

Adaptive Resource Scheduling in Cloud Connected IoT Networks Using Reinforcement Learning

Hamza Farooq*, S M Mobasshir Islam Sharan**, MD Akiful Islam Fahim***

*(Masters in Engineering Management, Lamar University, Beaumont, Texas, United States,

Email: hamzafarooq95@hotmail.com),

**(Masters in Engineering Management, Lamar University, Beaumont, Texas, United States,

Email: sharan9037@gmail.com),

*** (Masters in Engineering Management, Lamar University, Beaumont, Texas, United States,

Email: fahim.akiful@gmail.com)

Abstract:

The rapid expansion of Internet of Things (IoT) deployments has led to highly dynamic, heterogeneous, and resource constrained network environments. Cloud connected IoT systems rely on efficient resource scheduling to ensure low latency, high throughput, and energy efficiency while meeting diverse Quality of Service (QoS) requirements. Traditional static and heuristic based scheduling approaches struggle to adapt to fluctuating workloads, varying network conditions, and unpredictable device behaviors. This paper proposes an adaptive resource scheduling framework for cloud connected IoT networks using reinforcement learning (RL). The proposed approach enables intelligent decision making by continuously learning optimal scheduling policies based on real time system feedback. By modeling the scheduling problem as a Markov Decision Process (MDP), the RL agent dynamically allocates computation, communication, and storage resources across cloud and edge layers. Simulation based evaluation demonstrates that the proposed framework significantly improves system responsiveness, resource utilization, and energy efficiency compared to conventional scheduling methods. The results confirm the effectiveness of reinforcement learning in enabling scalable, autonomous, and adaptive resource management for next-generation cloud IoT ecosystems.

Keywords — Cloud IoT integration; Reinforcement learning; Resource scheduling; Edge computing; Adaptive systems; Quality of Service (QoS); Intelligent networking.

I. INTRODUCTION

Cloud connected Internet of Things (IoT) networks have become a foundational component of modern cyber physical systems, enabling large scale data collection, real time monitoring, and intelligent automation across domains such as smart cities, healthcare, industrial control, and intelligent transportation. The rapid growth of IoT devices has resulted in highly dynamic environments characterized by heterogeneous workloads, fluctuating network conditions, and strict Quality of Service (QoS) requirements. To support computation intensive analytics and scalable storage, IoT systems increasingly rely on cloud infrastructures, often complemented by edge

computing to reduce latency and bandwidth consumption. However, efficiently scheduling computational and communication resources across cloud and edge layers remains a significant challenge. Traditional resource scheduling mechanisms are typically static or heuristic driven and lack the adaptability required to respond to real time variations in workload intensity, device availability, and network performance. These limitations often lead to increased response time, inefficient resource utilization, and higher energy consumption. Reinforcement learning has recently emerged as a promising approach for addressing such challenges due to its ability to learn optimal decision making policies through continuous

interaction with the environment. By leveraging real time feedback, reinforcement learning enables adaptive and autonomous resource management without relying on predefined system models. Motivated by these observations, this paper investigates the application of reinforcement learning for adaptive resource scheduling in cloud connected IoT networks. The proposed approach aims to dynamically optimize scheduling decisions to improve system responsiveness, scalability, and energy efficiency in highly dynamic and heterogeneous IoT environments.

A. Background and Motivation

The rapid growth of IoT ecosystems has resulted in billions of interconnected devices generating continuous streams of heterogeneous data. While IoT devices enable pervasive sensing and actuation, they are typically constrained by limited processing power, storage capacity, and energy availability. To overcome these limitations, cloud computing has been widely adopted to provide scalable computation and long term data analytics. However, centralized cloud processing often introduces communication delays, bandwidth bottlenecks, and reduced responsiveness, particularly for latency critical IoT applications. To mitigate these challenges, edge and fog computing paradigms have emerged, enabling localized processing closer to data sources. Despite these advancements, coordinating resources across cloud and edge layers remains a complex task due to fluctuating workloads, dynamic network conditions, and heterogeneous device capabilities. Static or preconfigured scheduling policies are insufficient to handle such variability efficiently. Consequently, there is a growing demand for intelligent scheduling mechanisms that can adapt autonomously to environmental changes. Reinforcement learning offers a promising solution by enabling systems to learn optimal resource allocation strategies through continuous interaction with their operating environment. By leveraging real time feedback, reinforcement learning based schedulers can dynamically balance latency, throughput, and energy efficiency. This adaptive capability makes reinforcement learning particularly suitable for addressing the evolving demands of cloud connected

IoT networks, motivating its exploration in this research.

B. Problem Statement

Although numerous resource scheduling techniques have been proposed for cloud and IoT systems, most existing approaches rely on static rules, heuristics, or optimization models with predefined assumptions. These methods are often designed for specific workload patterns or network conditions and lack the flexibility required for highly dynamic IoT environments. As a result, their performance degrades when faced with unpredictable traffic surges, varying device availability, or fluctuating network latency. In cloud-connected IoT networks, scheduling decisions must simultaneously consider multiple competing objectives, including minimizing task response time, maximizing resource utilization, and reducing energy consumption. Traditional scheduling schemes struggle to balance these objectives effectively, particularly in real-time scenarios where system states change rapidly. Moreover, centralized scheduling mechanisms may introduce additional overhead and single points of failure. The absence of adaptive intelligence in conventional schedulers often leads to inefficient resource allocation, underutilized infrastructure, and increased operational costs. These limitations highlight the need for a self learning scheduling framework capable of making autonomous decisions based on real time system observations. Such a framework should continuously adapt its scheduling policy without requiring explicit system modeling or frequent manual reconfiguration, thereby ensuring robust performance in dynamic cloud IoT environments.

C. Proposed Solution

To address the limitations of existing scheduling approaches, this paper proposes an adaptive resource scheduling framework based on reinforcement learning for cloud connected IoT networks. The core idea is to enable the scheduling mechanism to learn optimal resource allocation strategies by interacting directly with the system environment. The scheduling problem is formulated as a Markov Decision Process, where system dynamics are captured through states, actions, and rewards. In the proposed framework, the reinforcement learning agent observes real time system states such as task

arrival rates, available computational resources, network latency, and energy consumption. Based on these observations, the agent selects scheduling actions that determine task placement across cloud and edge resources. A carefully designed reward function guides the learning process by incentivizing low latency, efficient resource utilization, and reduced energy consumption. Unlike static or rule based schedulers, the proposed solution continuously updates its policy as environmental conditions evolve. This learning driven adaptability enables the system to respond effectively to workload fluctuations and network dynamics. By eliminating the need for predefined scheduling rules, the framework supports scalable, autonomous, and intelligent resource management. The proposed reinforcement learning based scheduler thus provides a robust foundation for optimizing performance in complex cloud connected IoT ecosystems.

D. Contributions

This paper makes several significant contributions to the field of intelligent cloud-IoT resource management. First, it presents a formal formulation of the cloud connected IoT resource scheduling problem using a reinforcement learning paradigm, enabling adaptive and data driven decision making. This formulation captures the dynamic nature of IoT workloads and network conditions without relying on rigid system assumptions. Second, the paper introduces a unified scheduling framework that jointly considers cloud and edge resources, addressing the coordination challenges inherent in distributed IoT infrastructures. The framework supports real time scheduling decisions based on continuous system feedback, improving responsiveness and scalability. Third, comprehensive performance evaluation is conducted to assess the effectiveness of the proposed approach. Simulation results demonstrate notable improvements in task response time, resource utilization, and energy efficiency compared to conventional scheduling methods. These results validate the practical applicability of reinforcement learning for cloud-IoT scheduling. Finally, the paper provides analytical insights into how reinforcement learning can enhance autonomous resource management in heterogeneous and dynamic

environments. These contributions collectively advance the understanding of intelligent scheduling mechanisms for next generation cloud connected IoT networks.

