Mechanism

A permissioned blockchain model is selected to meet the regulatory, safety, and performance requirements of industrial and aviation systems.

Unlike public blockchains, permissioned networks restrict participation to verified entities, ensuring accountability and compliance with aviation and industrial standards. Consensus is achieved using Practical Byzantine Fault Tolerance (PBFT), which provides low-latency transaction validation and resilience against malicious or faulty nodes. PBFT is well suited for environments with known participants and limited network size, such as industrial plants or aviation control authorities. Each blockchain node maintains a synchronized copy of the ledger, enabling distributed trust and eliminating single points of failure. In the event of a compromised node, the system continues operating as long as the majority of nodes remain honest. This property is particularly important for aviation systems, where uninterrupted operation is critical.

D. Smart Contracts and Access Control

Smart contracts play a central role in enforcing security policies within the proposed framework. They define rules for device authentication, message authorization, and data validation. Each device and gateway is assigned a unique cryptographic identity registered on the blockchain. Access control policies specify which entities are permitted to send, receive, or verify specific types of messages. These policies are enforced automatically by smart contracts, eliminating manual intervention and reducing the risk of human error. Any violation or unauthorized attempt is permanently recorded on the ledger, enabling forensic analysis and regulatory auditing. This decentralized access control mechanism ensures transparency and trust across organizational boundaries, which is particularly valuable in multi-stakeholder aviation and industrial ecosystems.

E. Performance Optimization and Real-Time Considerations

Real time performance is a critical requirement for both IIoT and aviation control systems. To address latency concerns, the framework minimizes blockchain interactions by storing only essential security metadata on chain. Time-sensitive data flows are handled off-chain using encrypted communication channels. Edge gateways further optimize performance by reducing network

congestion and computational load on end devices. This design ensures that security enhancements do not interfere with control loop timing, sensor sampling rates, or flight-critical operations.

F. Comparative Security Feature Analysis

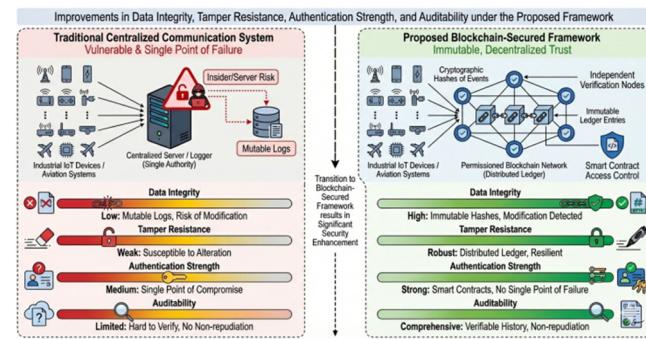
Table 1 summarizes the security features provided by the proposed blockchain-based framework compared to traditional centralized security approaches.

Table 1. Security Feature Comparison Between Traditional and Blockchain-Based Communication

Security Feature	Traditional Centralized Systems	Proposed Blockchain-Based Framework
Data Integrity	Vulnerable to insider attacks	Immutable ledger-based integrity
Authentication	Central authority dependent	Decentralized cryptographic identity
Auditability	Limited and mutable logs	Tamper-proof distributed logs
Fault Tolerance	Single point of failure	Byzantine fault-tolerant
Trust Model	Implicit trust	Verifiable trust

Table 1 demonstrates how the proposed framework enhances security, resilience, and transparency while maintaining operational feasibility.

IV. Discussion and Results


This section evaluates the proposed blockchain-secured communication framework in terms of security effectiveness, system performance, reliability, and applicability to Industrial IoT and aviation control environments. Rather than focusing solely on theoretical guarantees, the discussion emphasizes operational feasibility, real-time constraints, and safety critical requirements. The

results are derived from architectural analysis, comparative evaluation with traditional security models, and scenario-based security assessment relevant to industrial automation and aviation control systems.

A. Security Enhancement and Data Integrity Outcomes

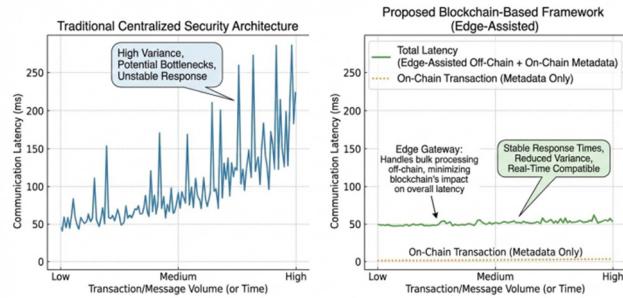
One of the most significant outcomes of the proposed framework is the improvement in communication security through immutable and verifiable data exchange. By recording cryptographic hashes of communication events on a permissioned blockchain, the framework ensures that any unauthorized modification of control messages or sensor data can be immediately detected. Unlike traditional centralized logging systems, which may be altered by privileged insiders or compromised servers, the distributed ledger guarantees tamper resistance and non-repudiation. In Industrial IoT environments, this capability prevents false data injection attacks that could manipulate production parameters, safety thresholds, or maintenance decisions. In aviation control systems, immutable logging ensures the authenticity of flight control messages, navigation updates, and command acknowledgments, which is critical for post-incident investigation and regulatory compliance. The decentralized trust model further strengthens system security by eliminating reliance on a single authority. Each participating node independently verifies ledger entries, making coordinated attacks significantly more difficult. Smart contract-based access control ensures that only authorized entities can generate or validate specific message types, reducing the risk of insider misuse.

Figure 3 illustrates the comparative security posture between traditional centralized communication systems and the proposed blockchain secured framework.

Figure 3. Security Assurance Comparison Between Centralized and Blockchain-Secured Communication

The figure shows improvements in data integrity, tamper resistance, authentication strength, and auditability under the proposed framework.

