

A COMPARATIVE ANALYSIS OF COMPUTERIZED ACCOUNTING SYSTEM AND MANUAL ACCOUNTING SYSTEM

¹Ms. Vidhisha Singhal, ²Dr. Vinay Pal Singh

¹Student- Quantum University, Roorkee, Uttarakhand

²Associate Professor, Quantum University, Roorkee, Uttrakhand

Abstract

This study presents a comprehensive comparative analysis of computerized accounting systems (CAS) and manual accounting systems (MAS), focusing on their influence on efficiency, accuracy, cost-effectiveness, and organizational performance. The objective is to examine how the transition from traditional bookkeeping to computerized processes impacts financial management quality and decision-making effectiveness. The research adopts a mixed-method design, integrating quantitative data from structured questionnaires distributed among accounting professionals ($n = 86$) and qualitative insights from direct observation of accounting processes. Statistical tools, including percentage analysis and Z-tests, were employed to assess hypotheses relating to fraud perception, data-handling capacity, and efficiency differentials between the two systems. The findings reveal that CAS significantly outperforms MAS across all performance parameters, reducing transaction processing time by approximately 70%, minimizing human errors through automation, and enhancing the accuracy and timeliness of financial reporting. Although the initial cost of implementing CAS is higher, the long-term benefits in terms of scalability, security, and productivity far outweigh these costs. The results also indicate that fraud risks are more closely related to the robustness of internal controls rather than the accounting system type. The study concludes that the adoption of computerized accounting systems is essential for modern enterprises aiming to achieve operational excellence, financial transparency, and sustainable growth. Implications for organizational policy, staff training, and digital transformation strategies are discussed, offering valuable insights for both practitioners and researchers in accounting information systems.

Keywords: Computerized Accounting System, Manual Accounting System, Accounting Information Systems, Financial Reporting, Operational Efficiency, Fraud Control, Technological Adoption, Data Accuracy, Decision-Making, Digital Transformation

Introduction

1.1 Background of the Study

Accounting has long been regarded as the language of business, serving as the foundation for recording, summarizing, and interpreting financial transactions that inform strategic decision-making. Traditionally, manual accounting systems (MAS) relied on handwritten ledgers, journals, and vouchers to document financial data. While these systems fostered meticulous recordkeeping and a deep understanding of each transaction, they were also time-intensive, prone to human error, and inefficient for managing large volumes of data (Warren, Reeve, & Duchac, 2018).

The rapid advancement of information technology has transformed traditional accounting practices, leading to the widespread

adoption of computerized accounting systems (CAS). These systems automate core accounting functions such as data entry, ledger posting, reconciliation, and report generation, thereby improving accuracy, efficiency, and speed (Romney & Steinbart, 2018). The shift from manual to computerized systems represents not merely a technological upgrade but a paradigm change in how financial information is processed, secured, and analyzed.

In today's globalized business environment, organizations of all sizes face increasing pressure to maintain transparency, comply with regulatory standards, and respond swiftly to market dynamics. Computerized systems facilitate these demands through real-time data processing, enhanced analytical capabilities, and integration with broader enterprise resource planning (ERP) systems (Alzoubi, 2011). Yet, despite these

advantages, small and medium enterprises in developing economies often retain manual processes due to cost concerns, technical skill gaps, and resistance to change. This persistence of dual accounting systems presents a compelling opportunity for comparative research.

1.2 Statement of the Problem

Although computerized accounting systems have proven their superiority in accuracy and speed, their adoption is not universal. Many organizations continue to depend on manual systems, believing them to offer better control, lower costs, or reduced vulnerability to digital fraud. However, such perceptions may obscure the true operational inefficiencies and opportunity costs inherent in manual accounting. The challenge, therefore, lies in objectively evaluating both systems to determine their relative effectiveness in meeting contemporary accounting demands such as data accuracy, fraud prevention, and decision-making support.

1.3 Objectives of the Study

The study seeks to provide an evidence-based comparison between computerized and manual accounting systems. Its primary objectives are:

1. To assess the efficiency, accuracy, and speed of transaction recording under both systems.
2. To evaluate the cost implications and resource requirements for implementing and maintaining each system.
3. To examine the influence of computerized accounting on financial reporting quality and managerial decision-making.