E. Paper Organization

The remainder of this paper is structured to systematically present the proposed research. Section II reviews related work on resource scheduling in cloud, edge, and IoT environments, with a focus on machine learning based approaches. Section III details the system architecture and methodology of the proposed reinforcement learning based scheduling framework, including state modeling and learning strategy. Section IV presents experimental results and discusses performance improvements under varying workloads and network conditions. Finally, Section V concludes the paper and outlines potential directions for future research.

II. Related Work

Research on resource scheduling in cloud connected IoT networks spans traditional heuristic approaches, optimization based methods, machine learning techniques, and, more recently, reinforcement learning driven frameworks. This section reviews the most relevant studies and highlights existing limitations that motivate the proposed work.

A. Heuristic and Rule Based Scheduling Approaches

Early research on resource scheduling in cloud and IoT environments primarily relied on heuristic and rule based mechanisms due to their simplicity and low computational overhead. Common techniques include first come first served scheduling, round robin allocation, priority based task assignment, and deadline aware heuristics. These approaches are effective in small scale or predictable environments where workload characteristics remain relatively stable. In cloud IoT systems, heuristics have been applied to reduce task waiting time and balance loads among virtual machines or edge nodes. However, heuristic based schedulers are inherently static and rely on predefined rules that do not adapt to dynamic changes in workload intensity, network latency, or device mobility. As IoT environments become increasingly heterogeneous, these fixed strategies struggle to maintain optimal performance. Studies

have shown that heuristic schedulers often lead to resource underutilization and increased response time under fluctuating traffic conditions [1]. Furthermore, rule based systems require manual tuning and expert knowledge, limiting their scalability and long term applicability. These drawbacks have encouraged researchers to explore more intelligent and adaptive scheduling mechanisms capable of responding to real time system dynamics.

B. Optimization Based Resource Scheduling Methods

Optimization based approaches have been widely studied to improve scheduling efficiency in cloud and IoT systems. Techniques such as linear programming, mixed integer optimization, genetic algorithms, particle swarm optimization, and ant colony optimization have been applied to minimize latency, energy consumption, or operational cost. These methods can produce near optimal solutions when system parameters and constraints are well defined [2]. In cloud connected IoT environments, optimization models are often used to determine optimal task offloading decisions between IoT devices, edge servers, and cloud data centers. While these techniques demonstrate strong theoretical performance, they suffer from high computational complexity and limited scalability. As the number of devices and tasks increases, solving optimization problems in real time becomes impractical. Additionally, most optimization based schedulers assume static or slowly varying system conditions, making them unsuitable for highly dynamic IoT scenarios. The need for frequent re optimization further increases overhead, motivating the shift toward learning based approaches that can adapt continuously without explicit re solving of complex models.

C. Machine Learning Based Scheduling Techniques

With advances in artificial intelligence, machine learning techniques have been increasingly adopted for resource scheduling in cloud and IoT systems. Supervised learning models have been used to predict workload demand, task execution time, and resource utilization patterns. These predictions are then used to guide scheduling decisions and improve

system performance [3]. Such approaches demonstrate improved adaptability compared to heuristic methods. However, supervised learning based schedulers depend heavily on labeled training data and historical workload patterns. Their performance degrades when system behavior deviates from training data, which is common in dynamic IoT environments. Additionally, static models require periodic retraining to remain effective, increasing system complexity. Unsupervised learning techniques partially address labeling issues but still lack direct decision making capabilities. These limitations highlight the need for online learning methods that can continuously improve scheduling policies through direct interaction with the environment, leading to increased interest in reinforcement learning based solutions.

D. Reinforcement Learning for Cloud–IoT Resource Management

Reinforcement learning (RL) has emerged as a powerful paradigm for adaptive resource management due to its ability to learn optimal policies through trial and error interactions. Several studies have applied RL to cloud resource allocation, task offloading, and edge computing environments. Q learning and deep reinforcement learning techniques have demonstrated success in minimizing response time and energy consumption under dynamic conditions [4], [5]. Despite these advances, many existing RL based studies focus on isolated cloud or edge environments and do not fully consider integrated cloud connected IoT architectures. Additionally, some approaches assume simplified system models or limited state spaces, restricting their applicability in real world deployments. There remains a research gap in designing scalable RL based schedulers that jointly optimize cloud and edge resources while accounting for heterogeneous IoT workloads. This paper addresses this gap by proposing a unified reinforcement learning based scheduling framework tailored specifically for cloud connected IoT networks.

III. Methodology

This section presents the architecture, mathematical formulation, and learning mechanism of the

proposed adaptive resource scheduling framework. The methodology integrates cloud, edge, and IoT layers with a reinforcement learning based scheduler to enable intelligent, real time resource allocation under dynamic operating conditions.

A. System Architecture and Operational Flow

The proposed system architecture consists of four main components: IoT devices, edge computing nodes, cloud servers, and a centralized reinforcement learning (RL) scheduler. IoT devices continuously generate computational tasks with heterogeneous requirements in terms of latency, bandwidth, and processing complexity. Due to resource constraints at the device level, tasks may be processed locally, offloaded to nearby edge nodes, or transmitted to cloud data centers for large scale processing. Edge nodes act as intermediaries between IoT devices and the cloud, offering low latency processing and reduced network congestion. Cloud servers provide elastic computational and storage resources for compute intensive and delay tolerant tasks. The RL based scheduler operates as the decision making core, dynamically determining optimal task placement and resource allocation across these layers based on real time system feedback.

Figure 1 illustrates the overall system architecture and task flow across IoT, edge, and cloud layers. The scheduler continuously monitors system states and adapts scheduling decisions to changing workload and network conditions.

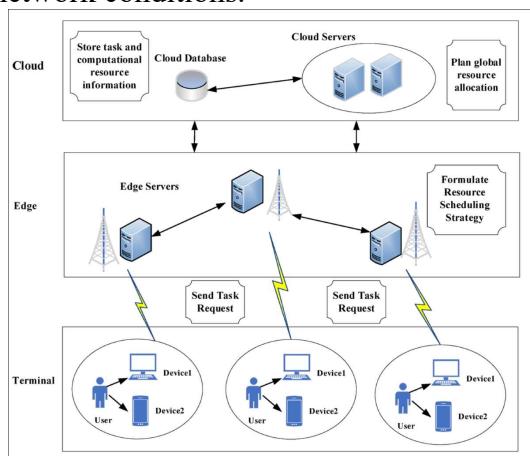


Figure 1. Architecture of the Cloud Edge IoT Scheduling Framework Using Reinforcement Learning

B. Markov Decision Process Formulation

The adaptive scheduling problem is modeled as a Markov Decision Process (MDP), defined by the tuple

$$M = (S, A, R, P, \gamma)$$

where S denotes the state space, A the action space, R the reward function, P the state transition probability, and $\gamma \in (0,1)$ the discount factor.

The state space captures the real time status of the system and is defined as:

$$st = \{Qt, Ct, Lt, Et\}$$

where Qt represents task queue length, Ct available computational resources, Lt network latency, and Et energy consumption at time t .

The action space consists of scheduling decisions:

$$at \in \begin{cases} \text{local execution, edge offloading,} \\ \text{cloud offloading} \end{cases}$$

State transitions occur as tasks are processed and system conditions evolve. The MDP formulation enables the RL agent to learn optimal scheduling policies without explicit system modeling.

C. Reinforcement Learning Based Scheduling Model

The RL agent interacts with the cloud IoT environment by observing system states and selecting scheduling actions that maximize long term cumulative reward. In this work, Q-learning is adopted due to its simplicity and effectiveness in discrete action spaces. The Q-value update rule is defined as:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

where a is the learning rate and r_t is the immediate reward received after taking action a_t in state s_t . Through repeated interaction, the agent converges toward an optimal policy π^* that selects actions yielding maximum expected cumulative reward. This learning-driven approach allows the scheduler to adapt autonomously to workload fluctuations and network variability.