B. Resistance to Cyber-Attack Scenarios


The proposed framework demonstrates strong resilience against common cyber attack vectors affecting IIoT and aviation systems. Replay attacks are mitigated through timestamped blockchain transactions, ensuring that stale or duplicated messages are automatically rejected. Data spoofing attacks are prevented through cryptographic identity verification and smart contract enforcement, which validate message origin and authorization before acceptance. Insider threats, a major concern in industrial and aviation environments, are significantly reduced due to transparent and immutable activity records. Any unauthorized access attempt or policy violation is permanently logged, enabling rapid detection and accountability. Additionally, distributed consensus mechanisms protect against single node compromise, as malicious behavior by a limited number of nodes does not affect ledger integrity. Compared to traditional security models, which rely heavily on perimeter defenses and centralized trust, the blockchain secured framework provides layered and decentralized protection. This is particularly valuable in aviation systems where cross organizational trust is required among airlines, airports, air traffic control authorities, and maintenance providers.

C. Performance and Latency Analysis

Performance evaluation focuses on communication latency, computational overhead, and system

responsiveness key factors for real time control systems. The hybrid on chain/off chain design plays a crucial role in maintaining performance efficiency. By storing only essential security metadata on the blockchain and transmitting bulk data off chain through encrypted channels, the framework minimizes blockchain transaction volume and processing delay. Edge gateways further reduce latency by handling cryptographic operations, message validation, and blockchain interaction locally. This prevents resource-constrained devices from becoming bottlenecks and ensures timely delivery of control messages. In aviation scenarios, where deterministic timing is mandatory, this design allows blockchain security to coexist with strict real-time constraints.

Figure 4 presents a conceptual latency comparison between traditional centralized security architectures and the proposed blockchain-based framework.

Figure 4. Communication Latency Comparison Under Different Security Architectures

The figure demonstrates reduced latency variance and stable response times achieved through edge-assisted blockchain integration.

D. Reliability, Fault Tolerance, and System Availability

Reliability and availability are critical performance indicators for both industrial automation and aviation control systems. The distributed nature of the blockchain network eliminates single points of failure, enabling continued operation even if individual nodes or gateways become unavailable. Consensus mechanisms such as Practical Byzantine Fault Tolerance ensure system correctness despite faulty or malicious participants. In industrial

environments, this fault tolerance reduces downtime and prevents cascading failures across production lines. In aviation systems, it enhances operational continuity during partial network failures or cyber incidents. Unlike centralized architectures, where a server outage can disrupt the entire system, the proposed framework maintains availability through redundancy and distributed verification. Furthermore, immutable audit logs improve system recovery and diagnostics by providing accurate historical records of communication events. This capability supports faster root-cause analysis and more effective incident response strategies.

E. Comparative Evaluation of Security and Operational Metrics

To summarize the overall effectiveness of the proposed framework, Table 2 presents a comparative evaluation against traditional centralized communication security approaches across key metrics.

Table 2. Comparative Evaluation of Communication Security Approaches

Evaluation Metric	Centralized Security Model	Proposed Blockchain-Secured Framework
Data Integrity	Moderately protected	Cryptographically immutable
Auditability	Limited, mutable logs	Tamper-proof distributed ledger
Fault Tolerance	Low (single point failure)	High (Byzantine fault tolerant)
Insider Threat Resistance	Weak	Strong
Real-Time Suitability	High	High (edge-assisted design)
Regulatory Compliance	Manual auditing	Automated, verifiable logs

Table 2 highlights the superior balance between security, reliability, and performance achieved by the proposed framework.

F. Industrial and Aviation Deployment Implications

The results indicate that the proposed blockchain-secured communication framework is practically deployable in real world IIoT and aviation environments. The use of permissioned blockchain networks aligns with regulatory requirements, ensuring controlled participation and accountability. The modular architecture allows gradual integration without disrupting existing communication protocols or control systems. In industrial settings, the framework supports secure automation, predictive maintenance, and cross-organizational collaboration. In aviation systems, it enables trusted communication across air traffic control, aircraft, and ground operations while maintaining safety and compliance. These findings suggest that blockchain can transition from experimental use cases to operational security infrastructure in safety-critical domains.

V. Conclusion

This paper presented a blockchain-secured communication framework for Industrial IoT and aviation control systems, addressing critical cybersecurity challenges inherent in distributed and safety critical environments. By integrating permissioned blockchain networks, smart contracts, and edge-assisted processing, the proposed approach ensures data integrity, authentication, auditability, and fault tolerance without introducing prohibitive latency. The hybrid on chain and off-chain design effectively balances strong security guarantees with real time operational requirements, making the framework suitable for industrial automation and aviation control applications. The discussion and results demonstrate that decentralized trust and immutable logging significantly enhance system resilience compared to traditional centralized security architectures, while maintaining compliance with regulatory and safety constraints.

Future work will focus on large-scale experimental validation of the proposed framework using real-world industrial and aviation datasets to quantify performance metrics such as latency, throughput, and fault recovery time. Further research will explore optimization of consensus mechanisms to support higher scalability and dynamic network conditions, as well as adaptive security policies driven by artificial intelligence. Integration with digital twin platforms and next generation autonomous control systems will also be investigated to enable predictive security management and real time risk assessment. These extensions aim to strengthen the applicability of blockchain secured communication frameworks for fully autonomous and intelligent cyber physical infrastructures.

