
International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 326

MetaChain: Building a Web 3.0 Ecosystem with
Blockchain and Wallet Interoperability in Banking

Sector

Girish.M
Information Science and Engineering

CMR Institute of Technology,
Bengaluru, India

gim22ise@cmrit.ac.in

Shilpa Mangesh Pande
Information Science and Engineering

CMR Institute of Technology,
Bengaluru, India

shilpa.p@cmrit.ac.in

Harini.R
Information Science and Engineering

CMR Institute of Technology,
Bengaluru, India

har22ise@cmrit.ac.in

Gana Priya.V
Information Science and Engineering

CMR Institute of Technology,
Bengaluru, India

gav22ise@cmrit.ac.in

Abstract—Web3.0 has introduced a new way of building
internet applications that operate without a central authority.
Unlike traditional web systems that depend on centralized servers
and databases, decentralized applications (DApps) provide users
with greater privacy, transparency, and control over their data.
This project presents a Web3.0-based decentralized application
that allows users to send and receive cryptocurrency transac-
tions securely using the Ethereum blockchain. The application
combines React.js for the user interface, Solidity for the smart
contract logic, and MetaMask for blockchain wallet integration.
Each transaction is recorded on the blockchain, ensuring data
integrity and immutability. By using smart contracts, the system
eliminates the need for intermediaries, reduces security risks, and
promotes trust between users. This paper explains the design,
architecture, and implementation of the DApp, highlighting how
blockchain technology can enhance transparency and security in
web-based applications.

Index Terms—Web3.0, Blockchain, Smart Contracts,
Ethereum, MetaMask, Decentralized Application

I. INTRODUCTION

The evolution of the internet has progressed from static
Web1.0 to interactive Web2.0 and now to decentralized
Web3.0 technologies. Web3.0 introduces decentralization, se-
curity, and transparency as its fundamental principles by
leveraging blockchain technology. Unlike traditional central-
ized systems that depend on intermediaries for managing and
validating transactions, Web3.0 allows peer-to-peer interaction,
giving users full control over their data and assets.

The proposed system, Decentralized Web3.0 Application for
Secure Blockchain Transactions, focuses on enabling secure,
transparent, and immutable financial transactions using the
Ethereum blockchain. It integrates smart contracts written
in Solidity and deployed on the Ethereum test network to
manage all transactional activities. The frontend of the sys-

tem is designed using React.js and Tailwind CSS, ensuring
an interactive and responsive interface. User authentication
and wallet connectivity are achieved through MetaMask in-
tegration, allowing seamless communication between the user
interface and blockchain network.

The main objectives of the proposed system are:
• To develop a decentralized application that ensures secure

peer-to-peer cryptocurrency transactions.
• To utilize smart contracts for automating and validating

blockchain operations.
• To integrate MetaMask for safe wallet connection and

transaction signing.
• To maintain transparency, traceability, and immutability

in all recorded data.
The paper is structured as follows: Section II presents re-

lated work on blockchain-based decentralized systems. Section
III explains the methodology and architecture of the proposed
DApp.

II. RELATED WORK

Several studies have examined blockchain systems, smart
contracts, and Web3.0 ecosystems from software, security, and
application perspectives. Wallet-centric research has gained
importance, where a decentralized multi-platform wallet using
blockchain and IPFS is proposed in [1] to address privacy
exposure, third-party dependence, and key recovery issues in
decentralized applications. At a broader level, the evolution
of Web3.0 is systematically reviewed in [2], identifying core
ecosystem components such as decentralized identity, NFTs,
and governance, while highlighting challenges related to
scalability and interoperability. From a software engineering
viewpoint, continuous deployment for blockchain applications
is explored in [3], introducing a DevOps-oriented “1+5 views”
architecture that supports iterative updates without redeploying