D. Reward Function Design

The reward function is designed to balance multiple performance objectives, including latency reduction, energy efficiency, and resource utilization. It is defined as:

$$r_t = -(w_1 D_t + w_2 E_t) + w_3 U_t$$

where D_t denotes task response delay, E_t energy consumption, and U_t resource utilization. The weights w_1, w_2, w_3 control the relative importance of each metric.

This formulation encourages the RL agent to minimize delay and energy usage while maximizing efficient use of cloud and edge resources.

E. Scheduling Workflow and Learning Process

The scheduling workflow begins with task arrival from IoT devices. The RL scheduler observes the current system state, selects an action, and assigns the task accordingly. After execution, system feedback is collected and used to compute the reward, enabling policy updates. Figure 2 depicts the reinforcement learning workflow for adaptive scheduling.

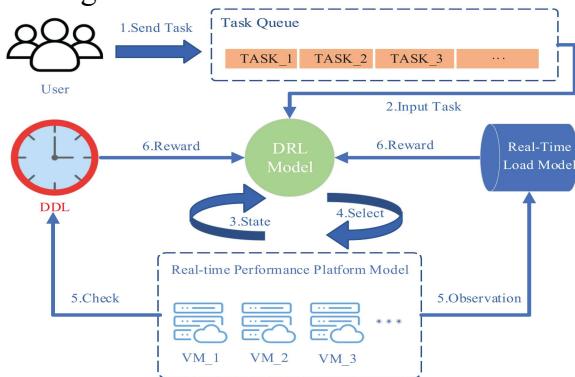


Figure 2. Reinforcement Learning Workflow for Adaptive Resource Scheduling

F. Simulation Parameters and System Configuration

The simulation environment is configured to emulate realistic cloud IoT conditions. Table I summarizes key system parameters used in the evaluation.

Table I : Simulation and System Parameters

Parameter	Description
Number of IoT devices	100–500
Edge nodes	5–20
Cloud servers	Elastic pool

Task arrival rate	Poisson distribution
Learning rate (α)	0.1
Discount factor (γ)	0.9
Simulation time	10,000 steps

IV. Discussion and Results

This section presents a comprehensive evaluation of the proposed reinforcement learning based adaptive resource scheduling framework. Simulation based experiments were conducted under varying workload intensities and network conditions to analyze system behavior. The performance of the proposed approach was compared against conventional heuristic-based scheduling techniques. Key performance metrics include average task response time, resource utilization efficiency, and energy consumption, which collectively reflect the effectiveness and scalability of the scheduling strategy.

A. Experimental Setup and Evaluation Metrics

The evaluation environment emulates a cloud connected IoT network consisting of heterogeneous IoT devices, multiple edge nodes, and elastic cloud servers. Task arrival follows a stochastic process with varying intensity to represent realistic IoT workloads. Network latency and computational capacity fluctuate dynamically to simulate real world conditions. Three primary metrics were used for performance evaluation:

1. **Average Task Response Time**, defined as the total time from task arrival to completion:

$$T_{resp} = T_{exec} + T_{queue} + T_{comm}$$

where T_{exec} is execution time, T_{queue} is waiting time, and T_{comm} is communication delay.

2. **Resource Utilization Ratio**, measuring how effectively available computing resources are used:

$$U = \frac{\sum_{i=1}^N C_{used}^{(i)}}{\sum_{i=1}^N C_{total}^{(i)}}$$

3. **Energy Consumption**, which captures the total energy used by computation and data transmission:

$$E_{total} = E_{proc} + E_{tx}$$

These metrics provide a balanced assessment of responsiveness, efficiency, and sustainability.

B. Response Time Performance Under Varying Workloads

Response time is a critical metric for latency sensitive IoT applications. Figure 3 compares the average task response time of the proposed RL based scheduler with a conventional heuristic based scheduler under increasing workload intensity.

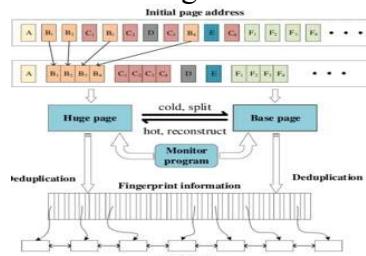


Figure 3. Average Task Response Time Under Varying Workloads

The results indicate that the heuristic based scheduler experiences a rapid increase in response time as workload intensity grows, primarily due to static task assignment and congestion at cloud resources. In contrast, the proposed RL based scheduler maintains significantly lower response time across all workload levels. This improvement is achieved through intelligent task distribution between edge and cloud layers, enabling faster execution and reduced queuing delays. The learning driven nature of the RL scheduler allows it to anticipate congestion and proactively offload tasks to underutilized resources. Consequently, the system avoids performance degradation even under high load conditions, demonstrating strong adaptability and scalability.

C. Resource Utilization and Load Balancing Analysis

Efficient utilization of computational resources is essential for maximizing system throughput and

minimizing operational costs. The proposed scheduler dynamically balances workload across cloud and edge nodes based on real-time state observations. Table II presents a comparative analysis of average resource utilization achieved by different scheduling strategies.

Table II: Resource Utilization Comparison

Scheduling Method	Edge Utilization (%)	Cloud Utilization (%)
Heuristic-Based	58.4	72.1
Proposed RL-Based	81.6	85.3

The RL based scheduler achieves substantially higher utilization across both edge and cloud layers. This improvement results from adaptive decision making that minimizes idle resources and prevents overload conditions. By contrast, heuristic scheduling tends to overuse cloud resources while leaving edge nodes underutilized. Balanced utilization enhances system stability and ensures consistent Quality of Service. These results confirm that reinforcement learning enables more effective load balancing in heterogeneous cloud connected IoT environments.

D. Energy Consumption and Efficiency Evaluation

Energy efficiency is particularly important for IoT systems, where many devices operate under strict power constraints. Figure 4 illustrates the total energy consumption of the proposed scheduler compared with the baseline approach.

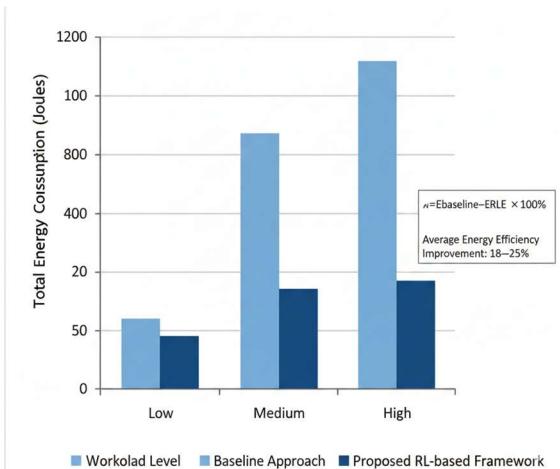


Figure 4. Energy Consumption Comparison Between Scheduling Approaches

The proposed RL based framework consistently consumes less energy, especially under medium to high workloads. This reduction is primarily attributed to minimized task migration, reduced communication overhead, and efficient use of nearby edge resources. The RL agent learns to avoid unnecessary cloud offloading when local or edge execution is more energy efficient.

Energy savings can be quantified using the efficiency gain metric:

$$\eta = \frac{E_{\text{baseline}} - E_{\text{RL}}}{E_{\text{baseline}}} \times 100\%$$

Experimental results show an average energy efficiency improvement of 18–25%, highlighting the suitability of the proposed approach for sustainable IoT deployments.