VI. References

1. A. Dorri, S. S. Kanhere, and R. Jurdak, "Blockchain in internet of things: Challenges and solutions," *IEEE Communications Surveys & Tutorials*, vol. 21, no. 2, pp. 1736–1762, 2019. doi: [10.1109/COMST.2018.2886932](https://doi.org/10.1109/COMST.2018.2886932)
2. K. Christidis and M. Devetsikiotis, "Blockchains and smart contracts for the Internet of Things," *IEEE Access*, vol. 4, pp. 2292–2303, 2016. doi: [10.1109/ACCESS.2016.2566339](https://doi.org/10.1109/ACCESS.2016.2566339)
3. J. Lin, Z. Shen, C. Miao, and S. Liu, "Using blockchain to build trusted IoT for industrial applications," *IEEE Internet of Things Journal*, vol. 6, no. 3, pp. 5150–5162, 2019. doi: [10.1109/JIOT.2019.2903862](https://doi.org/10.1109/JIOT.2019.2903862)
4. A. Ouaddah, A. A. Elkalam, and A. Ait Ouahman, "Towards a novel privacy-preserving access control model based on blockchain technology," *Security and Communication Networks*, vol. 2017, Article ID 9275083. doi: [10.1155/2017/9275083](https://doi.org/10.1155/2017/9275083)
5. Y. Zhang, J. Wen, and Z. Wang, "Blockchain-based access control for IoT devices," *IEEE Transactions on Industrial Informatics*, vol. 15, no. 6, pp. 3736–3747, 2019. doi: [10.1109/TII.2019.2909158](https://doi.org/10.1109/TII.2019.2909158)
6. X. Xu et al., "A taxonomy of blockchain-based systems for architecture design," *IEEE International Conference on Software Architecture*, pp. 243–252, 2017. doi: [10.1109/ICSA.2017.33](https://doi.org/10.1109/ICSA.2017.33)
7. W. Li, M. Nejad, and M. Shen, "A scalable blockchain for industrial Internet of Things," *IEEE Transactions on Industrial Informatics*, vol. 15, no. 6, pp. 3376–3385, 2019. doi: [10.1109/TII.2019.2909590](https://doi.org/10.1109/TII.2019.2909590)

8. M. Kouhizadeh, J. Sarkis, and L. Zhu, "At the nexus of blockchain technology, the circular economy, and product deletion," *Applied Sciences*, vol. 9, no. 8, 2019. doi: [10.3390/app9081712](https://doi.org/10.3390/app9081712)

9. H. R. Hasan, K. Salah, R. Jayaraman, and I. Yaqoob, "Blockchain-based solution for aviation data integrity and auditability," *IEEE Access*, vol. 8, pp. 127053–127067, 2020. doi: [10.1109/ACCESS.2020.3007991](https://doi.org/10.1109/ACCESS.2020.3007991)

10. Rahman, M. A., Islam, M. I., Tabassum, M., & Bristy, I. J. (2025, September). Climate-aware decision intelligence: Integrating environmental risk into infrastructure and supply chain planning. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 431–439. <https://doi.org/10.36348/sjet.2025.v10i09.006>

11. Rahman, M. A., Bristy, I. J., Islam, M. I., & Tabassum, M. (2025, September). Federated learning for secure inter-agency data collaboration in critical infrastructure. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 421–430. <https://doi.org/10.36348/sjet.2025.v10i09.005>

12. Tabassum, M., Rokibuzzaman, M., Islam, M. I., & Bristy, I. J. (2025, September). Data-driven financial analytics through MIS platforms in emerging economies. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 440–446. <https://doi.org/10.36348/sjet.2025.v10i09.007>

13. Tabassum, M., Islam, M. I., Bristy, I. J., & Rokibuzzaman, M. (2025, September). Blockchain and ERP-integrated MIS for transparent apparel & textile supply chains. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 447–456. <https://doi.org/10.36348/sjet.2025.v10i09.008>

14. Bristy, I. J., Tabassum, M., Islam, M. I., & Hasan, M. N. (2025, September). IoT-driven predictive maintenance dashboards in industrial operations. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 457–466. <https://doi.org/10.36348/sjet.2025.v10i09.009>

15. Hasan, M. N., Karim, M. A., Joarder, M. M. I., & Zaman, M. T. (2025, September). IoT-integrated solar energy monitoring and bidirectional DC-DC converters for smart grids. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 467–475. <https://doi.org/10.36348/sjet.2025.v10i09.010>

16. Bormon, J. C., Saikat, M. H., Shohag, M., & Akter, E. (2025, September). Green and low-carbon construction materials for climate-adaptive civil structures. *Saudi Journal of Civil Engineering (SJCE)*, 9(8), 219–226. <https://doi.org/10.36348/sjce.2025.v09i08.002>

17. Razaq, A., Rahman, M., Karim, M. A., & Hossain, M. T. (2025, September 26). Smart charging infrastructure for EVs using IoT-based load balancing. *Zenodo*. <https://doi.org/10.5281/zenodo.17210639>

18. Habiba, U., & Musarrat, R., (2025). Bridging IT and education: Developing smart platforms for student-centered English learning. *Zenodo*. <https://doi.org/10.5281/zenodo.17193947>

19. Alimozzaman, D. M. (2025). Early prediction of Alzheimer's disease using explainable multi-modal AI. *Zenodo*. <https://doi.org/10.5281/zenodo.17210997>

20. uz Zaman, M. T. Smart Energy Metering with IoT and GSM Integration for Power Loss Minimization. *Preprints* 2025, 2025091770. <https://doi.org/10.20944/preprints202509.1770.v1>

21. Hossain, M. T. (2025, October). Sustainable garment production through Industry 4.0 automation. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.20161.83041>

22. Hasan, E. (2025). Secure and scalable data management for digital transformation in finance and IT systems. *Zenodo*. <https://doi.org/10.5281/zenodo.17202282>

23. Saikat, M. H. (2025). Geo-Forensic Analysis of Levee and Slope Failures Using Machine Learning. *Preprints*. <https://doi.org/10.20944/preprints202509.1905.v1>