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 327

core smart contracts. Complementary work in [4] focuses on
improving smart contract reliability by introducing transaction
primitives that constrain execution behavior and reduce
nondeterminism. Smart contract design and management
challenges are further discussed in [5] and [6], emphasizing
issues of maintainability, requirement alignment, and contract
evolution. Security-focused studies investigate blockchain-
based authentication, with [7] proposing blockchain-enabled
two-factor authentication, while cross-domain authentication
in dynamic environments is addressed through UAV-
assisted vehicular networks in [8]. Interoperability among
heterogeneous blockchains is examined in [9], which
proposes decentralized cross-chain interaction protocols using
smart contracts and HTLCs. Application-driven research
demonstrates blockchain adoption in finance and industry,
including construction payment automation via BIM-
integrated smart contracts in [10], financial market impacts of
cryptocurrencies and DeFi in [11], and trust-centric financial
automation beyond cryptocurrency use cases in [12]. From a
development perspective, Solidity micro-patterns are analyzed
in [13], offering reusable constructs to improve contract
robustness, while blockchain–IoT integration challenges are
discussed in [14]. The integration of blockchain with big
data analytics for supply chain value creation is explored
in [15], and transaction-level security enhancements using
smart contract–controlled micro-segmentation are examined
in [16]. Overall, these works demonstrate substantial progress
while revealing gaps in unified transaction flow modeling and
end-to-end Web3 application integration.

Overall, prior research highlights advancements in
deployment automation, interoperability, authentication, smart
contract engineering, financial decentralization, identity
protection, and analytics-driven transparency. These studies
form a strong foundation for modern Web 3.0 platforms,
including the system developed in this work, which integrates
smart contracts, decentralized interactions, and user-controlled
authentication mechanisms.

III. METHODOLOGY

The proposed system implements a decentralized Web3.0
application for secure blockchain transactions. The platform
allows users to initiate, validate, and store transactions without
relying on centralized intermediaries. The system makes use
of smart contracts, blockchain nodes, and Web3.0 protocols to
ensure data security, immutability, and transparency. All trans-
action records are stored on the blockchain, and cryptographic
mechanisms ensure privacy and integrity.

A. Transaction Processing System

To process a transaction, the user first connects to the de-
centralized network through a Web3-enabled interface. Trans-
action requests are signed using the user’s private key, which
is then broadcast to the network. Each transaction is validated

Fig. 1. Flow Diagram of Proposed Methodology

by network nodes using a consensus mechanism before being
appended to the blockchain. The system iteratively confirms
transactions until they are finalized and stored on-chain.

B. Smart Contract Execution

Smart contracts automate transaction validation and en-
forcement of business rules. A transaction is executed when
the predefined conditions in the smart contract are met. For
instance, fund transfers, access permissions, or multi-party ap-
provals are processed automatically. The contract ensures that
all operations are immutable and verifiable by any participant
on the network.

1) Transaction Verification: The verification module checks
digital signatures, transaction amounts, and sender/receiver
identities. Invalid or tampered transactions are rejected to
prevent fraudulent activities.

2) Consensus Validation: The network applies the consen-
sus algorithm (PoS, PBFT, or other mechanisms) to validate
transactions. Only when the majority of nodes approve the
transaction, it is committed to the blockchain ledger.

C. System Description

The system leverages several tools, libraries, and frame-
works for its implementation:

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 328

(i) Web3.js/Ethers.js — JavaScript libraries used to con-
nect the frontend dApp to the blockchain. They allow

Input: User interaction to connect MetaMask
Output: Active wallet address returned

interaction with smart contracts, retrieval of on-chain
data, and transaction signing.

Step
No.

Step Info

(ii) Solidity — A high-level programming language used
to write smart contracts deployed on Ethereum or com-
patible blockchain networks. It enables self-executing
transaction rules.

(iii) Node.js — Used to run backend services for the dApp,
including handling API calls, user authentication, and
interaction with blockchain nodes.

(iv) IPFS (InterPlanetary File System) — A decentralized
file storage protocol used to store sensitive data off-
chain while ensuring immutability and integrity. Only

1 Check if MetaMask is installed in the browser.
2 If not installed, prompt the user to install MetaMask.
3 Request the list of accounts from MetaMask.
4 Return the active wallet address to the dApp.

iv) Hardhat Smart Contract Deployment Algorithm

Input: Smart contract bytecode and ABI
Output: Deployed contract address on blockchain

cryptographic hashes are stored on the blockchain.
(v) Ganache/Hardhat — Blockchain development tools

Step
No.

Step Info

used for local testing and simulation of smart contracts
before deployment to a live network.