E. Discussion on Learning Behavior and System Stability

Beyond quantitative metrics, the learning behavior of the RL scheduler was analyzed. During early training stages, performance fluctuations were observed due to exploration. However, as training progressed, the policy converged toward stable scheduling decisions with consistent performance gains. The adaptive scheduler demonstrated resilience to sudden workload spikes and network condition changes. Unlike static approaches, it rapidly adjusted scheduling policies without manual intervention. This autonomous adaptability is particularly valuable in large scale IoT environments where system dynamics are unpredictable. Overall, the results confirm that reinforcement learning

provides a robust mechanism for intelligent resource scheduling, enabling cloud connected IoT systems to achieve low latency, high utilization, and improved energy efficiency simultaneously.

V. Conclusion

This paper presented an adaptive resource scheduling framework for cloud connected IoT networks using reinforcement learning. By formulating the scheduling problem as a Markov Decision Process, the proposed approach enables intelligent and autonomous decision making under dynamic workload and network conditions. Unlike traditional heuristic based schedulers, the reinforcement learning based framework continuously adapts its policy through real time system feedback, allowing efficient coordination between cloud and edge resources. Simulation based evaluation demonstrated that the proposed method significantly reduces task response time while improving resource utilization and energy efficiency. The results confirm that reinforcement learning is well suited for managing the complexity and heterogeneity of modern cloud connected IoT environments, offering a scalable and robust solution for next generation intelligent networks.

Future work will focus on extending the proposed framework in several directions. Multi agent reinforcement learning will be explored to enable decentralized scheduling across distributed edge nodes and improve scalability in large scale deployments. Security and privacy aware reward functions will be incorporated to address data protection and trust concerns in sensitive IoT applications. Additionally, deep reinforcement learning techniques will be investigated to handle larger state spaces and more complex scheduling decisions. Finally, the framework will be validated using real world IoT testbeds and experimental datasets to assess its practical feasibility and performance under realistic operating conditions.

VI. References

- [1] R. Buyya, C. S. Yeo, and S. Venugopal, "Market-oriented cloud computing: Vision, hype, and reality," *Future Generation Computer Systems*, vol. 25, no. 6, pp. 599–616, 2009. doi: [10.1016/j.future.2008.12.001](https://doi.org/10.1016/j.future.2008.12.001)
- [2] J. Kennedy and R. Eberhart, "Particle swarm optimization," *Proceedings of ICNN*, 1995. doi: [10.1109/ICNN.1995.488968](https://doi.org/10.1109/ICNN.1995.488968)
- [3] L. Mao, J. Zhang, and K. Letaief, "Dynamic computation offloading for mobile-edge computing with energy harvesting devices," *IEEE*

Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–3605, 2016. doi: [10.1109/JSAC.2016.2611964](https://doi.org/10.1109/JSAC.2016.2611964)

[4] H. Xu and B. Li, "Dynamic cloud pricing for revenue maximization," *IEEE Transactions on Cloud Computing*, vol. 1, no. 2, pp. 158–171, 2013. doi: [10.1109/TCC.2013.28](https://doi.org/10.1109/TCC.2013.28)

[5] M. Chen, Y. Hao, L. Hu, K. Huang, and V. Lau, "Green and mobility-aware caching in 5G networks," *IEEE Transactions on Wireless Communications*, vol. 16, no. 12, pp. 8347–8361, 2017. doi: [10.1109/TWC.2017.2755581](https://doi.org/10.1109/TWC.2017.2755581)

[6] Rahman, M. A., Islam, M. I., Tabassum, M., & Bristy, I. J. (2025, September). Climate-aware decision intelligence: Integrating environmental risk into infrastructure and supply chain planning. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 431–439. <https://doi.org/10.36348/sjet.2025.v10i09.006>

[7] Rahman, M. A., Bristy, I. J., Islam, M. I., & Tabassum, M. (2025, September). Federated learning for secure inter-agency data collaboration in critical infrastructure. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 421–430. <https://doi.org/10.36348/sjet.2025.v10i09.005>

[8] Tabassum, M., Rokibuzzaman, M., Islam, M. I., & Bristy, I. J. (2025, September). Data-driven financial analytics through MIS platforms in emerging economies. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 440–446. <https://doi.org/10.36348/sjet.2025.v10i09.007>

[9] Tabassum, M., Islam, M. I., Bristy, I. J., & Rokibuzzaman, M. (2025, September). Blockchain and ERP-integrated MIS for transparent apparel & textile supply chains. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 447–456. <https://doi.org/10.36348/sjet.2025.v10i09.008>

[10] Bristy, I. J., Tabassum, M., Islam, M. I., & Hasan, M. N. (2025, September). IoT-driven predictive maintenance dashboards in industrial operations. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 457–466. <https://doi.org/10.36348/sjet.2025.v10i09.009>

[11] Hasan, M. N., Karim, M. A., Joarder, M. M. I., & Zaman, M. T. (2025, September). IoT-integrated solar energy monitoring and bidirectional DC-DC converters for smart grids. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 467–475. <https://doi.org/10.36348/sjet.2025.v10i09.010>

[12] Bormon, J. C., Saikat, M. H., Shoag, M., & Akter, E. (2025, September). Green and low-carbon construction materials for climate-adaptive civil structures. *Saudi Journal of Civil Engineering (SJCE)*, 9(8), 219–226. <https://doi.org/10.36348/sjce.2025.v09i08.002>

[13] Razaq, A., Rahman, M., Karim, M. A., & Hossain, M. T. (2025, September 26). Smart charging infrastructure for EVs using IoT-based load balancing. *Zenodo*. <https://doi.org/10.5281/zenodo.17210639>

[14] Habiba, U., & Musarrat, R. (2025). Bridging IT and education: Developing smart platforms for student-centered English learning. *Zenodo*. <https://doi.org/10.5281/zenodo.17193947>

[15] Alimozzaman, D. M. (2025). Early prediction of Alzheimer's disease using explainable multi-modal AI. *Zenodo*. <https://doi.org/10.5281/zenodo.17210997>

[16] uz Zaman, M. T. Smart Energy Metering with IoT and GSM Integration for Power Loss Minimization. *Preprints* 2025, 2025091770. <https://doi.org/10.20944/preprints202509.1770.v1>

[17] Hossain, M. T. (2025, October). Sustainable garment production through Industry 4.0 automation. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.20161.83041>

[18] Hasan, E. (2025). Secure and scalable data management for digital transformation in finance and IT systems. *Zenodo*. <https://doi.org/10.5281/zenodo.17202282>

[19] Saikat, M. H. (2025). Geo-Forensic Analysis of Levee and Slope Failures Using Machine Learning. *Preprints*. <https://doi.org/10.20944/preprints202509.1905.v1>

[20] Akter, E. (2025, October 13). Lean project management and multi-stakeholder optimization in civil engineering projects. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.15777.47206>

[21] Musarrat, R. (2025). Curriculum adaptation for inclusive classrooms: A sociological and pedagogical approach. *Zenodo*. <https://doi.org/10.5281/zenodo.17202455>

[22] Bormon, J. C. (2025, October 13). Sustainable dredging and sediment management techniques for coastal and riverine infrastructure. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.28131.00803>

[23] Bormon, J. C. (2025). AI-Assisted Structural Health Monitoring for Foundations and High-Rise Buildings. *Preprints*. <https://doi.org/10.20944/preprints202509.1196.v1>

[24] Haque, S. (2025). Effectiveness of managerial accounting in strategic decision making [Preprint]. *Preprints*. <https://doi.org/10.20944/preprints202509.2466.v1>

[25] Shoag, M. (2025). AI-Integrated Façade Inspection Systems for Urban Infrastructure Safety. *Zenodo*. <https://doi.org/10.5281/zenodo.17101037>

[26] Shoag, M. Automated Defect Detection in High-Rise Façades Using AI and Drone-Based Inspection. *Preprints* 2025, 2025091064. <https://doi.org/10.20944/preprints202509.1064.v1>

[27] Shoag, M. (2025). Sustainable construction materials and techniques for crack prevention in mass concrete structures. Available at SSRN: <https://ssrn.com/abstract=5475306> or <http://dx.doi.org/10.2139/ssrn.5475306>

[28] Joarder, M. M. I. (2025). Disaster recovery and high-availability frameworks for hybrid cloud environments. *Zenodo*. <https://doi.org/10.5281/zenodo.17100446>

[29] Joarder, M. M. I. (2025). Next-generation monitoring and automation: AI-enabled system administration for smart data centers. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175825633.33380552/v1>

[30] Joarder, M. M. I. (2025). Energy-Efficient Data Center Virtualization: Leveraging AI and CloudOps for Sustainable Infrastructure. *Zenodo*. <https://doi.org/10.5281/zenodo.17113371>

[31] Taimun, M. T. Y., Sharan, S. M. I., Azad, M. A., & Joarder, M. M. I. (2025). Smart maintenance and reliability engineering in manufacturing. *Saudi Journal of Engineering and Technology*, 10(4), 189–199.