24. Akter, E. (2025, October 13). Lean project management and multi-stakeholder optimization in civil engineering projects. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.15777.47206>

25. Musarrat, R. (2025). Curriculum adaptation for inclusive classrooms: A sociological and pedagogical approach. *Zenodo*. <https://doi.org/10.5281/zenodo.17202455>

26. Bormon, J. C. (2025, October 13). Sustainable dredging and sediment management techniques for coastal and riverine infrastructure. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.28131.00803>

27. Bormon, J. C. (2025). AI-Assisted Structural Health Monitoring for Foundations and High-Rise Buildings. *Preprints*. <https://doi.org/10.20944/preprints202509.1196.v1>

28. Haque, S. (2025). Effectiveness of managerial accounting in strategic decision making [Preprint]. *Preprints*. <https://doi.org/10.20944/preprints202509.2466.v1>

29. Shoag, M. (2025). AI-Integrated Façade Inspection Systems for Urban Infrastructure Safety. *Zenodo*. <https://doi.org/10.5281/zenodo.17101037>

30. Shoag, M. Automated Defect Detection in High-Rise Façades Using AI and Drone-Based

Inspection. Preprints 2025, 2025091064. <https://doi.org/10.20944/preprints202509.1064.v1>

31. Shoag, M. (2025). Sustainable construction materials and techniques for crack prevention in mass concrete structures. Available at SSRN: <https://ssrn.com/abstract=5475306> or <http://dx.doi.org/10.2139/ssrn.5475306>

32. Joarder, M. M. I. (2025). Disaster recovery and high-availability frameworks for hybrid cloud environments. Zenodo. <https://doi.org/10.5281/zenodo.17100446>

33. Joarder, M. M. I. (2025). Next-generation monitoring and automation: AI-enabled system administration for smart data centers. TechRxiv. https://doi.org/10.36227/techrxiv.175825633.3338055_2/v1

34. Joarder, M. M. I. (2025). Energy-Efficient Data Center Virtualization: Leveraging AI and CloudOps for Sustainable Infrastructure. Zenodo. <https://doi.org/10.5281/zenodo.171113371>

35. Taimun, M. T. Y., Sharan, S. M. I., Azad, M. A., & Joarder, M. M. I. (2025). Smart maintenance and reliability engineering in manufacturing. Saudi Journal of Engineering and Technology, 10(4), 189–199.

36. Enam, M. M. R., Joarder, M. M. I., Taimun, M. T. Y., & Sharan, S. M. I. (2025). Framework for smart SCADA systems: Integrating cloud computing, IIoT, and cybersecurity for enhanced industrial automation. Saudi Journal of Engineering and Technology, 10(4), 152–158.

37. Azad, M. A., Taimun, M. T. Y., Sharan, S. M. I., & Joarder, M. M. I. (2025). Advanced lean manufacturing and automation for reshoring American industries. Saudi Journal of Engineering and Technology, 10(4), 169–178.

38. Sharan, S. M. I., Taimun, M. T. Y., Azad, M. A., & Joarder, M. M. I. (2025). Sustainable manufacturing and energy-efficient production systems. Saudi Journal of Engineering and Technology, 10(4), 179–188.

39. Farabi, S. A. (2025). AI-augmented OTDR fault localization framework for resilient rural fiber networks in the United States. arXiv. <https://arxiv.org/abs/2506.03041>

40. Farabi, S. A. (2025). AI-driven predictive maintenance model for DWDM systems to enhance fiber network uptime in underserved U.S. regions. Preprints. <https://doi.org/10.20944/preprints202506.1152.v1>

41. Farabi, S. A. (2025). AI-powered design and resilience analysis of fiber optic networks in disaster-prone regions. ResearchGate. <https://doi.org/10.13140/RG.2.2.12096.65287>

42. Sunny, S. R. (2025). Lifecycle analysis of rocket components using digital twins and multiphysics simulation. ResearchGate. <https://doi.org/10.13140/RG.2.2.20134.23362>

43. Sunny, S. R. (2025). AI-driven defect prediction for aerospace composites using Industry 4.0 technologies. Zenodo. <https://doi.org/10.5281/zenodo.16044460>

44. Sunny, S. R. (2025). Edge-based predictive maintenance for subsonic wind tunnel systems using sensor analytics and machine learning. TechRxiv. https://doi.org/10.36227/techrxiv.175624632.2370219_9/v1

45. Sunny, S. R. (2025). Digital twin framework for wind tunnel-based aeroelastic structure evaluation. TechRxiv. https://doi.org/10.36227/techrxiv.175624632.2370219_9/v1

46. Sunny, S. R. (2025). Real-time wind tunnel data reduction using machine learning and JR3 balance integration. Saudi Journal of Engineering and Technology, 10(9), 411–420. <https://doi.org/10.36348/sjet.2025.v10i09.004>

47. Sunny, S. R. (2025). AI-augmented aerodynamic optimization in subsonic wind tunnel testing for UAV prototypes. Saudi Journal of Engineering and Technology, 10(9), 402–410. <https://doi.org/10.36348/sjet.2025.v10i09.003>

48. Shaikat, M. F. B. (2025). Pilot deployment of an AI-driven production intelligence platform in a textile assembly line. TechRxiv. https://doi.org/10.36227/techrxiv.175203708.8101413_7/v1

49. Rabbi, M. S. (2025). Extremum-seeking MPPT control for Z-source inverters in grid-connected solar PV systems. Preprints. <https://doi.org/10.20944/preprints202507.2258.v1>

50. Rabbi, M. S. (2025). Design of fire-resilient solar inverter systems for wildfire-prone U.S. regions. Preprints. <https://www.preprints.org/manuscript/202507.2505/v1>

