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Abstract

In this paper,we study Variational symmetries and Conservation Laws ,and we ob-
tain a direct relationship between Variational symmetries and Conservation Laws of the
potential modified Korteweg-de Vries and the sin -Gorden equations , K.P.equation, and
equaion of higher order
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1 Introduction

To find conservation laws we showed that it is fruitful if one examines . Consider Euclidean
space , with # = RP , with coordinate z = (!, ...zP) representing the independent variables
, and U = RY with coordinate v = (u!,....,u? the dependent variables , let Q@ C z be an
open , connected subset with smooth boundary {) , a Variational problem consists of a
functional transformations which leave the action integral

Invariant [1, 8,9 | where L is called Euler -Lagrangian equation . we establish a direct
relationship between invariances and conservation laws we obtain a direct relationship be-
tween Variational symmetries and Conservation Laws of the K-dV equations and the S-G
equation , Boussinesq equation , K.P. equaion following the recent works on higher order
is seen as follows:

Consider a partial equation of the form

Definition 1.1 (Variational symmetries)



A transformation

wx = U+ EN(T, Uy Uy eeeneeen up + 0e?)

is a Variational symmetries of integral J[u] , if for any u(x) there exists some vector
function

A(z,u,uy, .., uy)

of © , u and its derivatives to some finite order r, sucht that if u is the infinitesimal
generator[2] of a variational symmetry of an action integral

UFL = D;A (1)
Where
) 0 )
k_ v Y v L —
U" = n Sur +77,L 5u;,1 + ... +771112..2k 5ui1i2...ik
And
1) 0 1)
Di —_ i G T e
ox; o ou +u15uij +

Holds for any u(zx) , then [ 1,2] the conservation law

Di[(Wilu,n]) — A"l =0 (2)
Holds for any solution u(z) of Euler- Lagrange equation E,(L) =0 ,v =1,....,m where
» dL 5 oL
W = n[— — Dy — + (=)D, D;, | —
[u, 7] 77V[5uy 1 6“?1 +(-1) 1Mk 5ui....ik,1]

2 Examples

We give some examples to make use of this formulism and obtain conservation law for some
Soliton equations.

Exzampl (1) the Sin-Gorden equation

let Sin- Goden equaion [4,5] is

uiy — stnu = 0

Consider )
L= _iulut + cosu

and



1
n = lui + iu:{’]

The corresponding Euler - Lagrange equation to Sin - Gorden equation here is

1 1 1 1 .
UL = —iDt(um) + iulm — §D1(um) + iulm — sinun

1 3 1 3
U’L = —ot [u111¢ + 5“%“11&] - §Ut[ullll + 51@“11}

—sinufuill + §u‘;’]

Form (1)U2L = D1 A' 4+ Dy A? where
A' and A? are vector functions of (z,u) and its derivatives
then from (3)

1
Al = {—iut(mn + u}) — uyurs — upysinu + icosu}

1 3 1
A% = {—guumn — guil + 5“%1}
from (2)
1 1
UL = —§u1Dm — §D1,7 — stnun
Consequently
U?L = Eun + DyW'[u,n] + D;W?[u, 7
1
EL(n) = iUlt — sinu
= U — Stnu
and ) )
Wl = — 5, W? = 5
Now applying the conservation law (2)
first
Dy (Wt — Ah
1
= [u111U1¢ — U111 SINU + UTUT1COSU — UL UL COSU — §u%smu]
And ) . .
Dy(W? — A%) = Dt[—§U%1 + guﬂ —uguine + 5”‘1’“11&

Then from (4) , (5) the conservation law becomes

1 .
[u111 + §u:{’] [uy — sinu] =0



Exzample (2) K.d.V equation
Let K. d .V equation]| 3,4 ] is
Vize +VVe+ V=0

Let
V=u; =u
Then

Uggrr + UglUgy + Ugt = 0

Then the transformed is
U111 + w1 +u =0

Which is the Euler -Lagrange equation for

1 1 1
L= §u%1 — 6ui}’ — U

Let U? be twice extended operator of

1)
U=n—
néu
Where
U?L = ELy + DyW ' uin] + DyW 2 [un)]
then

1 1
UL = u11D%77 — §U%D17] — iutDm
consequently , where
EL = w111 + uruir + vy
1 1

Wt{u,n] = w11 D1n — ui11m — 5“%77 — Quen

W2, 0] = 5 (1)

and determined
1, 1 1

Al = t[§u11 - guzl)’ - iulud
1
A%y
2
n = (tur — )

Then we obtain the conservation law

Di(W' — AN + D,(W? — A% =0

wich we can calculate as :

1 1
Dl (Wl - Al) == Dl[ullDl (tul - 33) - ulll(tul - l‘) - iu%(tul — I) — §ut(tu1 — .T)]