D. Algorithmic Implementation

Transactions are executed, validated, and stored securely
on the blockchain using the following procedures.

i) Transaction Recording Algorithm

Input: User transaction request (sender, receiver, amount)
Output: Validated transaction appended to blockchain

1 Load the smart contract bytecode and ABI into the deploy-
ment script.

2 Estimate the gas required for contract deployment.
3 Broadcast the deployment transaction to the blockchain

network.
4 Wait for the transaction receipt confirming deployment.
5 Store the deployed contract address for further interactions.

v) On-Chain Event Listener Algorithm

Input: Smart contract events
Output: Updated dApp UI reflecting events

Step
No.

Step Info Step

No.
Step Info

1 Fetch user wallet and transaction details from the decentral-
ized application (dApp).

2 Sign the transaction using the user’s private key to ensure
authenticity.

3 Broadcast the signed transaction to the blockchain network.
4 Validate the transaction through the consensus mechanism

(e.g., PoW or PoS).
5 Append the validated transaction to the blockchain ledger.
6 Update the user’s transaction history and notify participants.

ii) Smart Contract Execution Algorithm

Input: Transaction request triggering a smart contract
Output: Executed contract and updated blockchain state

1 Subscribe to the relevant smart contract event, e.g.,
TransferEvent.

2 For each detected event, update the dApp user interface
accordingly.

3 Maintain a record of event history in the UI for user
reference.

E. Security and Privacy Measures

To ensure secure and private transactions, the system uses:

• Public-Private Key Encryption — For authentication
and signing transactions.

• Digital Signatures — To verify sender authenticity.
• Hashing — For transaction integrity and immutability.

Step
No.

Step Info • Decentralized Storage — Sensitive data stored on IPFS
to prevent central point of failure.

1 Fetch the relevant smart contract from the blockchain.
2 Verify predefined conditions in the contract.
3 Execute smart contract actions automatically once condi-

tions are met.
4 Validate results with network nodes.
5 Store the execution outcome and transaction record on-

chain.
6 Update dApp interface to reflect the executed state.

iii) MetaMask Wallet Connection Algorithm

F. Blockchain Transaction Flow

Figure 2 depicts the blockchain transaction flow of the
proposed Web3.0 application. A transaction is initiated by the
sender through the DApp and verified by the smart contract
based on predefined rules. Once validated, the transaction
is executed and permanently recorded on the blockchain,
ensuring transparency, security, and immutability.

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 329

 ̂

(


Σ



(

recv recv

I. Smart Contract Deployment Cost

The total deployment cost of a smart contract is:

DC = Ĝ a s d e p l o y · (BaseFee + Tip). (3)

Where:

• Gasdeploy : Estimated deployment gas requirement
• BaseFee : Mandatory network fee (EIP-1559)
• Tip : Priority fee paid to validators

This is essential for estimating real-world deployment cost
in ETH or USD.

Fig. 2. Blockchain Transaction Flow

G. Dataflow Description

Figure 3 shows the overall dataflow of the proposed Web3.0
application, from transaction initiation by users to validation,
smart contract execution, and final storage on the blockchain.

J. Blockchain Storage Cost Model

Smart contract storage cost is defined as:

Cstorage = Cslot × Nfields. (4)

Where:

• Cslot : Gas cost per storage slot (20,000 gas for new slot)
• Nfields : Number of state variables stored

This model is used because storage is the costliest on-chain
operation and directly influences user transaction fees.

K. Transaction Validation Model

The validity of a blockchain transaction is given by:

Tvalid =
1, if (Balsender ≥ Atx) ∧ (Addrrecv ̸= ∅),
0, otherwise.

(5)

Account State Update Rules:

new
sender

old
sender — Atx − Gcost, (6)

Fig. 3. Dataflow Diagram

H. Gas Cost Estimation Model

The gas consumption of a smart contract function f is
estimated as:

Balnew = Balold + Atx, (7)

Gcost = Gused × Gprice, (8)

Noncenew = Nonceold + 1. (9)

These equations define how wallet balances and nonces
change after each transaction, which is critical for transaction

GCEf
=



g(o)



+ g
o∈Of

storage · Sf

+ gtx , (1)
integrity.