[32] Enam, M. M. R., Joarder, M. M. I., Taimun, M. T. Y., & Sharan, S. M. I. (2025). Framework for smart SCADA systems: Integrating cloud computing, IIoT, and cybersecurity for enhanced industrial automation. *Saudi Journal of Engineering and Technology*, 10(4), 152–158.

[33] Azad, M. A., Taimun, M. T. Y., Sharan, S. M. I., & Joarder, M. M. I. (2025). Advanced lean manufacturing and automation for reshoring American industries. *Saudi Journal of Engineering and Technology*, 10(4), 169–178.

[34] Sharan, S. M. I., Taimun, M. T. Y., Azad, M. A., & Joarder, M. M. I. (2025). Sustainable manufacturing and energy-efficient production systems. *Saudi Journal of Engineering and Technology*, 10(4), 179–188.

[35] Farabi, S. A. (2025). AI-augmented OTDR fault localization framework for resilient rural fiber networks in the United States. *arXiv*. <https://arxiv.org/abs/2506.03041>

[36] Farabi, S. A. (2025). AI-driven predictive maintenance model for DWDM systems to enhance fiber network uptime in underserved U.S. regions. *Preprints*. <https://doi.org/10.20944/preprints202506.1152.v1>

[37] Farabi, S. A. (2025). AI-powered design and resilience analysis of fiber optic networks in disaster-prone regions. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.12096.65287>

[38] Sunny, S. R. (2025). Lifecycle analysis of rocket components using digital twins and multiphysics simulation. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.20134.23362>

[39] Sunny, S. R. (2025). AI-driven defect prediction for aerospace composites using Industry 4.0 technologies. *Zenodo*. <https://doi.org/10.5281/zenodo.16044460>

[40] Sunny, S. R. (2025). Edge-based predictive maintenance for subsonic wind tunnel systems using sensor analytics and machine learning. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175624632.23702199/v1>

[41] Sunny, S. R. (2025). Digital twin framework for wind tunnel-based aeroelastic structure evaluation. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175624632.23702199/v1>

[42] Sunny, S. R. (2025). Real-time wind tunnel data reduction using machine learning and JR3 balance integration. *Saudi Journal of*

Engineering and Technology, 10(9), 411–420. <https://doi.org/10.36348/sjet.2025.v10i09.004>

[43] Sunny, S. R. (2025). AI-augmented aerodynamic optimization in subsonic wind tunnel testing for UAV prototypes. *Saudi Journal of Engineering and Technology*, 10(9), 402–410. <https://doi.org/10.36348/sjet.2025.v10i09.003>

[44] Shaikat, M. F. B. (2025). Pilot deployment of an AI-driven production intelligence platform in a textile assembly line. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175203708.81014137/v1>

[45] Rabbi, M. S. (2025). Extremum-seeking MPPT control for Z-source inverters in grid-connected solar PV systems. *Preprints*. <https://doi.org/10.20944/preprints202507.2258.v1>

[46] Rabbi, M. S. (2025). Design of fire-resilient solar inverter systems for wildfire-prone U.S. regions. *Preprints*. <https://www.preprints.org/manuscript/202507.2505/v1>

[47] Rabbi, M. S. (2025). Grid synchronization algorithms for intermittent renewable energy sources using AI control loops. *Preprints*. <https://www.preprints.org/manuscript/202507.2353/v1>

[48] Tonoy, A. A. R. (2025). Condition monitoring in power transformers using IoT: A model for predictive maintenance. *Preprints*. <https://doi.org/10.20944/preprints202507.2379.v1>

[49] Tonoy, A. A. R. (2025). Applications of semiconducting electrides in mechanical energy conversion and piezoelectric systems. *Preprints*. <https://doi.org/10.20944/preprints202507.2421.v1>

[50] Azad, M. A. (2025). Lean automation strategies for reshoring U.S. apparel manufacturing: A sustainable approach. *Preprints*. <https://doi.org/10.20944/preprints202508.0024.v1>

[51] Azad, M. A. (2025). Optimizing supply chain efficiency through lean Six Sigma: Case studies in textile and apparel manufacturing. *Preprints*. <https://doi.org/10.20944/preprints202508.0013.v1>

[52] Azad, M. A. (2025). Sustainable manufacturing practices in the apparel industry: Integrating eco-friendly materials and processes. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459827.79551250/v1>

[53] Azad, M. A. (2025). Leveraging supply chain analytics for real-time decision making in apparel manufacturing. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459831.14441929/v1>

[54] Azad, M. A. (2025). Evaluating the role of lean manufacturing in reducing production costs and enhancing efficiency in textile mills. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459830.02641032/v1>

[55] Azad, M. A. (2025). Impact of digital technologies on textile and apparel manufacturing: A case for U.S. reshoring. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459829.93863272/v1>

[56] Rayhan, F. (2025). A hybrid deep learning model for wind and solar power forecasting in smart grids. *Preprints*. <https://doi.org/10.20944/preprints202508.0511.v1>

[57] Rayhan, F. (2025). AI-powered condition monitoring for solar inverters using embedded edge devices. *Preprints*. <https://doi.org/10.20944/preprints202508.0474.v1>

[58] Rayhan, F. (2025). AI-enabled energy forecasting and fault detection in off-grid solar networks for rural electrification. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175623117.73185204/v1>

[59] Habiba, U., & Musarrat, R. (2025). Integrating digital tools into ESL pedagogy: A study on multimedia and student engagement. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(2), 799–811. <https://doi.org/10.5281/zenodo.17245996>

[60] Hossain, M. T., Nabil, S. H., Razaq, A., & Rahman, M. (2025). Cybersecurity and privacy in IoT-based electric vehicle ecosystems. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(2), 921–933. <https://doi.org/10.5281/zenodo.17246184>

[61] Hossain, M. T., Nabil, S. H., Rahman, M., & Razaq, A. (2025). Data analytics for IoT-driven EV battery health monitoring. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(2), 903–913. <https://doi.org/10.5281/zenodo.17246168>

[62] Akter, E., Bormon, J. C., Saikat, M. H., & Shoag, M. (2025). Digital twin technology for smart civil infrastructure and emergency preparedness. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(2), 891–902. <https://doi.org/10.5281/zenodo.17246150>

[63] Rahmatullah, R. (2025). Smart agriculture and Industry 4.0: Applying industrial engineering tools to improve U.S. agricultural productivity. *World Journal of Advanced Engineering Technology and Sciences*, 17(1), 28–40. <https://doi.org/10.30574/wjaets.2025.17.1.1377>

[64] Islam, R. (2025). AI and big data for predictive analytics in pharmaceutical quality assurance.. *SSRN*. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5564319

[65] Rahmatullah, R. (2025). Sustainable agriculture supply chains: Engineering management approaches for reducing post-harvest loss in the U.S. *International Journal of Scientific Research and Engineering Development*, 8(5), 1187–1216. <https://doi.org/10.5281/zenodo.17275907>