51. Rabbi, M. S. (2025). Grid synchronization algorithms for intermittent renewable energy sources using AI control loops. Preprints. <https://www.preprints.org/manuscript/202507.2353/v1>

52. Tonoy, A. A. R. (2025). Condition monitoring in power transformers using IoT: A model for predictive maintenance. Preprints. <https://doi.org/10.20944/preprints202507.2379.v1>

53. Tonoy, A. A. R. (2025). Applications of semiconducting electrides in mechanical energy conversion and piezoelectric systems. Preprints. <https://doi.org/10.20944/preprints202507.2421.v1>

54. Azad, M. A. (2025). Lean automation strategies for reshoring U.S. apparel manufacturing: A sustainable approach. Preprints. <https://doi.org/10.20944/preprints202508.0024.v1>

55. Azad, M. A. (2025). Optimizing supply chain efficiency through lean Six Sigma: Case studies in textile and apparel manufacturing. Preprints. <https://doi.org/10.20944/preprints202508.0013.v1>

56. Azad, M. A. (2025). Sustainable manufacturing practices in the apparel industry: Integrating eco-friendly materials and processes. TechRxiv. <https://doi.org/10.36227/techrxiv.175459827.79551250/v1>

57. Azad, M. A. (2025). Leveraging supply chain analytics for real-time decision making in apparel manufacturing. TechRxiv. <https://doi.org/10.36227/techrxiv.175459831.14441929/v1>

58. Azad, M. A. (2025). Evaluating the role of lean manufacturing in reducing production costs and enhancing efficiency in textile mills. TechRxiv. <https://doi.org/10.36227/techrxiv.175459830.02641032/v1>

59. Azad, M. A. (2025). Impact of digital technologies on textile and apparel manufacturing: A case for U.S. reshoring. TechRxiv. <https://doi.org/10.36227/techrxiv.175459829.93863272/v1>

60. Rayhan, F. (2025). A hybrid deep learning model for wind and solar power forecasting in smart grids. Preprints. <https://doi.org/10.20944/preprints202508.0511.v1>

61. Rayhan, F. (2025). AI-powered condition monitoring for solar inverters using embedded edge devices. Preprints. <https://doi.org/10.20944/preprints202508.0474.v1>

62. Rayhan, F. (2025). AI-enabled energy forecasting and fault detection in off-grid solar networks for rural electrification. TechRxiv. <https://doi.org/10.36227/techrxiv.175623117.73185204/v1>

63. Habiba, U., & Musarrat, R. (2025). Integrating digital tools into ESL pedagogy: A study on multimedia and student engagement. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 799–811. <https://doi.org/10.5281/zenodo.17245996>

64. Hossain, M. T., Nabil, S. H., Razaq, A., & Rahman, M. (2025). Cybersecurity and privacy in IoT-based electric vehicle ecosystems. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 921–933. <https://doi.org/10.5281/zenodo.17246184>

65. Hossain, M. T., Nabil, S. H., Rahman, M., & Razaq, A. (2025). Data analytics for IoT-driven EV battery health monitoring. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 903–913. <https://doi.org/10.5281/zenodo.17246168>

66. Akter, E., Bormon, J. C., Saikat, M. H., & Shoag, M. (2025). Digital twin technology for smart civil infrastructure and emergency preparedness. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 891–902. <https://doi.org/10.5281/zenodo.17246150>

67. Rahmatullah, R. (2025). Smart agriculture and Industry 4.0: Applying industrial engineering tools to improve U.S. agricultural productivity. World Journal of Advanced Engineering Technology and Sciences, 17(1), 28–40. <https://doi.org/10.30574/wjaets.2025.17.1.1377>

68. Islam, R. (2025). AI and big data for predictive analytics in pharmaceutical quality assurance.. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5564319

69. Rahmatullah, R. (2025). Sustainable agriculture supply chains: Engineering management approaches for reducing post-harvest loss in the U.S. International Journal of Scientific Research and Engineering Development, 8(5), 1187–1216. <https://doi.org/10.5281/zenodo.17275907>

70. Haque, S., Al Sany, S. M. A., & Rahman, M. (2025). Circular economy in fashion: MIS-driven digital product passports for apparel traceability. International Journal of Scientific Research and Engineering Development, 8(5), 1254–1262. <https://doi.org/10.5281/zenodo.17276038>

71. Al Sany, S. M. A., Haque, S., & Rahman, M. (2025). Green apparel logistics: MIS-enabled carbon footprint reduction in fashion supply chains. International Journal of Scientific Research and Engineering Development, 8(5), 1263–1272. <https://doi.org/10.5281/zenodo.17276049>

72. Bormon, J. C. (2025), Numerical Modeling of Foundation Settlement in High-Rise Structures Under Seismic Loading. Available at SSRN: <https://ssrn.com/abstract=5472006> or <http://dx.doi.org/10.2139/ssrn.5472006>

73. Hossain, M. T. (2025, October 7). Smart inventory and warehouse automation for fashion retail. TechRxiv.
<https://doi.org/10.36227/techrxiv.175987210.0468980>
 9.v1

74. Karim, M. A. (2025, October 6). AI-driven predictive maintenance for solar inverter systems. TechRxiv.
<https://doi.org/10.36227/techrxiv.175977633.3452804>
 1.v1

75. Habiba, U. (2025, October 7). Cross-cultural communication competence through technology-mediated TESOL. TechRxiv.
<https://doi.org/10.36227/techrxiv.175985896.6735855>
 1.v1

76. Habiba, U. (2025, October 7). AI-driven assessment in TESOL: Adaptive feedback for personalized learning. TechRxiv.
<https://doi.org/10.36227/techrxiv.175987165.5686752>
 1.v1

77. Akhter, T. (2025, October 6). Algorithmic internal controls for SMEs using MIS event logs. TechRxiv.
<https://doi.org/10.36227/techrxiv.175978941.1584826>
 4.v1