L. Smart Contract Execution Model

Where:

Ĝasf = GCEf · (1 + δ). (2) Smart contract execution and finalization can be described
as:

• Of : Set of EVM opcodes executed by function f
• g(o) : Gas cost of opcode o SCexec = f (Inputs, Stateold) → Statenew, (10)

• gstorage : Gas consumed per storage write/update
• Sf : Number of storage operations performed by function

f

Cfinal =
1, if Bconf ≥ Nreq,
0, otherwise,

 Ntx

(11)

• gtx : Base transaction cost (typically 21,000 gas)
• δ : Safety factor for unpredictable gas variations

TPS =
Tblock

. (12)

This model is used to estimate runtime gas cost, prevent
transaction failure, and optimize smart contract design.

This model explains how contract logic updates blockchain
state and how throughput (TPS) is measured.

Bal = Bal

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 330

IV. RESULTS

The work involves developing a decentralized Web3.0 ap-
plication that enables secure, transparent, and tamper-proof
blockchain transactions. The system eliminates the need for
intermediaries by utilizing smart contracts deployed on the
Ethereum blockchain. Each transaction is validated through a
distributed consensus mechanism, ensuring data integrity and
immutability.

The application provides a user-friendly front-end interface
that connects to the blockchain using MetaMask and Web3.js.
Users can securely perform transactions, view blockchain
data, and verify records in real time. The backend ensures
all transaction details — such as wallet address, transaction
hash, timestamp, and block number — are securely stored and
retrievable for auditing.

Fig. 4. Smart Contract Deployment

The interface displays the available contract functions such

as deposit(), getBalanceByAddress(), and getTotalBalance().
After execution, both balance-retrieval functions return a large
integer value representing the stored ether amount in Wei. This
output verifies that the contract is working correctly, storing
values, and returning account-specific as well as total balances
on request.

Fig. 5. Wallet Connection Request

This figure illustrates the MetaMask wallet connection

prompt that appears when the MetaChain application requests
access to the user’s blockchain wallet. The interface displays
the list of available wallet accounts along with their corre-
sponding balances, allowing the user to select an account for
interaction with the decentralized application. At this stage,
the user is explicitly asked to grant permission, ensuring
that wallet access is controlled and user-approved. Once the
connection is accepted, the DApp gains read-only access
to the user’s public wallet address, which is necessary for
initiating transactions, displaying account information, and
interacting with deployed smart contracts. This step represents
the initial handshake between the frontend application and the
blockchain ecosystem, establishing a secure communication
channel while preserving user ownership and privacy of cryp-
tographic credentials.

Fig. 6. Successful Wallet Connection

This shows the MetaChain homepage after the wallet

has been successfully connected. The interface displays
blockchain-related UI components such as the Ethereum card,
the transaction form, and the navigation bar. The connection
indicator is no longer visible, confirming that the DApp is fully
linked to MetaMask. This result highlights the responsive UI
transition that occurs once authentication is complete.

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026
 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 331

Fig. 7. Transaction Confirmation Interface

This presents the main landing page of the MetaChain

application before any wallet interaction. It shows the
platform’s design elements, including transaction options,
feature highlights (Web 3.0, low fees, blockchain), and the
dedicated form for initiating payments. This serves as the
baseline UI state, demonstrating the user-friendly layout
developed for blockchain-based transfers.

As shown in Figures 2–7, the developed application
successfully handles decentralized transactions using smart
contracts. Each transaction is validated on-chain, and its
hash is permanently recorded on the blockchain, ensuring
transparency and immutability.

V. CONCLUSION

The proposed Decentralized Web3.0 Application for Se-
cure Blockchain Transactions effectively utilizes blockchain
technology to enhance data security, transparency, and user
control. By integrating smart contracts and decentralized au-
thentication, the system eliminates third-party dependence and
minimizes transaction fraud.

The use of Web3.0 principles, such as decentralization and
distributed consensus, makes the system more resilient to
single-point failures. This project demonstrates a scalable and
secure approach to modern blockchain-based applications.

Future work can include integration with multi-chain
networks, NFT-based access control, and layer-2 scaling
solutions to improve transaction speed and reduce costs.