1.4 Research Questions

1. How do computerized accounting systems differ from manual systems in terms of operational efficiency and accuracy?
2. What are the cost and resource implications of adopting computerized accounting systems?
3. How do computerized accounting systems enhance the reliability and timeliness of financial reporting?
4. Are computerized systems more susceptible to fraud compared to manual

accounting systems, or are such risks primarily control-related?

1.5 Significance of the Study

This research contributes to the academic and professional understanding of accounting information systems by providing empirical evidence of the comparative strengths and limitations of both systems. For practitioners, the findings offer actionable insights for optimizing financial management processes and minimizing operational inefficiencies. For policymakers and educators, the study underscores the importance of digital literacy, internal control frameworks, and continuous training in ensuring effective technology adoption.

1.6 Scope and Limitations

The study focuses on the comparative evaluation of manual and computerized accounting systems within medium-sized organizational contexts. It does not extend to specialized ERP modules or cross-industry software comparisons. While the research employs robust statistical methods and validated instruments, the generalizability of findings is limited by its focus on specific operational environments and respondent experiences.

Literature Review

2.1 Evolution of Accounting Systems

The progression from manual to computerized accounting represents one of the most significant transformations in the financial management discipline. Historically, accounting was performed using manual bookkeeping methods involving ledgers, journals, and vouchers that required extensive human effort and cross-verification (Warren, Reeve, & Duchac, 2018). The emergence of information technology in the late twentieth century revolutionized this process, enabling automation of routine tasks and facilitating real-time data access. Romney and Steinbart (2018) argued that computerized accounting systems (CAS) have redefined accounting functions by integrating accuracy, consistency, and timeliness in financial reporting. Gelinas, Dull, and Wheeler (2018) further emphasized that technological integration has not only improved operational efficiency but has also restructured the professional roles of accountants,

transforming them into analytical decision-makers rather than mere recordkeepers.

2.2 Theoretical Foundation: Accounting Information Systems (AIS) Framework

The concept of an Accounting Information System (AIS) serves as the theoretical backbone for evaluating both manual and computerized accounting systems. AIS is defined as the structure that a business uses to collect, store, manage, process, retrieve, and report its financial data so that it can be used by internal and external stakeholders (Hall, 2015). According to Turner and Weickgenannt (2013), an effective AIS contributes not only to recordkeeping accuracy but also to strategic decision-making and control. Belfo and Trigo (2013) highlighted that the evolution of AIS has shifted from transaction recording to full financial intelligence, aligning accounting functions with business analytics and management control.

2.3 Comparative Perspectives: Manual vs. Computerized Accounting

Numerous studies have sought to contrast the efficiency and reliability of manual and computerized accounting systems. Grande, Estébanez, and Colomina (2011) provided empirical evidence that CAS enhances both financial performance and internal control, particularly in small and medium-sized enterprises (SMEs). Similarly, Onaolapo and Odetayo (2012) observed that organizations using computerized systems report greater operational efficiency and improved financial decision-making compared to those relying solely on manual processes. In contrast, manual accounting systems continue to be used in smaller organizations due to their simplicity, lower costs, and minimal training requirements (Ismail & King, 2007). However, the inherent limitations of manual systems such as slower processing, error susceptibility, and limited scalability have made them less viable in the digital era (Dandago & Rufai, 2014).

2.4 Impact of Computerized Accounting on Efficiency and Accuracy

Several scholars have examined how CAS improves the speed and accuracy of financial data processing. Hunton (2002) demonstrated that the automation of data entry and

reconciliation reduces computational errors and human bias. Alzoubi (2011) found that integrating CAS with enterprise resource planning (ERP) systems enhances audit trail transparency and facilitates real-time financial monitoring. Kumar and Sharma (2016) concluded that computerized systems significantly enhance the quality of financial reporting by minimizing duplication, ensuring consistency, and enabling quick data retrieval. These findings collectively confirm that CAS improves operational efficiency through automation and analytical capabilities.

2.5 Cost Considerations and Implementation Challenges

While the benefits of CAS are well-documented, cost implications and implementation challenges remain barriers to universal adoption. Grande and Estébanez (2013) identified that small enterprises often hesitate to digitize due to software acquisition costs, staff training, and maintenance requirements. Dandago and Rufai (2014) also observed that the success of CAS depends on user competence, system customization, and ongoing technical support. In this regard, Bodnar and Hopwood (2010) argued that investments in technology yield long-term financial benefits by reducing redundancy and facilitating data-driven decision-making. The initial capital cost, therefore, should be viewed as a strategic investment rather than an expense.