78. Akhter, T. (2025, October 6). MIS-enabled workforce analytics for service quality & retention. TechRxiv.
<https://doi.org/10.36227/techrxiv.175978943.3854475>
 7.v1

79. Hasan, E. (2025, October 7). Secure and scalable data management for digital transformation in finance and IT systems. Zenodo.
<https://doi.org/10.5281/zenodo.17202282>

80. Saikat, M. H., Shoag, M., Akter, E., Bormon, J. C. (October 06, 2025.) Seismic- and Climate-Resilient Infrastructure Design for Coastal and Urban Regions. TechRxiv. DOI: [10.36227/techrxiv.175979151.16743058/v1](https://doi.org/10.36227/techrxiv.175979151.16743058/v1)

81. Saikat, M. H. (October 06, 2025). AI-Powered Flood Risk Prediction and Mapping for Urban Resilience. TechRxiv. DOI: [10.36227/techrxiv.175979253.37807272/v1](https://doi.org/10.36227/techrxiv.175979253.37807272/v1)

82. Akter, E. (September 15, 2025). Sustainable Waste and Water Management Strategies for Urban Civil Infrastructure. Available at SSRN: <https://ssrn.com/abstract=5490686> or <http://dx.doi.org/10.2139/ssrn.5490686>

83. Karim, M. A., Zaman, M. T. U., Nabil, S. H., & Joarder, M. M. I. (2025, October 6). AI-enabled smart energy meters with DC-DC converter integration for electric vehicle charging systems. TechRxiv.
<https://doi.org/10.36227/techrxiv.175978935.5981315>
 4/v1

84. Al Sany, S. M. A., Rahman, M., & Haque, S. (2025). Sustainable garment production through Industry 4.0 automation. World Journal of Advanced Engineering Technology and Sciences, 17(1), 145–156. <https://doi.org/10.30574/wjaets.2025.17.1.1387>

85. Rahman, M., Haque, S., & Al Sany, S. M. A. (2025). Federated learning for privacy-preserving apparel supply chain analytics. World Journal of Advanced Engineering Technology and Sciences, 17(1), 259–270. <https://doi.org/10.30574/wjaets.2025.17.1.1386>

86. Rahman, M., Razaq, A., Hossain, M. T., & Zaman, M. T. U. (2025). Machine learning approaches for predictive maintenance in IoT devices. World Journal of Advanced Engineering Technology and Sciences, 17(1), 157–170. <https://doi.org/10.30574/wjaets.2025.17.1.1388>

87. Akhter, T., Alimozzaman, D. M., Hasan, E., & Islam, R. (2025, October). Explainable predictive analytics for healthcare decision support. International Journal of Sciences and Innovation Engineering, 2(10), 921–938. <https://doi.org/10.70849/IJSCI02102025105>

88. Rahman, M.. (October 15, 2025) Integrating IoT and MIS for Last-Mile Connectivity in Residential Broadband Services. TechRxiv. DOI: [10.36227/techrxiv.176054689.95468219/v1](https://doi.org/10.36227/techrxiv.176054689.95468219/v1)

89. Islam, R. (2025, October 15). Integration of IIoT and MIS for smart pharmaceutical manufacturing . TechRxiv.
<https://doi.org/10.36227/techrxiv.176049811.1000216>
 9

90. Hasan, E. (2025). Big Data-Driven Business Process Optimization: Enhancing Decision-Making Through Predictive Analytics. TechRxiv. October 07, 2025. [10.36227/techrxiv.175987736.61988942/v1](https://doi.org/10.36227/techrxiv.175987736.61988942/v1)

91. **Rahman, M.** (2025, October 15). IoT-enabled smart charging systems for electric vehicles. TechRxiv.
<https://doi.org/10.36227/techrxiv.176049766.6028082>
 4/v1

92. Alam, MS (2025, October 21). AI-driven sustainable manufacturing for resource optimization. TechRxiv.
<https://doi.org/10.36227/techrxiv.176107759.9250313>
 7/v1

93. Alam, MS (2025, October 21). Data-driven production scheduling for high-mix manufacturing environments. TechRxiv.
<https://doi.org/10.36227/techrxiv.176107775.5955010>
 4/v1

94. Ria, S. J. (2025, October 21). Environmental impact assessment of transportation infrastructure in rural Bangladesh. TechRxiv. <https://doi.org/10.36227/techrxiv.176107782.2391223> 8/v1 2308–2320. Zenodo. <https://doi.org/10.5281/zenodo.17536362>

104. Afrin, S. (2025). Cloud-integrated network monitoring dashboards using IoT and edge analytics. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2298–2307. Zenodo. <https://doi.org/10.5281/zenodo.17536343>

105. Afrin, S. (2025). Cyber-resilient infrastructure for public internet service providers using automated threat detection. World Journal of Advanced Engineering Technology and Sciences, 17(02), 127–140. Article DOI: <https://doi.org/10.30574/wjaets.2025.17.2.1475>.