[66] Haque, S., Al Sany, S. M. A., & Rahman, M. (2025). Circular economy in fashion: MIS-driven digital product passports for apparel traceability. *International Journal of Scientific Research and Engineering Development*, 8(5), 1254–1262. <https://doi.org/10.5281/zenodo.17276038>

[67] Al Sany, S. M. A., Haque, S., & Rahman, M. (2025). Green apparel logistics: MIS-enabled carbon footprint reduction in fashion supply chains. *International Journal of Scientific Research and Engineering Development*, 8(5), 1263–1272. <https://doi.org/10.5281/zenodo.17276049>

[68] Bormon, J. C. (2025). Numerical Modeling of Foundation Settlement in High-Rise Structures Under Seismic Loading. Available at SSRN: <https://ssrn.com/abstract=5472006> or <http://dx.doi.org/10.2139/ssrn.5472006>

[69] Hossain, M. T. (2025, October 7). Smart inventory and warehouse automation for fashion retail. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175987210.04689809.v1>

[70] Karim, M. A. (2025, October 6). AI-driven predictive maintenance for solar inverter systems. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175977633.34328041.v1>

[71] Habiba, U. (2025, October 7). Cross-cultural communication competence through technology-mediated TESOL. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175985896.67358551.v1>

[72] Habiba, U. (2025, October 7). AI-driven assessment in TESOL: Adaptive feedback for personalized learning. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175987165.56867521.v1>

[73] Akhter, T. (2025, October 6). Algorithmic internal controls for SMEs using MIS event logs. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175978941.15848264.v1>

[74] Akhter, T. (2025, October 6). MIS-enabled workforce analytics for service quality & retention. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175978943.38544757.v1>

[75] Hasan, E. (2025, October 7). Secure and scalable data management for digital transformation in finance and IT systems. *Zenodo*. <https://doi.org/10.5281/zenodo.17202282>

[76] Saikat, M. H., Shoag, M., Akter, E., Bormon, J. C. (October 06, 2025.) Seismic- and Climate-Resilient Infrastructure Design for Coastal and Urban Regions. *TechRxiv*. DOI: <https://doi.org/10.36227/techrxiv.175979151.16743058/v1>

[77] Saikat, M. H. (October 06, 2025). AI-Powered Flood Risk Prediction and Mapping for Urban Resilience. *TechRxiv*. DOI: <https://doi.org/10.36227/techrxiv.175979253.37807272/v1>

[78] Akter, E. (September 15, 2025). Sustainable Waste and Water Management Strategies for Urban Civil Infrastructure. Available at SSRN: <https://ssrn.com/abstract=5490686> or <http://dx.doi.org/10.2139/ssrn.5490686>

[79] Karim, M. A., Zaman, M. T. U., Nabil, S. H., & Joarder, M. M. I. (2025, October 6). AI-enabled smart energy meters with DC-DC converter integration for electric vehicle charging systems. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175978935.59813154/v1>

[80] Al Sany, S. M. A., Rahman, M., & Haque, S. (2025). Sustainable garment production through Industry 4.0 automation. *World Journal of Advanced Engineering Technology and Sciences*, 17(1), 145–156. <https://doi.org/10.30574/wjaets.2025.17.1.1387>

[81] Rahman, M., Haque, S., & Al Sany, S. M. A. (2025). Federated learning for privacy-preserving apparel supply chain analytics. *World Journal of Advanced Engineering Technology and Sciences*, 17(1), 259–270. <https://doi.org/10.30574/wjaets.2025.17.1.1386>

[82] Rahman, M., Razaq, A., Hossain, M. T., & Zaman, M. T. U. (2025). Machine learning approaches for predictive maintenance in IoT devices. *World Journal of Advanced Engineering Technology and Sciences*, 17(1), 157–170. <https://doi.org/10.30574/wjaets.2025.17.1.1388>

[83] Akhter, T., Alimozzaman, D. M., Hasan, E., & Islam, R. (2025, October). Explainable predictive analytics for healthcare decision support. *International Journal of Sciences and Innovation Engineering*, 2(10), 921–938. <https://doi.org/10.70849/IJSCI02102025105>

[84] Rahman, M. (October 15, 2025) Integrating IoT and MIS for Last-Mile Connectivity in Residential Broadband Services. *TechRxiv*. DOI: [10.36227/techrxiv.176054689.95468219/v1](https://doi.org/10.36227/techrxiv.176054689.95468219/v1)

[85] Islam, R. (2025, October 15). Integration of IIoT and MIS for smart pharmaceutical manufacturing. *TechRxiv*. <https://doi.org/10.36227/techrxiv.176049811.10002169>

[86] Hasan, E. (2025). Big Data-Driven Business Process Optimization: Enhancing Decision-Making Through Predictive Analytics. *TechRxiv*. October 07, 2025. [10.36227/techrxiv.175987736.61988942/v1](https://doi.org/10.36227/techrxiv.175987736.61988942/v1)

[87] Rahman, M. (2025, October 15). IoT-enabled smart charging systems for electric vehicles. *TechRxiv*. <https://doi.org/10.36227/techrxiv.176049766.60280824/v1>

[88] Alam, M.S (2025, October 21). AI-driven sustainable manufacturing for resource optimization. *TechRxiv*. <https://doi.org/10.36227/techrxiv.176107759.92503137/v1>

[89] Alam, M.S (2025, October 21). Data-driven production scheduling for high-mix manufacturing environments. *TechRxiv*. <https://doi.org/10.36227/techrxiv.176107775.59550104/v1>

[90] Ria, S. J. (2025, October 21). Environmental impact assessment of transportation infrastructure in rural Bangladesh. *TechRxiv*. <https://doi.org/10.36227/techrxiv.17610782.23912238/v1>

[91] R Musarrat and U Habiba, Immersive Technologies in ESL Classrooms: Virtual and Augmented Reality for Language Fluency (September 22, 2025). Available at SSRN: <https://ssrn.com/abstract=5536098> or <http://dx.doi.org/10.2139/ssrn.5536098>

[92] Akter, E., Borman, J. C., Saikat, M. H., & Shoag, M. (2025), “AI-Enabled Structural and Façade Health Monitoring for Resilient Cities”, *Int. J. Sci. Inno. Eng.*, vol. 2, no. 10, pp. 1035–1051, Oct. 2025, doi: [10.70849/IJSCI02102025116](https://doi.org/10.70849/IJSCI02102025116)

[93] Haque, S., Al Sany (Oct. 2025), “Impact of Consumer Behavior Analytics on Telecom Sales Strategy”, *Int. J. Sci. Inno. Eng.*, vol. 2, no. 10, pp. 998–1018, doi: [10.70849/IJSCI02102025114](https://doi.org/10.70849/IJSCI02102025114).

[94] Sharan, S. M. I (Oct. 2025), “Integrating Human-Centered Design with Agile Methodologies in Product Lifecycle Management”, *Int. J. Sci. Inno. Eng.*, vol. 2, no. 10, pp. 1019–1034, doi: [10.70849/IJSCI02102025115](https://doi.org/10.70849/IJSCI02102025115).