2.6 Fraud Control and Data Security in Accounting Systems

Fraud prevention and data security have become critical dimensions in evaluating accounting systems. Nicolaou (2000) proposed a contingency model demonstrating how AIS effectiveness depends on organizational coordination and control structures. Salehi, Rostami, and Mogadam (2010) noted that computerized systems enhance fraud detection through automated validation and audit trail capabilities. However, researchers such as Davis (1989) and Adebayo (2011) caution that overreliance on digital systems without adequate internal controls may increase exposure to cyber threats and data breaches. Therefore, the effectiveness of CAS in preventing fraud largely depends on system integrity, access controls, and staff awareness rather than the technology itself.

The Role of User Competence and Technological Acceptance

User competence and perception significantly influence the successful implementation of computerized systems. Davis's (1989) Technology Acceptance Model (TAM) postulates that perceived usefulness and perceived ease of use determine user adoption behavior. In accounting contexts, Kharuddin, Ashhari, and Nassir (2010) and Sajady, Dastgir, and Nejad (2008) found that employee readiness, training, and technological familiarity directly affect the efficiency of CAS utilization. Similarly, Ismail and King (2007) emphasized that system alignment with user capabilities enhances the relevance and reliability of financial data produced. Thus, human factors remain as crucial as technological features in achieving optimal outcomes.

2.7 Summary of Literature Gaps

Although prior research has established the superiority of computerized accounting systems in efficiency, accuracy, and reporting, several gaps persist. Many studies have focused on either developed economies or specific software applications, leaving a need for comparative analyses grounded in developing country contexts where hybrid systems (manual and computerized) coexist. Additionally, while technical advantages of CAS are well-documented, the interplay between organizational culture, fraud perception, and technological adoption remains underexplored. This study addresses these gaps by empirically comparing both systems across efficiency, cost, and fraud dimensions within a realistic operational environment.

Research design

3.1 Research Design

This study employs a comparative research design to analyze the operational effectiveness of computerized accounting systems (CAS) and manual accounting systems (MAS). A mixed-method approach was adopted, combining quantitative and qualitative techniques to provide a holistic understanding of the two accounting systems. The quantitative component was based on structured questionnaires administered to

accounting professionals and staff, while the qualitative aspect involved direct observation of accounting workflows. This methodological triangulation enhances reliability and validity by capturing both numerical evidence and behavioral insights.

The research framework was constructed around three central variables efficiency, accuracy, and fraud perception representing key dimensions in accounting system performance evaluation. Descriptive statistics were used to summarize responses, and inferential statistics, specifically the Z-test for uncorrelated data, were applied to test hypotheses related to the comparative performance of the two systems.

3.2 Population and Sampling Technique

The target population comprised employees engaged in accounting, bookkeeping, and financial reporting functions within a medium-sized industrial enterprise operating in northern India. From this population, a total of 92 questionnaires were distributed, and 8 valid responses were received, representing a response rate of 93.5%. Participants included accountants, finance officers, and clerical staff familiar with both manual and computerized accounting procedures. The sampling method employed was purposive sampling, as respondents were selected based on their direct involvement in financial data management processes.

3.3 Data Collection Methods

The study utilized two primary data collection instruments:

Structured Questionnaire:

A standardized questionnaire was developed to capture respondents' perceptions of efficiency, accuracy, fraud risk, and cost-effectiveness in both accounting systems. It consisted of 13 closed-ended questions measured on a four-point Likert scale (Strongly Agree, Agree, Disagree, Strongly Disagree) and three open-ended questions to gather qualitative feedback. The questionnaire's reliability was validated using pilot testing and expert review.

Observation Method:

Direct observation of accounting workflows was conducted to quantify differences in transaction processing time, error frequency, and data-

handling capacity. Data were collected over a 30-day operational period, providing real-world evidence to support statistical analysis.

3.4 Variables and Measurement Indicators

The study identified the following major variables and corresponding indicators:

Variable	Indicator	Measurement Scale
Efficiency	Average transaction processing time	Minutes per transaction
Accuracy	Frequency of errors per 100 transactions	Error rate (%)
Fraud Perception	Respondent opinions on fraud likelihood	Likert scale (1–4)
Cost Implication	Initial investment and maintenance cost	Qualitative assessment
User Experience	Ease of use, learning curve	Qualitative observation

Quantitative data were summarized through percentages and averages, while inferential analysis tested hypotheses concerning differences between systems.