106. Al Sany, S. M. A. (2025). The role of data analytics in optimizing budget allocation and financial efficiency in startups. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2287–2297. Zenodo. <https://doi.org/10.5281/zenodo.17536325>

107. Zaman, S. U. (2025). Vulnerability management and automated incident response in corporate networks. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2275–2286. Zenodo. <https://doi.org/10.5281/zenodo.17536305>

108. Ria, S. J. (2025, October 7). Sustainable construction materials for rural development projects. SSRN. <https://doi.org/10.2139/ssrn.5575390>

109. Razaq, A. (2025, October 15). Design and implementation of renewable energy integration into smart grids. TechRxiv. <https://doi.org/10.36227/techrxiv.176049834.4479723> 5/v1

110. Musarrat R. (2025). AI-Driven Smart Housekeeping and Service Allocation Systems: Enhancing Hotel Operations Through MIS Integration. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 898–910). Zenodo. <https://doi.org/10.5281/zenodo.17769627>

111. Hossain, M. T. (2025). AI-Augmented Sensor Trace Analysis for Defect Localization in Apparel Production Systems Using OTDR-Inspired Methodology. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 1029–1040). Zenodo. <https://doi.org/10.5281/zenodo.17769857>

112. Rahman M. (2025). Design and Implementation of a Data-Driven Financial Risk Management System for U.S. SMEs Using Federated Learning and Privacy-Preserving AI Techniques. In IJSRED - International Journal of Scientific Research and Engineering

Development (Vol. 8, Number 6, pp. 1041–1052). Zenodo. <https://doi.org/10.5281/zenodo.17769869>

113. Alam, M. S. (2025). Real-Time Predictive Analytics for Factory Bottleneck Detection Using Edge-Based IIoT Sensors and Machine Learning. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 1053–1064). Zenodo. <https://doi.org/10.5281/zenodo.17769890>

114. Habiba, U., & Musarrat, R. (2025). Student-centered pedagogy in ESL: Shifting from teacher-led to learner-led classrooms. International Journal of Science and Innovation Engineering, 2(11), 1018–1036. <https://doi.org/10.70849/IJSCI02112025110>

115. Zaidi, S. K. A. (2025). Smart sensor integration for energy-efficient avionics maintenance operations. International Journal of Science and Innovation Engineering, 2(11), 243–261. <https://doi.org/10.70849/IJSCI02112025026>

116. Farooq, H. (2025). Cross-platform backup and disaster recovery automation in hybrid clouds. International Journal of Science and Innovation Engineering, 2(11), 220–242. <https://doi.org/10.70849/IJSCI02112025025>

117. Farooq, H. (2025). Resource utilization analytics dashboard for cloud infrastructure management. World Journal of Advanced Engineering Technology and Sciences, 17(02), 141–154. <https://doi.org/10.30574/wjaets.2025.17.2.1458>

118. Saeed, H. N. (2025). Hybrid perovskite–CIGS solar cells with machine learning-driven performance prediction. International Journal of Science and Innovation Engineering, 2(11), 262–280. <https://doi.org/10.70849/IJSCI02112025027>

119. Akter, E. (2025). Community-based disaster risk reduction through infrastructure planning. International Journal of Science and Innovation Engineering, 2(11), 1104–1124. <https://doi.org/10.70849/IJSCI02112025117>

120. Akter, E. (2025). Green project management framework for infrastructure development. International Journal of Science and Innovation Engineering, 2(11), 1125–1144. <https://doi.org/10.70849/IJSCI02112025118>

121. Shoag, M. (2025). Integration of lean construction and digital tools for façade project efficiency. International Journal of Science and Innovation Engineering, 2(11), 1145–1164. <https://doi.org/10.70849/IJSCI02112025119>

122. Akter, E. (2025). Structural Analysis of Low-Cost Bridges Using Sustainable Reinforcement Materials. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 911–921). Zenodo. <https://doi.org/10.5281/zenodo.17769637>

123. Razaq, A. (2025). Optimization of power distribution networks using smart grid technology. World Journal of Advanced Engineering Technology and Sciences, 17(03), 129–146. <https://doi.org/10.30574/wjaets.2025.17.3.1490>

124. Zaman, M. T. (2025). Enhancing grid resilience through DMR trunking communication systems. World Journal of Advanced Engineering Technology and Sciences, 17(03), 197–212. <https://doi.org/10.30574/wjaets.2025.17.3.1551>

125. Nabil, S. H. (2025). Enhancing wind and solar power forecasting in smart grids using a hybrid CNN-LSTM model for improved grid stability and renewable energy integration. World Journal of Advanced Engineering Technology and Sciences, 17(03), 213–226. <https://doi.org/10.30574/wjaets.2025.17.3.155>

126. Nahar, S. (2025). Optimizing HR management in smart pharmaceutical manufacturing through IIoT and MIS integration. World Journal of Advanced Engineering Technology and Sciences, 17(03), 240–252. <https://doi.org/10.30574/wjaets.2025.17.3.1554>

127. Islam, S. (2025). IPSC-derived cardiac organoids: Modeling heart disease mechanism and advancing regenerative therapies. World Journal of Advanced Engineering Technology and Sciences, 17(03), 227–239. <https://doi.org/10.30574/wjaets.2025.17.3.1553>

128. Shoag, M. (2025). Structural load distribution and failure analysis in curtain wall systems. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2117–2128. Zenodo. <https://doi.org/10.5281/zenodo.17926722>

129. Hasan, E. (2025). Machine learning-based KPI forecasting for finance and operations teams. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2139–2149. Zenodo. <https://doi.org/10.5281/zenodo.17926746>

130. Hasan, E. (2025). SQL-driven data quality optimization in multi-source enterprise dashboards. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2150–2160. Zenodo. <https://doi.org/10.5281/zenodo.17926758>

131. Hasan, E. (2025). Optimizing SAP-centric financial workloads with AI-enhanced CloudOps in virtualized data centers. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2252–2264. Zenodo. <https://doi.org/10.5281/zenodo.17926855>

132. Karim, M. A. (2025). An IoT-enabled exoskeleton architecture for mobility rehabilitation derived from the ExoLimb methodological framework. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2265–2277. Zenodo. <https://doi.org/10.5281/zenodo.17926861>

133. Akter, E., Ria, S. J., Khan, M. I., & Shoag, M. D. (2025). Smart & sustainable construction governance for climate-resilient cities. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2278–2291. Zenodo. <https://doi.org/10.5281/zenodo.17926875>