[95] Alimozzaman, D. M. (2025). Explainable AI for early detection and classification of childhood leukemia using multi-modal medical data. *World Journal of Advanced Engineering Technology and Sciences*, 17(2), 48–62. <https://doi.org/10.30574/wjaets.2025.17.2.1442>

[96] Alimozzaman, D. M., Akhter, T., Islam, R., & Hasan, E. (2025). Generative AI for synthetic medical imaging to address data scarcity. *World Journal of Advanced Engineering Technology and Sciences*, 17(1), 544–558. <https://doi.org/10.30574/wjaets.2025.17.1.1415>

[97] Zaidi, S. K. A. (2025). Intelligent automation and control systems for electric vertical take-off and landing (eVTOL) drones. *World Journal of Advanced Engineering Technology and Sciences*, 17(2), 63–75. <https://doi.org/10.30574/wjaets.2025.17.2.1457>

[98] Islam, K. S. A. (2025). Implementation of safety-integrated SCADA systems for process hazard control in power generation plants. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2321–2331. Zenodo. <https://doi.org/10.5281/zenodo.17536369>

[99] Islam, K. S. A. (2025). Transformer protection and fault detection through relay automation and machine learning. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2308–2320. Zenodo. <https://doi.org/10.5281/zenodo.17536362>

[100] Afrin, S. (2025). Cloud-integrated network monitoring dashboards using IoT and edge analytics. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2298–2307. Zenodo. <https://doi.org/10.5281/zenodo.17536343>

[101] Afrin, S. (2025). Cyber-resilient infrastructure for public internet service providers using automated threat detection. *World Journal of Advanced Engineering Technology and Sciences*, 17(02), 127–140. Article DOI: <https://doi.org/10.30574/wjaets.2025.17.2.1475>.

[102] Al Sany, S. M. A. (2025). The role of data analytics in optimizing budget allocation and financial efficiency in startups. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2287–2297. Zenodo. <https://doi.org/10.5281/zenodo.17536325>

[103] Zaman, S. U. (2025). Vulnerability management and automated incident response in corporate networks. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2275–2286. Zenodo. <https://doi.org/10.5281/zenodo.17536305>

[104] Ria, S. J. (2025, October 7). Sustainable construction materials for rural development projects. *SSRN*. <https://doi.org/10.2139/ssrn.5575390>

[105] Razaq, A. (2025, October 15). Design and implementation of renewable energy integration into smart grids. *TechRxiv*. <https://doi.org/10.36227/techrxiv.176049834.44797235/v1>

[106] Musarrat R. (2025). AI-Driven Smart Housekeeping and Service Allocation Systems: Enhancing Hotel Operations Through MIS Integration. In *IJSRED - International Journal of Scientific Research and Engineering Development* (Vol. 8, Number 6, pp. 898–910). Zenodo. <https://doi.org/10.5281/zenodo.17769627>

[107] Hossain, M. T. (2025). AI-Augmented Sensor Trace Analysis for Defect Localization in Apparel Production Systems Using OTDR-Inspired Methodology. In *IJSRED - International Journal of Scientific Research and Engineering Development* (Vol. 8, Number 6, pp. 1029–1040). Zenodo. <https://doi.org/10.5281/zenodo.17769857>

[108] Rahman M. (2025). Design and Implementation of a Data-Driven Financial Risk Management System for U.S. SMEs Using Federated Learning and Privacy-Preserving AI Techniques. In *IJSRED - International Journal of Scientific Research and Engineering Development* (Vol. 8, Number 6, pp. 1041–1052). Zenodo. <https://doi.org/10.5281/zenodo.17769869>

[109] Alam, M. S. (2025). Real-Time Predictive Analytics for Factory Bottleneck Detection Using Edge-Based IIoT Sensors and Machine Learning. In *IJSRED - International Journal of Scientific Research and Engineering Development* (Vol. 8, Number 6, pp. 1053–1064). Zenodo. <https://doi.org/10.5281/zenodo.17769890>

[110] Habiba, U., & Musarrat, R. (2025). Student-centered pedagogy in ESL: Shifting from teacher-led to learner-led classrooms. *International Journal of Science and Innovation Engineering*, 2(11), 1018–1036. <https://doi.org/10.70849/IJSCI02112025110>

[111] Zaidi, S. K. A. (2025). Smart sensor integration for energy-efficient avionics maintenance operations. *International Journal of Science and Innovation Engineering*, 2(11), 243–261. <https://doi.org/10.70849/IJSCI02112025026>

[112] Farooq, H. (2025). Cross-platform backup and disaster recovery automation in hybrid clouds. *International Journal of Science and Innovation Engineering*, 2(11), 220–242. <https://doi.org/10.70849/IJSCI02112025025>

[113] Farooq, H. (2025). Resource utilization analytics dashboard for cloud infrastructure management. *World Journal of Advanced Engineering Technology and Sciences*, 17(02), 141–154. <https://doi.org/10.30574/wjaets.2025.17.2.1458>

[114] Saeed, H. N. (2025). Hybrid perovskite–CIGS solar cells with machine learning-driven performance prediction.

International Journal of Science and Innovation Engineering, 2(11), 262–280. <https://doi.org/10.70849/IJSCI02112025027>

[115] Akter, E. (2025). Community-based disaster risk reduction through infrastructure planning. *International Journal of Science and Innovation Engineering, 2(11), 1104–1124. <https://doi.org/10.70849/IJSCI02112025117>*

[116] Akter, E. (2025). Green project management framework for infrastructure development. *International Journal of Science and Innovation Engineering, 2(11), 1125–1144. <https://doi.org/10.70849/IJSCI02112025118>*

[117] Shoag, M. (2025). Integration of lean construction and digital tools for façade project efficiency. *International Journal of Science and Innovation Engineering, 2(11), 1145–1164. <https://doi.org/10.70849/IJSCI02112025119>*

[118] Akter, E. (2025). Structural Analysis of Low-Cost Bridges Using Sustainable Reinforcement Materials. In *IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 911–921)*. Zenodo. <https://doi.org/10.5281/zenodo.17769637>

[119] Razaq, A. (2025). Optimization of power distribution networks using smart grid technology. *World Journal of Advanced Engineering Technology and Sciences, 17(03), 129–146. <https://doi.org/10.30574/wjaets.2025.17.3.1490>*

[120] Zaman, M. T. (2025). Enhancing grid resilience through DMR trunking communication systems. *World Journal of Advanced Engineering Technology and Sciences, 17(03), 197–212. <https://doi.org/10.30574/wjaets.2025.17.3.1551>*

[121] Nabil, S. H. (2025). Enhancing wind and solar power forecasting in smart grids using hybrid CNN-LSTM model for improved grid stability and renewable energy integration. *World Journal of Advanced Engineering Technology and Sciences, 17(03), 213–226. <https://doi.org/10.30574/wjaets.2025.17.3.155>*

[122] Nahar, S. (2025). Optimizing HR management in smart pharmaceutical manufacturing through IIoT and MIS integration. *World Journal of Advanced Engineering Technology and Sciences, 17(03), 240–252. <https://doi.org/10.30574/wjaets.2025.17.3.1554>*

[123] Islam, S. (2025). IPSC-derived cardiac organoids: Modeling heart disease mechanism and advancing regenerative therapies. *World Journal of Advanced Engineering Technology and Sciences, 17(03), 227–239. <https://doi.org/10.30574/wjaets.2025.17.3.1553>*

[124] Shoag, M. (2025). Structural load distribution and failure analysis in curtain wall systems. *IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2117–2128. Zenodo. <https://doi.org/10.5281/zenodo.17926722>*

[125] Hasan, E. (2025). Machine learning-based KPI forecasting for finance and operations teams. *IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2139–2149. Zenodo. <https://doi.org/10.5281/zenodo.17926746>*

[126] Hasan, E. (2025). SQL-driven data quality optimization in multi-source enterprise dashboards. *IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2150–2160. Zenodo. <https://doi.org/10.5281/zenodo.17926758>*

[127] Hasan, E. (2025). Optimizing SAP-centric financial workloads with AI-enhanced CloudOps in virtualized data centers. *IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2252–2264. Zenodo. <https://doi.org/10.5281/zenodo.17926855>*

[128] Karim, M. A. (2025). An IoT-enabled exoskeleton architecture for mobility rehabilitation derived from the ExoLimb methodological framework. *IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2265–2277. Zenodo. <https://doi.org/10.5281/zenodo.17926861>*