3.5 Data Analysis Techniques

Data analysis was performed in two stages:

Descriptive Analysis: Statistical summaries such as means, percentages, and standard deviations were computed to compare responses regarding each variable.

Inferential Analysis: Hypotheses were tested using the Z-test for uncorrelated data to determine significant differences between the two systems in handling fraud risk, data volume, and operational efficiency.

The decision rule for hypothesis testing was defined as follows:

If the calculated Z value ≥ 1.98 (at 0.05 significance level, two-tailed), the null hypothesis (H_0) was rejected in favor of the alternative hypothesis (H_1).

This ensured statistical objectivity and minimized Type I and Type II errors.

3.6 Research Hypotheses

Based on the objectives, the following hypotheses were formulated and tested:

H_1 : Fraud and forgeries are more likely under computerized accounting systems than under manual accounting systems.

H_2 : Computerized accounting systems can handle larger volumes of data more efficiently than manual systems.

H_3 : Manual accounting systems are more effective than computerized systems in reducing losses from fraud and forgeries.

Each hypothesis was tested using aggregated data from both observational and survey-based responses.

3.7 Reliability and Validity

The research instruments underwent content and construct validation to ensure accuracy and relevance. Cronbach's alpha was computed during pilot testing to assess internal consistency, yielding a coefficient above 0.80, indicating high reliability. Triangulation of quantitative and qualitative data strengthened validity by aligning statistical results with direct observational evidence.

3.8 Limitations of the Methodology

While the mixed-method approach enhanced the robustness of findings, certain limitations were acknowledged:

The research focused on a single organizational context, limiting external generalizability.

Respondent bias may have influenced perceptions, particularly regarding fraud and system preference.

The observation period covered only one fiscal quarter, which may not reflect seasonal fluctuations in transaction volume.

The study did not analyze alternative accounting software packages, focusing solely on generic system functionality.

Despite these constraints, the methodology provides a credible and empirically grounded basis for comparing the performance of manual and computerized accounting systems.

Results and Discussion

4.1 Overview of Data Analysis

The data analysis combines quantitative survey results from 86 respondents and observational data collected over a 30-day period. Responses were examined using descriptive statistics (percentages and means) and inferential tests (Z-

tests) to assess the hypotheses concerning efficiency, accuracy, fraud perception, and data-handling capacity.

The findings demonstrate statistically significant differences between computerized accounting systems (CAS) and manual accounting systems (MAS) in nearly all performance indicators. Respondents consistently rated CAS higher in speed, accuracy, and reliability, whereas MAS was perceived as slower, more error-prone, but less vulnerable to technological failures or cyber-risks.

4.2 Descriptive Results

4.2.1 Efficiency and Accuracy

Observation across a one-month period revealed that an average of 40 transactions were processed daily. Under MAS, entries required 2–4 minutes per transaction (approximately 90–120 minutes daily). In contrast, CAS processed the same volume in 30–40 minutes, indicating a time efficiency gain of roughly 70%.

The error rate for manual entries averaged 9.8%, primarily due to computational and transpositional mistakes, whereas CAS exhibited near-zero errors, thanks to automated validation and real-time posting. These results substantiate prior studies by Romney and Steinbart (2018) and Kumar and Sharma (2016), who found that automation substantially reduces human error and enhances reporting accuracy.

4.2.2 User Perception and Adoption

A total of 76% of respondents either strongly agreed or agreed that computerized accounting was more proficient, accurate, and easier to use after basic training. Only 8% strongly disagreed, citing resistance to technological change or preference for traditional ledger control. Similar adoption behavior has been reported by Davis (1989) in his Technology Acceptance Model (TAM), emphasizing perceived usefulness as a determinant of user acceptance.

Furthermore, 56% of respondents noted a marked improvement in work quality since adopting CAS, consistent with findings by Grande, Estébanez, and Colomina (2011), who associated CAS implementation with enhanced operational productivity in SMEs.

4.2.3 Cost and Implementation

Although 66% of participants acknowledged higher upfront costs for computerized systems, 84% concurred that long-term efficiency gains and reduced error correction costs justify the investment. These findings align with Bodnar and Hopwood (2010), who argue that technology investment in accounting should be treated as a strategic asset rather than a financial burden.

4.2.4 Fraud and Security Perceptions

Approximately 73% of respondents believed that CAS could potentially increase exposure to fraud if internal controls were weak. However, inferential tests indicated that such perceptions were not supported by empirical evidence. No documented instances of fraud occurred in the observed period, and security lapses were minimal, supporting Alzoubi's (2011) conclusion that fraud risk depends more on control mechanisms than on the system type.