134. Zaman, S. U. (2025). Enhancing security in cloud-based IAM systems using real-time anomaly detection. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2292–2304. Zenodo. <https://doi.org/10.5281/zenodo.17926883>

135. Hossain, M. T. (2025). Data-driven optimization of apparel supply chain to reduce lead time and improve on-time delivery. World Journal of Advanced Engineering Technology and Sciences, 17(03), 263–277. <https://doi.org/10.30574/wjaets.2025.17.3.1556>

136. Rahman, F. (2025). Advanced statistical models for forecasting energy prices. Global Journal of Engineering and Technology Advances, 25(03), 168–182. <https://doi.org/10.30574/gjeta.2025.25.3.0350>

137. Karim, F. M. Z. (2025). Integrating quality management systems to strengthen U.S. export-oriented production. Global Journal of Engineering and Technology Advances, 25(03), 183–198. <https://doi.org/10.30574/gjeta.2025.25.3.0351>

138. Fazle, A. B. (2025). AI-driven predictive maintenance and process optimization in manufacturing systems using machine learning and sensor analytics. Global Journal of Engineering and Technology Advances, 25(03), 153–167. <https://doi.org/10.30574/gjeta.2025.25.3.0349>

139. Rahman, F. (2025). Data science in power system risk assessment and management. World Journal of Advanced Engineering Technology and Sciences, 17(03), 295–311. <https://doi.org/10.30574/wjaets.2025.17.3.1560>

140. Rahman, M. (2025). Predictive maintenance of electric vehicle components using IoT sensors. World Journal of Advanced Engineering Technology and Sciences, 17(03), 312–327. <https://doi.org/10.30574/wjaets.2025.17.3.1557>

141. Hossain, M. T. (2025). Cost negotiation strategies and their impact on profitability in fashion sourcing: A quantitative analysis. Global Journal of Engineering and Technology Advances, 25(03), 136–152. <https://doi.org/10.30574/gjeta.2025.25.3.0348>

142. Jasem, M. M. H. (2025, December 19). An AI-driven system health dashboard prototype for predictive maintenance and infrastructure resilience. Authorea. <https://doi.org/10.22541/au.176617579.97570024/v1>

143. uz Zaman, M. T. (2025). Photonics-based fault detection and monitoring in energy metering systems. IJSRED – International Journal of Scientific Research and Engineering Development, 8(6), 2359–2371. Zenodo. <https://doi.org/10.5281/zenodo.18074355>

144. Shoag, M. D., Khan, M. I., Ria, S. J., & Akter, E. (2025). AI-based risk prediction and quality assurance in mega-infrastructure projects. IJSRED – International Journal of Scientific Research and Engineering Development, 8(6), 2324–2336. Zenodo. <https://doi.org/10.5281/zenodo.18074336>

145. Haque, S. (2025). The impact of automation on accounting practices. IJSRED – International Journal of Scientific Research and Engineering Development, 8(6), 2312–2323. Zenodo. <https://doi.org/10.5281/zenodo.18074324>

146. Fontenot, D., Ahmed, F., & Chy, K. S. (2024). ChatGPT: What is it? How does it work? Can it be a teaching tool for an introductory programming course in higher education? Southwestern Business Administration Journal, 21(1), Article 2. <https://digitalscholarship.tsu.edu/sbaj/vol21/iss1/2>

147. Ahmed, F., & Rahaman, A. (2025). AI-driven predictive modeling of Bangladesh economic trends: Highlighting financial crime & fraud (pp. 533–542). IKSAD Congress. https://www.iksadkongre.com/_files/ugd/614b1f_4195d955f81e401a9bdbf7565b2f9948.pdf

148. Rahaman, A., Siddiquee, S. F., Chowdhury, J., Ahmed, R., Abrar, S., Bhuiyan, T., & Ahmed, F. (2025). Enhancing climate resilience in Rohingya refugee camps: A comprehensive strategy for sustainable disaster preparedness. Environment and Ecology Research, 13(6), 755–767. <https://doi.org/10.13189/eer.2025.130601>

149. Chowdhury, S., et al. (2024). Students' perception of using AI tools as a research work or coursework assistant. Middle East Research Journal of Economics and Management, 4(6), X. <https://doi.org/10.36348/merjem.2024.v04i06.00X>

150. Rahaman, A., Zaman, T. S., & Ahmed, F. (2025). Digital pathways to women's empowerment: Use of Facebook, Instagram, WhatsApp, and e-commerce by women entrepreneurs in Bangladesh. In

Proceedings of the 15th International “Communication in New World” Congress (pp. 700–709).

151. Ria, S. J., Shoag, M. D., Akter, E., & Khan, M. I. (2025). Integration of recycled and local materials in low-carbon urban structures. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 447–463.

<https://doi.org/10.30574/wjaets.2025.17.3.1555>

152. Fahim, M. A. I., Sharan, S. M. M. I., & Farooq, H. (2025). AI-enabled cloud-IoT platform for predictive infrastructure automation. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 431–446.

<https://doi.org/10.30574/wjaets.2025.17.3.1574>

153. Karim, F. M. Z. (2025). Strategic Human Resource Systems for Retention and Growth in Manufacturing Enterprises. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 2547–2559).

Zenodo. <https://doi.org/10.5281/zenodo.1807454>

154. Rahman, T. (2026). Financial Risk Intelligence: Real-Time Fraud Detection and Threat Monitoring.

Zenodo. <https://doi.org/10.5281/zenodo.18176490>

155. Rabbi, M. S. (2026). AI-Driven SCADA Grid Intelligence for Predictive Fault Detection, Cyber Health Monitoring, and Grid Reliability Enhancement.

Zenodo. <https://doi.org/10.5281/zenodo.18196487>