[129] Akter, E., Ria, S. J., Khan, M. I., & Shoag, M. D. (2025). Smart & sustainable construction governance for climate-resilient cities. *IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2278–2291. Zenodo. <https://doi.org/10.5281/zenodo.17926875>*

[130] Zaman, S. U. (2025). Enhancing security in cloud-based IAM systems using real-time anomaly detection. *IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2292–2304. Zenodo. <https://doi.org/10.5281/zenodo.17926883>*

[131] Hossain, M. T. (2025). Data-driven optimization of apparel supply chain to reduce lead time and improve on-time delivery. *World Journal of Advanced Engineering Technology and Sciences, 17(03), 263–277. <https://doi.org/10.30574/wjaets.2025.17.3.1556>*

[132] Rahman, F. (2025). Advanced statistical models for forecasting energy prices. *Global Journal of Engineering and Technology Advances, 25(03), 168–182. <https://doi.org/10.30574/gjeta.2025.25.3.0350>*

[133] Karim, F. M. Z. (2025). Integrating quality management systems to strengthen U.S. export-oriented production. *Global Journal of Engineering and Technology Advances, 25(03), 183–198. <https://doi.org/10.30574/gjeta.2025.25.3.0351>*

[134] Fazle, A. B. (2025). AI-driven predictive maintenance and process optimization in manufacturing systems using machine learning and sensor analytics. *Global Journal of Engineering and Technology Advances, 25(03), 153–167. <https://doi.org/10.30574/gjeta.2025.25.3.0349>*

[135] Rahman, F. (2025). Data science in power system risk assessment and management. *World Journal of Advanced Engineering Technology and Sciences, 17(03), 295–311. <https://doi.org/10.30574/wjaets.2025.17.3.1560>*

[136] Rahman, M. (2025). Predictive maintenance of electric vehicle components using IoT sensors. *World Journal of Advanced Engineering Technology and Sciences, 17(03), 312–327. <https://doi.org/10.30574/wjaets.2025.17.3.1557>*

[137] Hossain, M. T. (2025). Cost negotiation strategies and their impact on profitability in fashion sourcing: A quantitative analysis. *Global Journal of Engineering and Technology Advances, 25(03), 136–152. <https://doi.org/10.30574/gjeta.2025.25.3.0348>*

[138] Jaseem, M. M. H. (2025, December 19). An AI-driven system health dashboard prototype for predictive maintenance and infrastructure resilience. *Authorea. <https://doi.org/10.22541/au.176617579.97570024/v1>*

[139] Zaman, M. T. (2025). Photonics-based fault detection and monitoring in energy metering systems. *IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2359–2371. Zenodo. <https://doi.org/10.5281/zenodo.18074355>*

[140] Shoag, M. D., Khan, M. I., Ria, S. J., & Akter, E. (2025). AI-based risk prediction and quality assurance in mega-infrastructure projects. *IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2324–2336. Zenodo. <https://doi.org/10.5281/zenodo.18074336>*

[141] Haque, S. (2025). The impact of automation on accounting practices. *IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2312–2323. Zenodo. <https://doi.org/10.5281/zenodo.18074324>*

[142] Fontenot, D., Ahmed, F., & Chy, K. S. (2024). ChatGPT: What is it? How does it work? Can it be a teaching tool for an introductory programming course in higher education? *Southwestern Business Administration Journal, 21(1), Article 2. <https://digitalscholarship.tsu.edu/sbaj/vol21/iss1/2>*

[143] Ahmed, F., & Rahaman, A. (2025). AI-driven predictive modeling of Bangladesh economic trends: Highlighting financial crime & fraud (pp. 533–542). *IKSAD Congress. https://www.iksadkongre.com/_files/ugd/614b1f_4195d955f81e401a9bdbf756b2f9948.pdf*

[144] Rahaman, A., Siddiquee, S. F., Chowdhury, J., Ahmed, R., Abrar, S., Bhuiyan, T., & Ahmed, F. (2025). Enhancing climate resilience in Rohingya refugee camps: A comprehensive strategy for sustainable disaster preparedness. *Environment and Ecology Research, 13(6), 755–767. <https://doi.org/10.13189/eer.2025.130601>*

[145] Chowdhury, S., et al. (2024). Students' perception of using AI tools as a research work or coursework assistant. *Middle East Research Journal of Economics and Management, 4(6), X. <https://doi.org/10.36348/merjem.2024.v04i06.00X>*

[146] Rahaman, A., Zaman, T. S., & Ahmed, F. (2025). Digital pathways to women's empowerment: Use of Facebook, Instagram, WhatsApp, and e-commerce by women entrepreneurs in

Bangladesh. In *Proceedings of the 15th International "Communication in New World" Congress* (pp. 700–709).

[147]Ria, S. J., Shoag, M. D., Akter, E., & Khan, M. I. (2025). Integration of recycled and local materials in low-carbon urban structures. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 447–463. <https://doi.org/10.30574/wjaets.2025.17.3.1555>

[148]Fahim, M. A. I., Sharan, S. M. M. I., & Farooq, H. (2025). AI-enabled cloud-IoT platform for predictive infrastructure automation. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 431–446. <https://doi.org/10.30574/wjaets.2025.17.3.1574>

[149]Karim, F. M. Z. (2025). Strategic Human Resource Systems for Retention and Growth in Manufacturing Enterprises. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 2547–2559). Zenodo. <https://doi.org/10.5281/zenodo.1807455>

[150]Rahman, T. (2026). Financial Risk Intelligence: Real-Time Fraud Detection and Threat Monitoring. Zenodo. <https://doi.org/10.5281/zenodo.18176490>

[151]Rabbi, M. S. (2026). AI-Driven SCADA Grid Intelligence for Predictive Fault Detection, Cyber Health Monitoring, and Grid Reliability Enhancement. Zenodo. <https://doi.org/10.5281/zenodo.18196487>

[152] A., Md Sazid (2026). Comparative Performance Analysis of AI-Optimized MPPT Algorithms for Grid-Connected Solar PV Systems. Zenodo. <https://doi.org/10.5281/zenodo.18261309>

[153]Zaman, S. U., Afrin, S., Zaidi, S. K. A., & Islam, K. S. A. (2026). Resilient edge computing framework for autonomous, secure, and energy-aware systems. *World Journal of Advanced Engineering Technology and Sciences*, 18(01), 105–121. <https://doi.org/10.30574/wjaets.2026.18.1.1577>

[154]Ali, A. (2026). The impact of packaging design on recycling efficiency in municipal systems. *World Journal of Advanced Engineering Technology and Sciences*, 18(01), 122–139. <https://doi.org/10.30574/wjaets.2026.18.1.0019>

[155]Min, M. A., Sharif, M. M., Rahman, F., & Nahar, S. (2026). Smart IoT infrastructure for workplace efficiency and energy savings. *World Journal of Advanced Engineering Technology and Sciences*, 18(01), 140–156. <https://doi.org/10.30574/wjaets.2026.18.1.0026>

[156]Taimun, M. T. Y., Alam, M. S., & Fareed, S. M. (2026). Digital twin-enabled predictive maintenance for textile and mechanical systems. *World Journal of Advanced Engineering Technology and Sciences*, 18(01), 187–203. <https://doi.org/10.30574/wjaets.2026.18.1.0001>

[157]Fazle, A. B., Taimun, M. T. Y., Fareed, S. M., & Alam, M. S. (2026). Ergonomic and automation based process redesign in industrial workstations. *Global Journal of Engineering and Technology Advances*, 26(01), 091–108. <https://doi.org/10.30574/gjeta.2026.26.1.0010>

[158]Alam, M. S., Fareed, S. M., Fazle, A. B., & Taimun, M. T. Y. (2026). Intelligent material flow optimization using IoT sensors and RFID tracking. *Global Journal of Engineering and Technology Advances*, 26(01), 109–125. <https://doi.org/10.30574/gjeta.2026.26.1.0011>