1, 14 1

3
—Dlt[§u11 GuL Qulut]
2 1 3 1 4 1 1 9 3,1
= D1 [tun —u11 — turiul + xur11 — *tul + —TU| — tuiug + —xruy — *tull + *tul + ftulut]
2 2 2 2 6 2
= D1 [t(—§u11 — g — u1u111) —u11 + U1l + ix(ul + UQ)]
D is total derivative respect to x
Dy(W!' — AYY = (tuyyuiny — tudurg — tuguir)
1 1 1
—tui1uirn — w111 + w111 + rugugg + §ut + 59316115 + xui111 + 5“? (6)

And Dy is defined analogously. Without loss of generality, we assume that 17 does depend on
t- derivatives since for admissible operators can always eliminated using equation (1)
Then

1 1
Dy(W? — A?) = Dt(—§u1(tu1 —x)— =u)

2
1 1 1
= Dt[—itu% +grur = iu]
1 1
= [—iu% — tuiug — §ut] (7)

From (6) and ( 7 ) we obtain the conservation law , which here become
Dy(Wt =AY + D,(W? - A% =0

= —tuy(uii11 + wiurg + wig) + x(uiinn + v +ug) =0

3 comnservation laws for Boussinesq equation

We illustrate here equaion of higher order to obtain higher order[6,7]
conservation laws for Boussinesq equation
let

Ut + 2Ulgy + QUE; + Ugggz = 0

The transformed Boussinesq equation is
u1111 + 2uuqg + 2u% +up =0

Wich is Euler - Lagrange equation

Let U? be twice extended operator then

UL = unD%n —2uu1 D1m — wyDyn



Where
U?L = ELn + DiW ' [u,n] + D:W?[u, n]

Where
EL = uj11 + 2u? + 2uuyy + uyy

Wl[“? n] = w11 D1n + w111 — 2uun
W2[U, 77] = _[utv 77]

Then we obtain the coservation law () Where

Dl(W1 — Al) = [—tui{’ + tugugy — turuiinn + ruiinn — 2tuugugg + QZL'U% + zugugg] (8)

Dy(W? — A?) = Dy[—us[tuy — x] — u] 9)

Thus from (8) and (9) the coservation law:
l)l(T/V1 — Al) + Dt(W2 — A2) = —tul[unn + 2u% + 2uuqr + utt]

+xuiiin + 2u% + 2uuy +uy) =0

Where
[ui111 + 2uf + 2uugy + uy) =0

4 in the 3- dimensional case of K.P. equation

We take one of higher dimensional equations,[4 ,5] called the Kadomtsev - Petviashvili K .
P. equation to get the relation between variational symmetry and coservation law which is
written as

Dy(W' — AYY + Dy(W? — A?) — D,(W?3 — A%) =0 (10)

in the 3- dimensional case of K.P. equation
Consider K.P. equation as

1
(Uzze + §ui)m + ouyy =0

Where ¢ is a constant , 0 = +1
Then the transformed K.P. equation is

U1l + uruir + ue + UU?QJ

is the Euler - Lagrange equation for Lagrangian L

1 1 1 1
2= Ut — Sugug — —oul

6t 2 27
Let U? be twice extended operator of U = n% Then

1 1 1
UL = unD%n — §U%D1n — iule — §utD177 — ouyDyn



where
UL = ELn+ DiW' [u, ] + D;W?[u,n] + DyW?[u, 7]

Where
EL = uj111 +uiuir +uyg + ouyy =0

1
W u,m) = u11 D1n — urnn — =nfui + uy)

2
2 1

W-lu, n) = =5 [uan)]

W3, n] = —[ouyn]

And determined . ) ) L
Al = t[iu%l - gu? — Ui — 5(7”12/]
1

A2 = §’U,
A3 = ou

n=(tu—z—y)

Then we obtain the coservation law which becomes

1 1
Dy (w' — AYY = Dy[uy1 Dy (tuy —x—5y) —uq1q (tug —z —5) — Eu%(tul —x—y)— §ut(tu1 —x—y)]

1 1
—Dlt[iu% - 6u? — iU — quj]
) 1 1
Dy[Wz = A% = Di[qua(tur — 2 —y) = 5]

D,[W? — A% = D,[~ouy,(tuy — = —y) — ou]

from (11) , (12) ,(13)we obtain the conservation law which here become

Dy(W' — AY) + Dy(W? — A?) — D, (W3 — A3)
= zU1111 + YU1111 — tu%Un + zuiui

1
—tujuiinn + yuie + yuiui + ixult

1 1
+§yu1t — tuiuye + 596“” + iyult — OlUu Uy + OTUyy + OYUyy

So we get
U111 + uru1l + urt + ouyy =0

And the conservation law is (10 )
Dy(W' — AY) + Dy(W? — A?) — D, (W3 — A3)
= —tur[uri11 + uruir + e + ouyy]
+xfuriin + uruin + uie + ouyy)

+ylutiin + uiur + uig + oy =0

(11)
(12)

(13)
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