REFERENCES

[1] C. Daude´n-Esmel, J. Castella`-Roca, A. Viejo, and I. Miguel-
Rodr´ıguez, “Multi-platform wallet for privacy protection and key
recovery in decentralized applications,” Blockchain: Research and
Applications, vol. 6, no. 1, p. 100243, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2096720924000563

[2] C. Guan, D. Ding, J. Guo, and Y. Teng, “An ecosystem approach to
web3.0: a systematic review and research agenda,” Journal of Electronic
Business Digital Economics, vol. 2, no. 1, pp. 139–156, 07 2023.
[Online]. Available: https://doi.org/10.1108/JEBDE-10-2022-0039

[3] T. Go´rski, “Towards continuous deployment for blockchain,” Applied
Sciences, vol. 11, no. 24, 2021. [Online]. Available: https://www.mdpi.
com/2076-3417/11/24/11745

[4] S. Mansouri, H. Mohammed, N. Korchiev, and K. Anyanwu, “Taming
smart contracts with blockchain transaction primitives: A possibility?” in
2024 IEEE International Conference on Blockchain (Blockchain), 2024,
pp. 575–582.

[5] V. N. Huynh Anh, “An organizational modeling for developing smart
contracts on blockchain-based supply chain finance systems,” Procedia
Computer Science, vol. 239, pp. 3–10, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050924013759

[6] H. Taherdoost, “Smart contracts in blockchain technology: A critical
review,” Information, vol. 14, no. 2, 2023. [Online]. Available:
https://www.mdpi.com/2078-2489/14/2/117

[7] C. McCabe, A. I. C. Mohideen, and R. Singh, “A blockchain-based
authentication mechanism for enhanced security,” Sensors, vol. 24,
no. 17, 2024. [Online]. Available: https://www.mdpi.com/1424-8220/
24/17/5830

[8] W. Wang, S. Zhang, G. Liu, and Y. Zhao, “A blockchain-based cross-
domain authentication scheme for unmanned aerial vehicle-assisted
vehicular networks,” World Electric Vehicle Journal, vol. 16, no. 4,
2025. [Online]. Available: https://www.mdpi.com/2032-6653/16/4/199

[9] L. Cheng, Z. Lv, O. Alfarraj, A. Tolba, X. Yu, and Y. Ren, “Secure
cross-chain interaction solution in multi-blockchain environment,”
Heliyon, vol. 10, no. 7, p. e28861, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405844024048928

[10] H. Elsharkawi, E. Elbeltagi, M. S. Eid, W. Alattyih, and H. Wefki,
“Construction payment automation through scan-to-bim and blockchain-
enabled smart contract,” Buildings, vol. 15, no. 2, 2025. [Online].
Available: https://www.mdpi.com/2075-5309/15/2/213

[11] U. Kayani and F. Hasan, “Unveiling cryptocurrency impact on financial
markets and traditional banking systems: Lessons for sustainable
blockchain and interdisciplinary collaborations,” Journal of Risk and
Financial Management, vol. 17, no. 2, 2024. [Online]. Available:
https://www.mdpi.com/1911-8074/17/2/58

[12] H. Chen, N. Wei, L. Wang, W. Fawzy Mohamed Mobarak, M. Ali Al-
bahar, and Z. A. Shaikh, “The role of blockchain in finance beyond
cryptocurrency: Trust, data management, and automation,” IEEE Access,
vol. 12, pp. 64 861–64 885, 2024.

[13] L. Ruschioni, R. Shuttleworth, R. Neykova, B. Re, and G. Destefanis,
“Micro-patterns in solidity code,” 2025. [Online]. Available: https:
//arxiv.org/abs/2505.01282

[14] A. Rashid and M. J. Siddique, “Smart contracts integration between
blockchain and internet of things: Opportunities and challenges,” in
2019 2nd International Conference on Advancements in Computational
Sciences (ICACS), 2019, pp. 1–9.

[15] A. Jabbar, P. Akhtar, and S. I. Ali, “The interplay between blockchain
and big data analytics for enhancing supply chain value creation in
micro, small, and medium enterprises,” Annals of Operations Research,
vol. 350, no. 2, pp. 649–671, 2025.

[16] W. A. Jebbar and M. Al-Zubaidie, “Transaction-based blockchain sys-
tems security improvement employing micro-segmentation controlled by
smart contracts and detection of saddle goatfish,” SN Computer Science,
vol. 5, no. 7, p. 898, 2024.