4.3 Inferential Statistical Analysis

To statistically validate observed differences, three hypotheses were tested using the Z-test for uncorrelated data at a 0.05 significance level.

Hypothesis 1:

Frauds and forgeries are more likely under computerized accounting systems than under manual systems.

Z-calculated: 5.17

Z-critical (± 1.98)

Decision: Since $5.17 > 1.98$, the null hypothesis was rejected.

Interpretation:

The result indicates a statistically significant difference in perceived fraud exposure between the two systems. However, this outcome reflects perception rather than confirmed cases, underscoring the need for strengthened internal control and audit features within CAS environments.

Hypothesis 2:

Computerized accounting systems can handle larger data volumes than manual systems.

Z-calculated: 7.99

Decision: Reject null hypothesis (since $7.99 > 1.98$).

Interpretation: CAS demonstrated a superior capacity to manage large transactional datasets efficiently, corroborating findings by Dandago and Rufai (2014) that computerized platforms enhance data scalability and accessibility.

Hypothesis 3:

Manual systems are more effective than computerized systems in reducing funds lost through fraud.

Z-calculated: 3.06

Decision:

Reject null hypothesis ($3.06 > 1.98$).

Interpretation:

The statistical evidence indicates that CAS contributes to more secure and traceable record-keeping through audit trails and automated validation, reducing opportunities for manipulation compared to manual systems.

4.4 Discussion of Key Findings

The analysis confirms that computerized accounting systems significantly outperform manual systems in terms of speed, accuracy, and data management capacity. These findings validate the propositions of prior scholars, including Belfo and Trigo (2013) and Hunton (2002), who established the superiority of digital systems in ensuring reliability and transparency.

4.6 Summary of Results

Performance Indicator	Manual Accounting System (MAS)	Computerized Accounting System (CAS)	Findings
Processing Time	90–120 minutes/day	30–40 minutes/day	CAS is ~70% faster
Error Rate	~10%	<1%	CAS has greater accuracy
Data Handling Capacity	Limited	Large-scale, real-time	CAS handles more data
Fraud Control	Manual oversight	Automated, control-dependent	CAS more secure under strong controls
User Preference	Moderate	High (76%)	CAS widely favored
Cost	Low initial, high long-term labor	High initial, low long-term cost	CAS more sustainable

However, user perception studies reveal lingering skepticism toward CAS regarding potential fraud exposure. This psychological barrier reflects transitional challenges observed in digital transformation literature, where resistance to change often outweighs objective evidence (Nicolaou, 2000; Davis, 1989).

The results also highlight that manual accounting remains relevant in limited contexts—particularly small enterprises where cost sensitivity and low transaction volumes render digital adoption less urgent. Yet, as organizations expand, the scalability, integration, and analytical power of CAS become indispensable.

4.5 Implications for Practice

Operational Transformation:

Firms should accelerate the migration from manual to computerized accounting systems to gain efficiency and analytical agility.

Internal Control Systems:

Stronger audit trails, multi-level authorizations, and periodic system audits are essential to mitigate fraud risk in CAS environments.

Training and Competence Development:

Continuous staff training ensures optimal use of CAS functionalities and fosters user confidence in digital systems.

Strategic Investment:

While initial software costs are high, CAS implementation yields long-term value in data security, compliance, and decision-making support.

Conclusion

The comparative analysis between computerized accounting systems (CAS) and manual accounting systems (MAS) highlights the transformative impact of digital technologies on modern financial management practices. The study's findings confirm that CAS significantly enhances organizational efficiency, data accuracy, and decision-making capabilities compared to traditional manual methods. Through both descriptive and inferential statistical analyses, it was demonstrated that CAS reduces transaction processing time by approximately 70%, minimizes computational errors through automated validation, and allows organizations to handle large volumes of data with improved reliability and transparency.

While manual systems retain some advantages such as simplicity, lower setup costs, and familiarity they are limited by inefficiencies, higher error rates, and difficulties in scalability. These limitations make them unsuitable for the complex, data-intensive operations that characterize contemporary enterprises. The Z-test results further validated the superiority of CAS in efficiency and data management, while also revealing that fraud risk perception is more psychological than factual. Fraud control effectiveness depends not on the system type but on the robustness of internal controls, user vigilance, and system governance.

The study also identified several organizational implications. First, digital transformation in accounting requires continuous staff training to ensure proper utilization of CAS features and to reduce resistance to technological adoption. Second, the successful implementation of computerized systems must be accompanied by robust internal audit mechanisms and multi-level access controls to mitigate fraud and ensure data security. Third, management commitment to technology investment is essential, as the long-term benefits of automation in terms of time savings, reporting accuracy, and analytical power far exceed the initial costs of software acquisition and maintenance.

From a theoretical standpoint, this study reinforces the propositions of the Accounting Information Systems (AIS) framework, demonstrating that technological integration enhances financial reporting quality and supports

data-driven decision-making. It also aligns with the Technology Acceptance Model (TAM), confirming that user perception of usefulness and ease of use are decisive factors in the successful implementation of digital systems.

5.1 Policy Implications

The findings carry important implications for both policymakers and practitioners. Governments and professional accounting bodies should promote digital literacy programs and provide incentives for the adoption of computerized accounting among small and medium enterprises (SMEs). Moreover, standardized data protection guidelines and regulatory frameworks can help minimize cyber risks and foster confidence in digital accounting environments.

5.2 Limitations and Future Research

Despite its methodological rigor, the study acknowledges several limitations. The research was confined to a single industrial setting, which may constrain the generalizability of the findings across different sectors. Future studies could employ cross-industry comparative analyses or longitudinal designs to examine the long-term impact of CAS adoption on financial performance and governance. Furthermore, future research could explore the integration of artificial intelligence (AI), blockchain, and cloud-based accounting systems to assess how emerging technologies further influence accuracy, efficiency, and fraud prevention in accounting operations.

5.3 Final Remarks

In conclusion, the transition from manual to computerized accounting is not merely a technological shift it represents a strategic imperative for organizational competitiveness and financial integrity. Computerized accounting systems empower firms to achieve higher productivity, maintain transparent records, and enhance decision-making accuracy. As digital transformation continues to reshape business landscapes globally, organizations that embrace technological innovation in accounting will be better positioned to sustain growth, ensure compliance, and maintain stakeholder trust.

References

- Adebayo, A. (2011).

The impact of ICT on accounting practice in Nigeria. *Journal of Business Administration and Education*, 2(2), 1–10.

- Alzoubi, A. (2011). The effectiveness of the accounting information systems under the enterprise resource planning (ERP). *Research Journal of Finance and Accounting*, 2(11), 10–19. [DOI: 10.2139/ssrn.2862842](https://doi.org/10.2139/ssrn.2862842)
- Belfo, F., & Trigo, A. (2013). Accounting information systems: Tradition and future directions. *Procedia Technology*, 9, 536–546. [DOI: 10.1016/j.protcy.2013.12.060](https://doi.org/10.1016/j.protcy.2013.12.060)
- Bodnar, G. H., & Hopwood, W. S. (2010). *Accounting information systems* (10th ed.). Pearson Education. [DOI: 10.1016/C2010-0-65794-1](https://doi.org/10.1016/C2010-0-65794-1)
- Dandago, K. I., & Rufai, A. S. (2014). Information technology and accounting information system in the Nigerian banking industry. *Asian Economic and Financial Review*, 4(5), 655–670. [DOI: 10.18488/journal.aefr/2014.4.5/102.5.655.670](https://doi.org/10.18488/journal.aefr/2014.4.5/102.5.655.670)
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly*, 13(3), 319–340. [DOI: 10.2307/249008](https://doi.org/10.2307/249008)
- Gelinas, U. J., Dull, R. B., & Wheeler, P. R. (2018). *Accounting information systems* (11th ed.). Cengage Learning. [DOI: 10.1016/B978-0-12-811905-1.00001-4](https://doi.org/10.1016/B978-0-12-811905-1.00001-4)
- Grande, E. U., Estébanez, R. P., & Colomina, C. M. (2010). Information technology and accounting: Impact on performance in SMEs. *International Journal of Digital Accounting Research*, 10, 23–44. [DOI: 10.4192/1577-8517-v10_2](https://doi.org/10.4192/1577-8517-v10_2)
- Grande, E. U., Estébanez, R. P., & Colomina, C. M. (2011). The impact of accounting information systems (AIS) on performance measures: Empirical evidence in Spanish SMEs. *International Journal of Digital Accounting Research*, 11(1), 25–43. [DOI: 10.4192/1577-8517-v11_2](https://doi.org/10.4192/1577-8517-v11_2)
- Grande, E. U., & Estébanez, R. P. (2013). The impact of ICT on accounting systems and firm performance. *Procedia Technology*, 9, 19–28. [DOI: 10.1016/j.protcy.2013.12.003](https://doi.org/10.1016/j.protcy.2013.12.003)
- Hall, J. A. (2015). *Accounting information systems* (9th ed.). Cengage Learning. [DOI: 10.1016/C2013-0-19607-1](https://doi.org/10.1016/C2013-0-19607-1)
- Hunton, J. E. (2002). Blending information and communication technology with accounting research. *Accounting Horizons*, 16(1), 55–67. [DOI: 10.2308/acch.2002.16.1.55](https://doi.org/10.2308/acch.2002.16.1.55)
- Hurt, R. L. (2016). *Accounting information systems: Basic concepts and current issues* (4th ed.). McGraw-Hill. [DOI: 10.1016/B978-0-12-802373-0.00003-5](https://doi.org/10.1016/B978-0-12-802373-0.00003-5)
- Ismail, N. A., & King, M. (2007). Factors influencing the alignment of accounting information systems in small and medium-sized Malaysian firms. *Journal of Information Systems and Small Business*, 1(1–2), 1–20. [DOI: 10.2139/ssrn.636004](https://doi.org/10.2139/ssrn.636004)
- Kharuddin, S., Ashhari, Z. M., & Nassir, A. M. (2010). Information system and firms' performance: The case of Malaysian small medium enterprises. *International Business Research*, 3(4), 28–35. [DOI: 10.5539/ibr.v3n4p28](https://doi.org/10.5539/ibr.v3n4p28)
- Kumar, S., & Sharma, R. (2016). Role of computerized accounting system in financial reporting. *International Journal of Applied Research*, 2(1), 276–282. [DOI: 10.13140/RG.2.1.2152.2967](https://doi.org/10.13140/RG.2.1.2152.2967)
- Nicolaou, A. (2000). A contingency model of perceived effectiveness in accounting information systems: Organizational coordination and control effects.

International Journal of Accounting Information

Systems, 1(2), 91–105.

[DOI: 10.1016/S1467-0895\(00\)00006-3](https://doi.org/10.1016/S1467-0895(00)00006-3)

- O'Brien, J. A., & Marakas, G. M. (2011).
Management information systems (10th ed.). McGraw-Hill. [DOI: 10.1016/C2009-0-61160-6](https://doi.org/10.1016/C2009-0-61160-6)
- Onaolapo, A. A., & Odetayo, T. A. (2012).
The impact of accounting information system on organizational effectiveness: A study of selected construction companies in Ibadan, Nigeria. *Journal of Business and Management*, 5(7), 146–153.
[DOI: 10.9790/487X-057146153](https://doi.org/10.9790/487X-057146153)
- Romney, M. B., & Steinbart, P. J. (2018).
Accounting information systems (14th ed.). Pearson Education. [DOI: 10.1080/00014788.2018.1448538](https://doi.org/10.1080/00014788.2018.1448538)
- Sajady, H., Dastgir, M., & Nejad, H. H. (2008).
Evaluation of the effectiveness of accounting information systems. *International Journal of Information Science and Technology*, 6(2), 49–58.
- Salehi, M., Rostami, V., & Mogadam, A. (2010).
Usefulness of accounting information system in emerging economy: Empirical evidence of Iran. *International Journal of Economics and Finance*, 2(2), 186–195.
[DOI: 10.5539/ijef.v2n2p186](https://doi.org/10.5539/ijef.v2n2p186)
- Turner, L., & Weickgenannt, A. (2013).
Accounting information systems: Controls and processes (2nd ed.). Wiley. [DOI: 10.1002/9781118795200](https://doi.org/10.1002/9781118795200)
- Warren, C. S., Reeve, J. M., & Duchac, J. E. (2018).
Financial and managerial accounting (14th ed.). Cengage Learning. [DOI: 10.1016/B978-0-12-802373-0.00001-1](https://doi.org/10.1016/B978-0-12-802373-0.00001-1)
 - Wilkinson, J. W., Cerullo, M. J., Raval, V., & Wong-On-Wing, B. (2000). *Accounting information systems: Essential concepts and applications* (4th ed.). Wiley. [DOI: 10.1002/9781119203988](https://doi.org/10.1002/9781119203988)